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ABSTRACT
STIM1 overexpression has been observed in a portion of colorectal cancer (CRC) 

patients and associated with cancer cell invasion and migration. To characterize 
the distinctive expression profiles associated with stromal interaction molecule 1 
(STIM1) overexpression/low-expression between CRC subtypes, and further assess 
the divergence transcription regulation impact of STIM1 between colon (COADs) and 
rectum (READs) adenocarcinomas in order to depict the role of SOCE pathway in CRCs, 
we have conducted a comprehensive phenome-transcriptome-interactome analysis 
to clarify underlying molecular differences of COADs/READs contributed by STIM1. 
Results demonstrated that a number of novel STIM1-associated signatures have been 
identified in COADs but not READs. Specifically, the presence of STIM1 overexpression 
in COADs, which represented a disturbance of the SOCE pathway, was associated 
with cell migration and cell motility properties. We identified 11 prognostic mRNA/
miRNA predictors associated with the overall survival of COAD patients, suggesting 
the correlation of STIM1-associated features to clinicopathological outcomes. These 
findings enhance our understanding on differences between CRC subtypes in panoramic 
view, and suggested STIM1 as a promising therapeutic biomarker in COADs.

INTRODUCTION

Colorectal cancer (CRC) is the fourth most frequent 
human malignancy in men and is the third most frequent 
in women worldwide, as well as the second most common 
cause of cancer-related morbidity and mortality [1]. 
CRC transformation from the normal colonic mucosa 
arises through a progressive accumulation of genetic 
and epigenetic changes. In CRC, colon adenocarcinomas 
(COADs) and rectal adenocarcinomas (READs) are 
largely anatomically diverse CRC classifications. 
However, the correlation between molecular profiles and 
anatomic-classified COADs/READs is inconspicuous. In 
addition, epidemiological evidence revealed that colon and 
rectal carcinomas differ in terms of their prognoses, with 

colon cancer showing a greater aggressiveness and poorer 
clinical outcomes than rectal cancer.

The invasion-metastasis cascade involves 
sequential steps of local invasion, intravasation, 
transition, extravasation, and colonization which can 
be used to describe the distinctive nature of carcinomas 
[2]. Carcinomas at the invasive front undergo “the 
epithelial-mesenchymal transition (EMT)” which enables 
progression to occur, a process which involves multiple 
signaling pathway changes in CRC including transforming 
growth factor (TGF)-β signaling, WNT signaling, and so 
on. However, recent microarray profiling techniques have 
identified different expression features between colon 
and rectal carcinomas [3], and demonstrated substantial 
biological heterogeneity between colon and rectal 
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carcinomas. Despite the identified pathway differences 
between colon and rectal carcinomas, the molecular or 
pathway root causes of cancer aggressiveness differ in 
colon/rectal carcinomas, and differences that underlie the 
prognosis potential remain obscure.

Recent studies have illustrated that Ca2+ signaling is 
increasingly implicated in CRC invasion and metastasis. 
The predominant Ca2+ signaling mechanism in most 
tumor cells is store-operated Ca2+ entry (SOCE), and 
SOCE-mediated Ca2+ oscillation is critical for focalized 
proteolysis, which is exploited by cancers to accelerate 
invasion and metastasis. The endoplasmic reticular (ER) 
Ca2+ sensor, stromal interaction molecule 1 (STIM1), which 
regulates the Ca2+ entry process in response to external 
stimuli, is thought to play a central role in coordinating 
Ca2+ signaling. It is known that STIM1-mediated Ca2+ 
oscillation controls invadopodium formation and focal 
adhesion turnover, and ultimately orchestrates tumor 
cell invasion and migration [4, 5]. In our previous 
study on CRC, STIM1 overexpression increased CRC 
aggressiveness, COX-2 gene activation and promoted 
tumor progression [6, 14]. In addition, blockage of the 
SOCE alleviated the aggressiveness of tumor cells. Those 
results suggested the importance of STIM1 overexpression 
in the tumor invasion-metastasis cascade, and therefore 
STIM1 may be developed as a potential therapeutic 
target of cancer treatment. Nevertheless, impacts of Ca2+ 
signaling and SOCE pathway aberrations on different 
CRC subtypes, i.e., colon and rectal carcinomas, remain 
exclusive. To address these issues, we conducted an 
integrated analysis focused on the transcriptome and 
interactome in colon and rectal carcinomas with distinctive 
invasiveness and aggressiveness features.

The Cancer Genome Atlas (TCGA) project 
focusing on CRC was carried out at 2012 [7], and data 
are available through its data portal. Using biological 
computational techniques, we comprehensively analyzed 
all available transcriptomic profiles (including messenger 
(m)RNA and micro (mi)RNA data) to gain a panoramic 
view of expression patterns between colon and rectal 
cancers. Furthermore, correlation analyses between 
tumor aggressiveness behaviors and expression patterns 
were carried out to point out the fundamental molecular 
contributions to the clinical tumor invasion status.

RESULTS

Correlation between patients’ clinical profile 
and STIM1 expression values in CRC

CRC patients with available STIM1 expression data 
were separated into COAD (n = 154) and READ (n = 68) 
groups (Figure 1A). In each CRC subtype, correlation 
analyses between STIM1 expression values and clinical 
profiles were conducted. First, we assessed the STIM1 
expression value between COAD and READ patients, and 

the expression value of STIM1 was significantly higher 
in COAD (mean ± SD = 0.144 ± 1.065) than READ 
(mean ± SD = −0.202 ± 0.906) patients (exact Wilcoxon 
Mann-Whitney rank sum p = 0.0066, Figure 1B). In the 
dichotomized STIM1 group, 27 of 154 (17.5%) were 
STIM1 overexpression and 20 of 154 (13.0%) were STIM1 
low-expression in COADs. In READs, only 5 of 68 (7.4%) 
were STIM1 overexpression and 17 of 68 (25.0%) were 
STIM1 low-expression.

To examine the clinicopathological role of STIM1 
in CRC, summaries (Table 1) and associations (Table 2) 
between STIM1 z-scores and several clinical features were 
separately examined in COADs and READs. As shown 
in Table 2, a correlation between STIM1 and lymphatic 
invasion was observed (p = 0.0253, odds ratio (OR) 
= 1.4515, 95% confidence interval (CI) = 1.06~2.03) 
in COADs. STIM1 also showed a modest borderline 
significant correlation with the vascular invasion status 
(OR = 1.4474, 95% CI = 0.99~2.15), but a significant 
threshold was not reached (p = 0.0593). However, there 
were no statistically significant associations of STIM1 
with the disease stage, tumor stage, lymph node spread 
status, or distant metastasis status. In contrast, READs 
did not reach a significant threshold in either lymphatic 
invasion or vascular invasion, which implied a possible 
significance of STIM’s role in COADs but not ROADs, 
further suggesting hyperactivation of the SOCE pathway 
in COAD patients.

STIM1-associated genes differentially expressed 
in COADs but not READs

COAD and READ patients were further categorized 
into a STIM1 overexpression group and STIM1 low-
expression group. Patients with STIM1 z-scores of >+1 
were categorized into the STIM1 overexpression group 
(STIM1+), and patients with STIM1 z-scores of <-1 were 
categorized into the STIM1 low-expression group (STIM1-). 
According to these criteria, 47 COAD patients (including 27 
STIM1 overexpression and 20 STIM1 low-expression) and 
22 READ patients (including 5 STIM1 overexpression and 
17 STIM1 low-expression) were subjected to a microarray 
analysis. DEGs were identified in 69 CRC patients’ 
microarray data. Moderated t-statistics were calculated to 
identify DEGs in each CRC subtype. In COAD patients, 
306 upregulated DEGs and 139 downregulated DEGs 
were identified and fulfilled the FDR-adjusted p value 
criteria of < 0.1 among the STIM1 overexpression group 
and STIM1 low-expression group (Supplementary Table 
S1A). Intriguingly, neither significant upregulated nor 
downregulated DEGs were detected in READ patients. 
This implied that STIM1 could be an important marker to 
distinguish COAD patients from READ patients.

We further identified co-expression patterns between 
COAD and READ patients. Gene lists between COAD and 
READ patients were compared using a log2 multiple of 



Oncotarget42171www.impactjournals.com/oncotarget

change cutoff of ± 1.5 (Figure 2A). Numbers of genes that 
showed a homodirectional pattern and opposite changes, 
and were uniquely differentially expressed in COADs or 
READs were quantified (Figure 2B). In 2033 selected genes 
based on log2 multiples of change, 614 (30.2%) and 724 
(35.6%) were respectively downregulated and upregulated 
in only READs. In only COADs, 118 (5.8%) and 324 
(15.9%) were respectively downregulated and upregulated. 
There were 79 (3.9%) and 143 (7.0%) genes which 
respectively showed downregulation and upregulation in 
both CRC subtypes (homodirectional); while 9 (0.44%) 
and 22 (1.1%) showed opposite directions in expression 
patterns across CRC subtypes (Supplementary Table S2). 
The Spearman rank correlation test revealed a correlation 
coefficient of 0.39 (p < 0.01), indicating a low similarity 
of expression profiles between COADs and READs. 
Unsupervised agglomerative hierarchical clustering 
analyses were conducted to clarify the aggregative effect 
of STIM1 expression patterns based on microarray profiles. 
The top 100 most significantly DEGs identified by the 
FDR-adjusted p value in COADs were clustered, and results 
are shown for each CRC subtype. As READs showed no 
significantly up- or downregulated DEGs, no genes were 
selected for clustering. In COADs, a clear clustering 
pattern was observed, and a gathering configuration on 
STIM1 overexpression patients and STIM1 low-expression 
patients was clearly distinguishable (Figure 2C), revealing 
a highly similar within-group expression pattern in COAD 
patients. However, a recognizable pattern was no longer 
visible in READs when we used the same top 100 most 
significant DEGs for READ clustering (Figure 2D). This 
result indicated that remarkable latent molecular signatures 
could be used to distinguish COADs and READs.

Following the clustering analysis, a two-step 
NMF was carried out against the top 100 DEGs. First, 

expression values were transformed into non-negative 
values (Supplementary Figure S1A). Then, Brunet et 
al.′s algorithm [8] was performed on the factorization 
rank between 2 and 6 in 200 runs to identify the optimal 
number of clusters. With the aid of visualization by a 
consensus matrix, the strongest consensus signature was 
observed with a factorization rank of 2 (Supplementary 
Figure S1B). The result indicated that the NMF algorithm 
could attain good clustering stability in a factorization 
rank of 2 that consistently clustered patients in each run 
based on STIM1 expression features. This was consistent 
with the hierarchical clustering result, that COAD patients 
were well-categorized into STIM1 high-expression and 
STIM1 low-expression groups based on two metagenes 
(Supplementary Figure S1C).

A series of analyses revealed that (i) the 
underlying molecular schemes of COADs and READs 
differed; (ii) STIM1 could be a biomarker for COADs 
but not READs, and (iii) there were differences in 
fundamental biological pathways between COADs and 
READs.

Prospecting underlying biological features in 
COADs and READs

For microarray expression profiles of COAD and 
READ patients, all signatures were included in the GSEA 
to detect coordinated changes in the same BP terms. 
Outcome enrichment scores were further normalized 
for comparisons (Supplementary Tables S3, S4). After 
filtering, differences in normalized enrichment scores were 
compared between COADs and READs (Supplementary 
Figure S2). Note that only the BP terms with a value of 
NESCOAD-NESREAD of > 0 (which means a positive value) 
were of interest. Therefore, BP terms identified to be 

Figure 1: Patient categorization for STIM1-mediated Ca2+ signaling analysis based on colorectal cancer (CRC) 
subtypes and the STIM1 expression status. A. Patient selection criteria used for the following analysis (microarray, mRNA 
sequencing, and miRNA sequencing data). CRC patients were anatomically categorized into colon adenocarcinomas (COADs) and rectal 
adenocarcinomas (READs). These patients were further stratified into STIM1+ and STIM1- groups based on the presence or absence of 
STIM1 overexpression. Patients with a STIM1 z score of >+1 or <-1 were selected to undergo differentially expressed gene identification. 
B. A whisker boxplot and jitter plot summarizing differences in normalized STIM1 expression levels (Z scores) among COADs and READs 
(Wilcoxon Mann-Whitney rank sum p = 0.0066).
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significantly enriched in COADs compared to READs 
were “immune system process” (GO:0002376), “regulation 
of cell migration” (GO:0030334) and “regulation of cell 
motility” (GO:2000145) (Supplementary Figure S3). In 
particular, the BP terms of “regulation of cell migration” 
and “regulation of cell motility” could work in concert 
with clinical features of STIM1, which is associated with 
lymphatic invasion in COAD patients. Specifically, the 
enriched BP terms provided support for the involvement of 
STIM1 and STIM1-related molecular signatures in tumor 
invasion progress. This result also indicated a similar 
enriched BP (which represented common CRC or cancer 
features) but different subtype-related molecular signatures 
(which represented subtype-enriched BPs) in CRC patients.

Validation of distinctive STIM1 roles in CRC 
subtypes by RNA-sequencing analysis and a 
pathway topology-based approach

RNA-sequence RPKM values were analyzed 
to elucidate the subtype-specific effect of STIM1 in 
CRC. In total, 56 COAD patients (including 26 STIM1 
overexpression and 30 STIM1 low-expression) and 21 
READ patients (including 11 STIM1 overexpression 
and 10 STIM1 low-expression) were investigated. To 
harmonize the RPKM value to downstream differential 
expression identification, we rounded RPKM values 
below 0.1 to prevent the deviation caused by low-
coverage genes and then used a log2 transformation to 

Table 1: Clinicopathological features of 222 colorectal cancer patients
Characteristics Total cases N COADs N (%) READs N (%) P-value

Gender

  Male 116 79 (68.10) 37 (31.90) 0.771a

  Female 106 75 (70.75) 31 (29.25)

Age (years)

  Mean ± SD 222 70.66 ± 11.65 66.63 ± 10.76 0.004b

  Range 36–90 35–89

Depth of tumor invasion

  T1 + T2 55 35 (63.64) 20 (36.36) 0.396a

  T3 + T4 149 105 (70.47) 44 (29.53)

Lymph node metastasis

  N0 136 94 (69.12) 42 (30.88) 0.839a

  N1 42 28 (66.67) 14 (33.33)

  N2 44 32 (72.73) 12 (27.27)

Distant Metastasis

  No 185 129 (69.73) 56 (30.27) 0.552a

  Yes 34 22 (64.71) 12 (35.29)

Stage (UICC)

  I + II (%) 131 91 (69.47) 40 (30.53) 1.000a

  III + IV (%) 88 61 (69.32) 27 (30.68)

Vascular invasion

  No 153 106 (69.28) 47 (30.72) 0.730a

  Yes 51 34 (66.67) 17 (33.33)

Lymphatic invasion

  No 101 71 (70.30) 30 (29.70) 0.882a

  Yes 113 78 (69.03) 35 (30.97)

Abbrevations: SD, standard deviation; COAD, colon adenocarcinoma; READ, rectal adenocarcinoma; N, number.
aP-values were calculated by Fisher’s exact test.
bP-value was calculated by Wilcoxon test.
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fit the rounded RPKM values into a normal distribution. 
After normalization, a moderated t-test was applied to 
identify DEGs and an FDR-adjusted p value threshold 
of 0.1 was applied for filtering. Surprisingly, the RNA-
sequencing profile identified 3482 upregulated DEGs in 
COADs but 0 in READs, and 517 downregulated DEGs 
in COADs and 0 in READs (Supplementary Table S1B), 
which is similar in character to the microarray profile. 
A corresponding hierarchical clustering analysis also 
disclosed a discernible pattern in COADs (Figure 3A) but 
not READs (Figure 3B).

The SPIA [9], based on the KEGG pathway 
database [10], was applied to gain biological insights into 
calcium signaling pathways in COADs and READs. In 
COADs, the calcium signaling pathway was significantly 
overrepresented (Figure 3C, Supplementary Table S5A, 
Supplementary Figure S4A), and the corresponding FDR-
adjusted p value was equal to 0.0104 (Supplementary 
Table S6). Note that the aberration of the calcium signaling 
pathway in COADs was supported by over-representation 
evidence but not perturbation evidence. Comparatively, 
the calcium signaling pathway met neither the over-
representation criterion nor the perturbation criterion 

(Figure 3D, Supplementary Table S5B, Supplementary 
Figure S4B) in READs.

Furthermore, in COADs, STIM1 overexpression 
was most highly correlated with upregulation of 
ARHGAP1/Cdc42GAP (FDR-adjusted p = 8.55 × 10−7, 
estimated beta = 14.64), a Rho GTPase-activating protein 
which participates in RhoGTPase signaling pathway that 
is implicated in the EMT, showed extensive function on 
regulating cell proliferation, migration, invasion, adhesion, 
and apoptosis [11]. Although the role of ARHGAP1 in 
CRC has remained obscure, alteration of ARHGAP1 might 
contribute to tumor aggression (Figure 3E).

Concordant expressions between different platforms 
(microarray and RNA-sequencing) were analyzed. We 
intersected upregulated DEGs and downregulated DEGs 
across different platforms and found 87 consistently 
upregulated and 8 consistently downregulated DEGs 
(Figure 3F). In other words, these 95 DEGs were 
successfully validated across different expression platforms, 
and the corresponding genes are shown in Figure 3G.

These results indicated a significant enrichment of 
the calcium signaling pathway in COADs but not ROADs, 
further supporting the inference of CRC subtype-specific 

Table 2: Logistic regression analysis between STIM1 expression value to clinical features in colon 
adenocarcinoma (COAD) and rectum adenocarcinoma (READ) patients

COADa READa

No. of pts ORb 95% CIc P-value No. of pts ORb 95% CIc P-value

Staged 0: 91
1: 61 0.9450 0.69–1.28 0.7176 0: 40

1: 27 0.9642 0.55–1.67 0.8961

Depth 
of tumor 
invasione

0: 49
1: 105 1.0534 0.76–1.45 0.7499 0: 24

1: 44 1.4404 0.81–2.72 0.2380

Lymph node 
metastasisf

N0: 94
N1: 28
N2: 32

N1: 
0.8081

N2: 
1.2040

N1: 
0.54–1.21

N2: 
0.82–1.77

N1: 
0.2982

N2: 
0.3438

N0: 42
N1: 14
N2: 12

N1: 1.1869
N2: 0.6230

N1: 
0.62–2.26

N2: 
0.28–1.39

N1: 
0.6012

N2: 
0.2468

Distant 
Metastasisg

M0: 129
M1: 22 1.3144 0.86–2.04 0.2138 M0: 56

M1: 12 0.9040 0.42–1.81 0.7834

Vascular 
Invasion

No: 106
Yes: 34 1.4474 0.99–2.15 0.0593 No: 47

Yes: 17 0.7759 0.38–1.53 0.4738

Lymphatic 
Invasion

No: 72
Yes: 77 1.4515 1.06–2.03 0.0253* No: 30

Yes: 35 0.7167 0.38–1.30 0.2817

aZ-scores were calculated from STIM1 expression value in 154 COADs and 68 READs patients recruited by TCGA project.
bOdds ratio was calculated with using exp(β).
c95% Confidence intervals.
dCOAD and READ patients with Stage I, IIA and IIB were categorized as “0” group versus “1” group that included patients 
on Stage IIIA, IIIB, IIIC, IV and IVA.
eCOAD and READ patients with T1, T2 were categorized as “0” group versus “1” group that included patients on T3, T4a 
and T4b.
fMultinomial distribution is fitted. N1/N1a/N1b vs N0 and N2/N2a vs N0.
gM0 vs M1/M1a. Significant P-value was in bold*.
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characteristics of STIM1-mediated SOCE pathway 
changes, and the relevance of STIM1-associated Ca2+ 
signaling to COADs but not READs.

Association of STIM1 overexpression with 
miRNA in COAD and READ patients

Besides mRNA expression levels, miRNA profiles 
of the CRC cohort were also studied. COAD and READ 

patients with available miRNA sequencing data were 
stratified into a STIM1 overexpression group and STIM1 
low-expression group. In total, 80 COAD patients 
(including 40 STIM1 overexpression and 40 STIM1 low-
expression) and 32 READ patients (including 11 STIM1 
overexpression and 21 STIM1 low-expression) were 
selected.

The contrast based on the presence or absence 
of STIM1 overexpression was applied to calculate 

Figure 2: Expression landscape of colorectal cancer subtypes, colon adenocarcinomas (COADs) and rectal 
adenocarcinomas (READs). A. Starburst plot of each gene mapped according to its log2 multiple of change value in COADs (x-axis) 
and READs (y-axis). Genes with |log2 multiple of change| of >1.5 were selected to examine co-expression patterns. Red: genes up- or 
downregulated only in COADs. Purple: genes up- or-downregulated only in READs. Brown: genes changing in the same direction in both 
COADs and READs. Blue: genes changing in opposite directions in COADs and READs. The Spearman rank correlation of coefficient 
of expression value between COADs and READs was 0.39. B. Summarized histogram of selected genes in COADs and READs based 
on the criterion of a |log2 multiple of change| of >1.5. C. Heatmap of the top 100 most variant differentially expressed genes (DEGs) in 
COADs based on the microarray profile. Each row represents the top 100 most significant DEGs, and each column shows patient samples. 
A hierarchical clustering analysis was performed, and patient information based on STIM1 expression status was mapped. D. Heatmap of 
the top 100 most variant DEGs in READs based on the microarray profile. Each row represents the top 100 most significant DEGs, and each 
column shows patient samples. A hierarchical clustering analysis was performed, and patient information based on the STIM1 expression 
status was mapped.
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Figure 3: Validation of differential expression results by RNA-sequencing platform and a signaling pathway impact 
analysis (SPIA). A. Heatmap of the top 100 most variant differentially expressed genes (DEGs) in colon adenocarcinomas (COADs) 
based on the RNA sequencing profile. Each row represents the top 100 most significant DEGs, and each column shows patient samples. 
A hierarchical clustering analysis was performed, and patient information based on the STIM1 expression status was mapped. B. Heatmap 
of the top 100 most variant DEGs in rectal adenocarcinomas (READs) based on the RNA sequencing profile. Each row represents the 
top 100 most significant DEGs, and each column shows patient samples. A hierarchical clustering analysis was performed, and patient 
information based on the STIM1 expression status was mapped. C. Calcium signaling pathway of COADs based on the KEGG graph. The 
degrees of log2 multiples of change were mapped by red or green color based on the direction of the log2 multiple of change. D. Calcium 
signaling pathway of READs based on the KEGG graph. The degrees of log2 multiples of change were mapped by red or green color 
based on the direction of the log2 multiple of change. E. Whisker boxplot and jitter plot summarizing differences of normalized ARHGAP1 
expression levels in STIM1 overexpression and STIM1 low-expression groups (false discovery rate-adjusted p = 8.55 × 10−7). In x-axis, 1: 
STIM1 overexpression; 0: STIM1 under-expression. F. Venn diagrams showing the number of intersecting significantly differentially up- or 
downregulated genes across the microarray platform and RNA sequencing platform in COADs. Plots were constructed using Venny (http://
bioinfogp.cnb.csic.es/tools/venny/index.html). G. Dendrogram of 95 validated genes (green: 87 upregulated genes; red: 8 downregulated 
genes) constructed by a dissimilarity matrix of expression values based on Pearson’s correlations. Genes were ordered by a hierarchical 
clustering based on the Euclidean distance and average linkage.
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multiples of change of miRNA, and a negative binomial 
distribution was fitted to account for the non-normality 
and dependency of the variance on the mean [12]. 
Having estimated the multiples of change and calculated 
corresponding p values of miRNA in each CRC subtype, 
a FDR-adjusted p value threshold of 0.1 was applied 
to identify differentially expressed miRNAs across 
COADs and READs. As a result, 10 upregulated and 
16 downregulated miRNAs were identified in COAD 
patients (Figure 4A, Supplementary Table S7A); while 
only 2 downregulated miRNAs (hsa-miR-1978 and hsa-
miR-203) showed a significant correlation in READ 
patients (Supplementary Table S7B).

The following regularized log transformation 
and hierarchical clustering analysis were carried out to 
inspect comprehensive miRNA regulation of COADs 
(Figure 4B–4C) and READs (Figure 4D–4E). However, 
no distinctive pattern was observed in COADs and 
READs, indicating a modest regulatory role of STIM1 
overexpression in the overall miRNA profile. In spite of 
the fact of undetectable global interference of miRNA 
expression, STIM1 overexpression indeed affected 
a small number of miRNAs in COADs and READs 
(Supplementary Table S7C).

Identification of prognostic mRNA/miRNA 
signatures in COADs for clinical outcomes 
across different clinical subclasses

Having determined the 95 genes that were 
consistently detected by microarray and RNA-sequencing 
platforms and 16 miRNAs detected by miRNA sequencing 
in COADs, we conducted a stringent multistep clinical 
subclass-based survival analysis, which was similar to the 
strategy proposed by Volinia et al. [13], to identify COAD 
prognostic mRNA/miRNA signatures (Figure 5A). Thus, 
survival analyses were separately adjusted according to 
clinical profiles (T stage, N stage, M stage, and vascular- 
and lymphatic-invasion status). Furthermore, only mRNA 
or miRNA that showed p values of < 0.05 in at least two 
clinical subclasses were considered significant. Therefore, 
mRNA or miRNA identified to be significant indicated that 
these signatures were correlated with the patient survival 
rate after adjusting for several clinical subclasses.

Consequently, 10 transcripts, including 
PANX1, ETS1, EXT1, C1QTNF6, PCDH7, GLIS3, 
MARVELD1, PPP2R3A, KIAA0247, and LRP12, and 
1 miRNA (hsa-miR-195, Supplementary Figure S5) 
successfully passed the multistep procedure and were 
related to clinical outcomes across COAD patients 
(Supplementary Table S8).

In addition, we constructed a PCA algorithm to 
transform these 11 prognostic signatures into a linear 
form (a so-called prognostic predictor, Supplementary 
Figure S6A). The model performance was assessed by 
the AUROC curve. The ROC curve was used to define 

the best threshold, and then patients were stratified into 
high-risk or low-risk groups based on this threshold. 
In COAD patients, the prognostic predictor value of 
each patient was calculated by the model based on the 
expression value, and the best threshold (prognostic 
predictor = 2.3) was calculated by the ROC curve (with 
a sensitivity of 100.0% and a specificity of 81.0%). In 
addition, the AUROC curve of 92.4% revealed good 
performance on survival prediction using the prognostic 
predictor (Figure 5B). Thus, the survival rates of COAD 
patients (consisting of STIM1 overexpression and STIM1 
low-expression) categorized into two groups based on the 
prognostic predictor were compared. The Kaplan-Meier 
estimator revealed a significant difference in survival rates 
across the 2 groups (Cox-proportional hazard p = 0.0083, 
Figure 5C). Moreover, we collected all available COAD 
patients without considering the STIM1 expression value 
to carry out a prognostic predictor-based survival analysis, 
and results revealed a decline in the ROC performance 
(AUROC = 65.8%, Supplementary Figure S6B). The 
corresponding Kaplan-Meier estimator also revealed a 
decrease in the ability to separate high-risk and low-risk 
groups, although the prognostic predictor still attained a 
significant effect in survival prediction (Cox-proportional 
hazard p = 0.022, Supplementary Figure S6C). These 
results indicated that the STIM1-related mRNA/miRNA 
signature participated in the transcriptomic foundation for 
survival, but could only explain a portion of the overall 
survival in all COAD patients.

Finally, to elaborate the association between the 
prognostic predictor and STIM1 expression status, we 
compared prognostic predictor values between the STIM1 
overexpression and STIM1 low-expression groups. COAD 
patients who fell within the high-risk group (prognostic 
predictor > 2.3) consisted of a large portion of the STIM1 
overexpression group (87.5%, 14 of 16), whereas the 
low-risk group consisted of a larger number of the STIM1 
low-expression group (61.7%, 29 of 47) (approximate 
Pearson’s Chi-squared p = 0.001, Figure 5D). An in-depth 
analysis also revealed a strong difference in prognostic 
predictor value between STIM1 expression groups (exact 
Wilcoxon Mann-Whitney rank sum p = 1.39 × 10−5, 
Figure 5E). Therefore, STIM1 overexpression and STIM1-
related molecular signatures were tightly correlated 
with COAD patient prognoses, and this phenomenon 
was enormously significant especially in the STIM1 
overexpression group versus the STIM1 low-expression 
group.

DISCUSSION

Our findings have several important implications for 
understanding STIM1 overexpression in CRC. First, we 
clearly determined distinct transcriptomic subtypes of CRC 
and documented the existence of a subtype-specific STIM1 
role in CRC. An aberration of the SOCE pathway was 
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previously described in CRC, and the STIM1-mediated Ca2+ 
oscillation was linked to tumor aggressiveness. However, 
the existence of CRC-subtype specific characteristics of the 
STIM1-mediated SOCE pathway remained elusive before 
this study. The combination of a dual-platform (microarray 
and RNA sequencing) genome-wide approach robustly 
discriminated STIM1-associated signatures as a feature of 
COADs but not READs in CRC patients. COAD patients 
have a profound increase in morbidity compared to READ 
patients, but the underlying global molecular mechanisms 
corresponding to this difference are unclear.

In this study, we observed a correlation between 
STIM1 expression values (z score) and lymphatic invasion 
in COADs. However, no significant correlation between 
STIM1 level and TNM and disease stage was identified. In 
compared with Wang et al. works [14], the STIM1 staining 
intensity was correlated with metastasis and disease stage. 
We noted that different STIM1 measurement approaches 
(mRNA transcript level by microarray versus protein 

staining) may contribute to the inconsistent findings.
In cancer cells, secondary messenger Ca2+ regulation 

of widespread physiological and pathological processes 
include tumor dissemination. The SOCE pathway was 
identified as the major Ca2+ entry mechanism in tumor cells. 
A decrease in the ER Ca2+ concentration further triggers 
STIM1, a calcium sensor, to aggregate and translocate to 
cell membranes. Orai1, a plasma membrane store-operated 
calcium channel, is activated by STIM1 to allow Ca2+ influx. 
Consequently, STIM1-regulated Ca2+ influx facilitates 
focal adhesion turnover [5] and controls invadopodium 
formation and activity [4]. Significantly, STIM1 regulates 
cancer cell migration and invasion ability, and this concept 
was supported by our data, which showed a correlation 
between elevated STIM1 expression levels and an enhanced 
lymphatic invasion status in COAD patients. Using 
computational tools, we also observed a significant SOCE 
pathway perturbation resulting from STIM1 overexpression 
in COADs, which modulates the biological processes 

Figure 4: Analysis of colorectal cancer (CRC) patients’ micro (mi)RNA expression profiles. A. Bar plot of significantly 
expressed miRNAs in colonic adenocarcinoma (COAD) patients and the corresponding log2 multiple of change value. The estimated 
standard error is represented by bars. B. MA plot of all miRNAs in COAD patients. The multiple of change was calculated based on the 
contrast between STIM1 overexpression and STIM1 low-expression, and miRNAs that passed the false discovery rate (FDR) threshold 
(FDR < 0.1) are in red color. C. Heatmap of the top 100 most variant miRNAs in COADs. Each row represents the top 100 most significant 
miRNAs, and each column shows patient samples. A hierarchical clustering analysis was performed, and patient information based on the 
STIM1 expression status was mapped. D. MA plot of all miRNAs in rectal adenocarcinoma (READ) patients. The multiple of change was 
calculated based on the contrast between STIM1 overexpression and STIM1 low-expression, and miRNAs that passed the FDR threshold 
(FDR < 0.1) are in red color. E. Heatmap of the top 100 most variant miRNAs in READs. Each row represents the top 100 most significant 
miRNAs, and each column shows patient samples. A hierarchical clustering analysis was performed, and patient information based on the 
STIM1 expression status was mapped.



Oncotarget42178www.impactjournals.com/oncotarget

of cell migration and cell motility. Therefore, STIM1 
overexpression implicates a hyperactive SOCE pathway in 
COADs and demonstrates a higher propensity for invasion. 
However, comparing between STIM1 overexpression and 

STIM1 low-expression groups of READ patients did not 
reveal dysregulation of the SOCE pathway, unraveling a 
minor role of STIM1 and the SOCE pathway in ROAD 
tumor dissemination. In Li et al.’s study [3], the calcium 

Figure 5: Analysis of the prognostic mRNA/micro (mi)RNA signature identification in 63 colon adenocarcinoma 
(COAD) patients and their performance in survival prediction. A. Scheme of the survival analysis strategy. A survival analysis 
was performed on the following clinical subclasses: tumor stage, lymph node pathologic spread, distant metastasis, vascular invasion, and 
lymphatic invasion. In total, 95 mRNAs and 26 miRNAs that were significant in at least 2 clinical subclasses were considered significantly 
associated with patient survival. B. Receiver operating characteristic (ROC) curve of prognostic predictors with 1-specificity as the 
x-axis and sensitivity as the y-axis. The 95% confidence interval of the ROC curve was bootstrapped by DeLong’s method to confirm the 
significance of the ROC curve. The best threshold (prognostic predictor = 2.3) and corresponding specificity and sensitivity (81.0% and 
100.0%, respectively) are shown. In addition, the area under the ROC (AUROC) curve of 92.4% is shown. The binomial smoothed line 
is shown in red by the binomial method. C. Kaplan-Meier curve for overall survival for dichotomized prognostic predictor. p values were 
calculated by the Cox regression analysis of STIM1 overexpression group and STIM1 low-expression group. D. Correlation between the 
presence or absence of STIM1 overexpression and the dichotomized prognostic predictor. E. Whisker boxplot and jitter plot for comparison 
between the presence or absence of STIM1 overexpression and the continuous prognostic predictor.
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signaling pathway was one of the downregulated pathways 
in READs, which was consistent with our SPIA results: 
a negative direction (inhibition) of the SOCE pathway 
perturbation. Comparing differences in STIM1 expression 
values in CRC subtypes indicated a slight increase in 
STIM1 overexpression patients in COADs, and a slight 
increase in STIM1 low-expression patients in READs. 
These results should be carefully interpreted, as the 
divergence of the STIM1 overexpression status in CRC 
subtypes was small, and the difference in the degree of 
impact of the SOCE pathway in CRC subtypes might not be 
simply and completely attributed to discrepancies in STIM1 
distribution. A possible explanation of the dissimilarity 
expression profiles across COADs and READs could be 
that STIM1 overexpression might be due to a consequence 
of an aberration of different multiple upstream signaling 
pathways, and downstream influences of STIM1-mediated 
Ca2+ changes were multifaceted and multifactorial.

In the GSEA analysis, the ectopic STIM1 profile 
showed positive enrichment in immune system processes 
in COADs and a negative correlation was noted in 
READs. In pathophysiological aspects, STIM1-mediated 
Ca2+ signaling and the SOCE pathway play critical 
roles in regulating immune responses, and activation 
of the SOCE pathway through STIM1 overexpression 
dramatically worsens the proinflammatory status [15, 16]. 
Increasing evidence indicates that STIM1-mediated 
cyclooxygenase (COX)-2 overexpression, an important 
inducible proinflammatory enzyme, might exacerbate 
tumor migration and progression [17]. In addition, 
impairment of regulation of the immune system is tightly 
bound to clinical outcomes of CRC. Therefore, our results 
suggest that STIM1-mediated Ca2+ signaling and STIM1 
overexpression might be prospective therapeutic targets 
for COAD treatment. In the network analysis, the module 
included genes correlated with lymphatic invasion that 
were also identified. Significantly, a large number of 
proteins in this network (MAPK9, MAP2K4, MAPK10, 
MAP4, MARK4, TGFBR2, and so on) were associated 
with mitogen-activated protein kinase (MAPK) pathways, 
which are well-known for their role in CRC. However, 
associations between STIM1 and MAPK signaling 
pathways are ill-defined. Our data illustrated a possibility 
of interaction between the calcium signaling pathway and 
MAPK signaling pathway in COADs. Furthermore, Fan et 
al. showed the migration-promoting effect of a CRC cell 
line of SERCA overexpression via activation of the MAPK 
signaling pathway, further suggesting direct crosstalk 
between Ca2+ signaling and MAPK signaling [18]. 
In addition, alpha-actinin 1 (ACTN1), one of the genes 
identified in the network, is associated with focal adhesion 
formation, and its phosphorylation modulates pressure-
induced adhesion in colon cancer cells [19]. Activating 
transcription factor 7 (ATF7IP), another transcription 
factor proven to be related to lymphatic invasion in our 
study, is involved in telomerase expression mediated by 

Sp1 [20]. In short, we successfully identified an integrated 
network module which was mostly positively correlated 
with a dysregulated STIM1 signature, which constituted 
the STIM1-associated invasiveness nature of COADs.

Beyond the mRNA data, COAD-associated miRNAs 
were discovered by a miRNA sequencing analysis. 
Specifically, loss of hsa-miR-10a that targets KLF4, as 
seen in STIM1 overexpression patients, led to upregulation 
of LPO and initiation of colorectal carcinomas [21]. 
hsa-miR-130b was reported to suppress CRC invasion 
and migration by downregulating integrin β1 [22], and 
downregulation of hsa-miR-130b was observed in the 
STIM1 overexpression group in COADs. hsa-miR-18a, 
that targets CDC42 and acts as a tumor suppressor, 
was significantly downregulated in STIM1-enriched 
patients [23]. hsa-miR-200c, which was downregulated 
in the STIM1 overexpression group, is associated with 
proliferation, migration, and invasion in CRC cell lines 
[24]. In addition, upregulation of ANGPTL2, which is 
associated with downregulation of hsa-miR-25, was 
correlated with reductions in the invasive and migratory 
abilities of human CRC [25]. Furthermore, downregulation 
of hsa-miR-93 was observed, which promotes colon 
cancer development via upregulation of the Wnt/β-catenin 
pathway [26]. In READs, hsa-miR-203 downregulation 
is associated with upregulation of Snail and improved 
invasion or metastasis potential of CRC cell lines [27].

In this study, we made our hypothesis based on 
cancer cells but not stroma cells in cancer tissues. The 
limitation of our study is that we could not clarify the 
STIM1 expression in cancer cells or that in stroma cells. 
However, STIM1 level is unlikely to be dominant in 
stroma cells because STIM1 was also highly expressed in 
cancer cells (data not shown).

The genomic basis of prognostic STIM1-associated 
signatures is unclear. Our results demonstrated that 
dysregulation in the STIM1-associated transcriptome explains 
a proportion of the differences between COADs and READs 
that underlie these signatures. The compact correlation of 
these changes with a STIM1-concerted expression phenotype 
plays a critical STIM1-centered role in predicting clinical 
outcomes. In addition, the transcriptome profiles we derived 
and the associated STIM1-associated signatures provide 
a previously unknown mechanistic link between CRC 
subtypes with differing invasive behaviors and transcriptional 
signatures that predict clinical prognostic outcomes. The 
data herein indicate a straightforward correlation between 
STIM1-mediated Ca2+ signaling and wide-ranging signatures 
known to be associated with tumor aggression, and this 
implication was only present in COADs. In summary, this 
study provides a comprehensive transcriptomic framework 
for understanding STIM1-related mRNA/miRNA signatures 
present in CRC subtypes with differing invasive behaviors, 
and suggests that Ca2+ signaling-targeted therapy may help 
further perfect the clinical capability to implement precision 
medicine for CRC patients.
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MATERIALS AND METHODS

Clinical and integrated profiles of the TCGA 
CRC cohort and related patients

Having determined patient categorization, we queried 
COAD and READ samples based on the STIM1 expression 
value (z-score) using the cBio Cancer Genomics Portal 
(http://www.cbioportal.org/). Sample data of different 
technical platforms (microarray, RNA-sequencing, and 
miRNA sequencing) were downloaded from the TCGA 
website (https://tcga-data.nci.nih.gov/tcga/) in data level 3 
or a data matrix [7]. Following the procedures of Tell et 
al. [28], transcriptomic profiles were studied in patients of 
each CRC subtype, and patient categorization was carried 
out based on STIM1 z-scores. In this study, we defined CRC 
patients with a STIM1 z-score of >+1 as the overexpression 
group (STIM1+), and those with a STIM1 z-score of <-1 
as the low-expression group (STIM1-). Simultaneously, 
comparisons between STIM1+ and STIM1- were performed 
across different experimental types.

Analysis of clinical features of CRC patients

Extended clinical demographics including cancer 
stage and survival data were acquired from the TCGA 
data portal. In total, 154 COAD and 68 READ patients 
were included to assess the correlation between STIM1 
expression values and clinical features. A logistic 
regression model under a quasibinomial distribution 
was fitted for the association test in COAD and READ 
patients. According to the disease stage, patients were 
categorized into 2 groups (stages I, IIA, and IIB vs. stages 
IIIA, IIIB, IIIC, IV, and IVA). Similarly, patients were 
categorized into a T1 and T2 group and a T3, T4a, and T4b 
group according to the T stage. In addition, a multinomial 
logistic regression was applied to identify correlations 
between STIM1 and the N stage (N0 vs. N1 vs. N2).

Analysis of microarray and RNA-sequencing 
profiles of CRC patients

Microarray data including 47 COAD and 22 READ 
samples and RNA-sequencing data including 56 COAD 
and 21 READ samples with available STIM1 expression 
value were subjected to data sanitization. Then, we imputed 
missing values by the kth-nearest neighbors (k-NN) 
algorithm. As the downloaded microarray data had already 
been normalized, we identified differentially expressed 
genes (DEGs) using a moderated t-test [29] by comparing 
STIM1+ and STIM1- patients who had COADs and 
READs. Significant DEGs were defined as genes having 
a false discovery rate (FDR)-adjusted p value threshold 
of < 0.1. Unsupervised hierarchical clustering was carried 
out on COADs and READs with the top 100 most variant 
DEGs identified in COADs. Note that the top 100 DEGs 

in READs were not analyzed because none of them passed 
the statistical cutoff point, and thus the analysis would have 
been nonsensical. We then applied the non-negative matrix 
factorization (NMF) method to validate the clustering 
effect [30] of the top 100 most variant DEGs using Brunet 
et al.′s algorithm in COADs [8]. In the NMF analysis, 200 
runs were iteratively performed to identify the stability of 
the consensus matrix under different factorization ranks of 
2 to 6. For RNA-sequencing data, the value of reads per 
kilobase per million reads (RPKM) was provided. In order 
to fit the RPKM to the downstream DEG identification 
analysis, we normalized the RPKM value with a rounding 
cutoff of 0.1 and log2 transformation [31]. DEGs were 
identified by a moderated t-test with an FDR-adjusted p 
value threshold of 0.1.

Gene set enrichment and interactome analysis of 
DEGs in CRC patients

Following expression analysis, a gene ontology 
(GO) biological process (BP) term analysis was performed 
[32]. We separately applied the gene set enrichment and 
analysis (GSEA) algorithm [33] to identify enriched 
BP terms in COADs and READs. After permutation, 
BP terms were filtered by the following criteria in both 
CRC subtypes: an FDR value of < 5 × 10−5, a gene 
set size of > 150, and an absolute value of subtracted 
normalized enrichment score (NES) of > 1.2. Remaining 
BP terms were then compared between COADs and 
READs. In interactome aspects, a network analysis was 
conducted to identify differentially expressed network 
modules corresponding to the lymphatic invasion 
phenotype (see Supplementary Note) [34]. We used 
Human Protein Reference Database (HPRD) to provide 
protein-protein interaction information [35]. We then 
aggregated p values and fit a beta-uniform mixture (BUM) 
distribution. Scored nodes in the network were then used 
to find a maximum scoring subnetwork with a heuristic 
algorithm [36].

Signaling pathway impact analysis (SPIA) 
of DEGs in CRC patients

We carried out an signaling pathway impact analysis 
(SPIA) to analyze the difference of aberrant pathways 
between COADs and READs using RNA sequencing data 
[9]. In COADs, 3648 DEGs based on an FDR threshold 
of 0.1 were selected for the over-representation analysis 
(ORA), a part of the analytic workflow implemented in 
SPIA; however, 1215 genes with p values of < 0.05 in 
READs were subjected to an ORA analysis as no gene 
passed FDR filtering. In addition, the number of bootstrap 
iterations used to compute the perturbation p value was 
20,000, and Fisher’s combined method was used to 
combine the over-representation p values and perturbation 
p values [37].
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Analysis of miRNA sequencing profile in CRC 
patients

We tested for associations of miRNA-STIM1 
expression levels by assuming a negative binomial 
distribution using a generalized linear model [12]. In 
total, 80 COAD and 32 READ patients were included in 
the miRNA analysis. The raw miRNA read counts were 
directly applied for differentially expressed miRNA 
identification. We set the significance threshold of 
FDR-adjusted p values to 0.1. We then regularized log 
transformation of count data to undergo downstream 
heatmap and hierarchical clustering analyses.

Survival analysis of significant mRNA/miRNA 
signatures

In COADs, the correlation between RNA expression 
and overall survival was conducted by a modified strategy 
which was similar to that proposed by Volinia and Croce 
[13]. To avoid bias caused by an imputed expression level, 
we removed patients with at least one missing value of 
mRNA/miRNA signatures. Hazard ratios were calculated 
by Cox-proportional hazard coefficients. Clinical covariates 
were incorporated into the multivariate Cox-proportional 
hazard model to identify independent molecular RNA 
signatures. Therefore, the association results were reported 
as five clinical subclasses: tumor stage, lymph node 
spread status, distant metastasis, vascular invasion status, 
and lymphatic invasion status. To evaluate the prognostic 
value of the identified mRNA/miRNA signatures, we 
used a principal component analysis (PCA) algorithm 
to calculate the linear combination of corresponding 
molecular signatures. The best threshold and performance 
of prognostic predictor were determined by a receiver 
operating characteristic (ROC) curve and area under the 
ROC (AUROC) curve, respectively [38].

Statistical analysis and annotation

We used R (http://www.r-project.org/; http://cran.r-
project.org/) and Bioconductor (http://www.bioconductor.
org/) for all analytic workflows in this study.
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