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ABSTRACT
Accumulating evidences suggest that long non-coding RNAs (lncRNAs) 

perform important functions. Genome-wide chromatin-states area rich source of 
information about cellular state, yielding insights beyond what is typically obtained 
by transcriptome profiling. We propose an integrative method for genome-wide 
functional predictions of lncRNAs by combining chromatin states data with gene 
expression patterns. We first validated the method using protein-coding genes with 
known function annotations. Our validation results indicated that our integrative 
method performs better than co-expression analysis, and is accurate across different 
conditions. Next, by applying the integrative model genome-wide, we predicted the 
probable functions for more than 97% of human lncRNAs. The putative functions 
inferred by our method match with previously annotated by the targets of lncRNAs. 
Moreover, the linkage from the cellular processes influenced by cancer-associated 
lncRNAs to the cancer hallmarks provided a “lncRNA point-of-view” on tumor biology. 
Our approach provides a functional annotation of the lncRNAs, which we developed 
into a web-based application, LncRNA Ontology, to provide visualization, analysis, 
and downloading of lncRNA putative functions.

INTRODUCTION

Recent advances in tiling arrays and RNA deep 
sequencing (RNA-seq), have revealed that between and 
within protein-coding genes there lie sequences for many 
thousands of long non-coding RNAs (lncRNAs) greater 
than 200 nucleotides (nt) in length [1]. LncRNAs affect 
many biological processes [2-4], including regulation 
of gene expression, genomic imprinting, nuclear 
organization, and compartmentalization. However, 
we have limited knowledge of how lncRNA functions 
[5], even for the earliest discovered lncRNAs, such as 
mammalian H19 [6-8], Xist [9] or HOTAIR [10]. 

Functional characterization of lncRNAs is a 
challenging task. Poor sequence conservation and 
tissue-specific expression make it difficult to accurately 

predict from the level or extent of its expression, or its 
sequence composition [11, 12]. In addition, there is lack 
of molecular interaction data, further hampering functional 
annotation of lncRNAs [13-15]. Genetic loss-of-function 
strategies can be used to study the function of lncRNAs in 
vivo, however, these are time-consuming and expensive 
[16]. Recently, several approaches have been proposed 
to predict lncRNA function, but only a small portion of 
lncRNAs have been functionally characterized. Cabili 
et al. has defined a reference catalog of > 8,000 human 
lncRNAs and functionally characterized these lncRNAs 
through co-expression between protein-coding genes and 
lncRNAs [17]. Similarly, Liao et al. has constructed a 
coding-noncoding co-expression network based on gene 
expression data and predicted the probable functions for 
lncRNAs in that network [18]. Recently, Guo et al. tried 
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to apply a global network-based strategy to tackle this 
issue [19]. They developed a bi-colored network based 
global function predictor (‘lnc-GFP’) to predict probable 
functions for lncRNAs on a large scale by integrating gene 
expression data and protein interaction data. Although 
all of these studies have enhanced our knowledge about 
lncRNAs, only gene expression data and local genomic 
information were used in their methods [19]. 

Considering the key roles that lncRNAs likely play, 
their transcription must be tightly regulated. Similar to 
protein-coding genes, most lncRNAs are transcribed by 
RNA polymerase II and have typical epigenetic hallmarks, 
including DNA methylation and acetylation and/or 
methylation of histone residues [20]. Epigenetic-based 
mechanisms including DNA methylation and acetylation 
and/or methylation of histone residues play a critical role 
in gene and lncRNA expression [21, 22]. The histone 
modification state of genomic regions is hypothesized 
to reflect the regulatory activity of the underlying 
genomic sequence, so investigations of these features 
may advance our understanding of lncRNAs. Previous 
studies have demonstrated that chromatin marks correlate 
with gene expression [23, 24]. Histone modifications can 
either activate or repress gene transcription, and occur 
combinatorially to form a ‘histone code’ that is read by 
other proteins to give rise to various downstream events 
[25]. Interestingly, Wamstad et al. found that, despite 
similar expression patterns, groups of functionally related 
genes can be distinguished at the chromatin level [26]. 
Many studies have identified other noncoding regulators, 
such as enhancers, based on the chromatin combinations 
[27-29]. These results suggest that genomic annotation 
of these chromatin states can extend the functional 
interpretation of noncoding part of the human genome. 
Based on these observations, a number of studies have 
used chromatin patterns to identify lncRNAs. Guttman et 
al. systematically discovered a large number of lncRNAs 
by exploring chromatin structure and developed an 
approach to predict putative functions [30]. By the same 
method, Khalil et al. also identified approximately 3,300 
lincRNAs in six human cell types and further examined 
the associations between these lincRNAs and polycomb 
repressive complex 2 (PRC2) [31]. In addition, Lv et al. 
demonstrated that the accuracy of lncRNA predictions 
can be greatly improved when incorporating chromatin 
modifications data [32]. Moreover, Ounzain et al. 
reasoned that lncRNAs that share specific chromatin 
patterns as those described for coding genes are likely to 
be involved in comparable biological processes. Based on 
this hypothesis, they successfully inferred heart-specific 
functions for the novel lncRNAs identified in their study 
[33]. 

Motivated by these studies, here, we propose an 
integrative framework to predict the lncRNA functions 
based on both chromatin states and exprssion patterns 
(Figure 1). Taking advantage of the datasets from the 

ENCODE project, we compiled genome-wide chromatin 
and expression profiles for lncRNAs and coding genes. 
We then derived a novel unbiased integrative model to 
functionally annotate lncRNAs. The proposed method was 
validated on protein-coding genes with known functional 
annotations by five-fold cross-validations. Applying the 
trained integrative model, we predicted the probable 
functions for more than 97% of human lncRNAs. We also 
linked cancer-associated lncRNAs to cellular processes 
that are hallmarks of cancer, providing a “lncRNA point-
of-view” on tumor biology. Our attempt to compile 
massive RNA-Seq and ChIP-Seq data will facilitate 
future functional investigation of lncRNAs and serves as 
an important resource (LncRNA Ontology), for further 
biological research.

RESULTS

Integration of transcriptional and chromatin 
features effectively predicts gene functions

To systematically study the relationship between 
biological function and chromatin state, we collected 
117 ChIP-seq profiles of histone modifications (seven 
activating signals and two repressive ones) along with 
the corresponding transcriptome data assayed by RNA-
seq across thirteen human cell lines. These data were 
downloaded from the ENCODE project (Table S1). We 
hypothesized that groups of functionally related genes (as 
determined by gene ontology [GO]) would have similar 
histone modifications and expression levels, which could 
be used to distinguish them. For genes within each GO 
term from the database, we calculated their similarity 
at the level of expression and modification. We found 
that genes annotated in the same term of the biological 
process (BP) ontology show high co-expression at the 
FDR < 0.01; however, just 20% BP terms were satisfied. 
This is similar to what has been found in S. cerevisiae 
and C. elegans [34], indicating that co-expression alone 
generally provides a relatively narrow range for functional 
prediction. In contrast, compared to co-expression, we 
found a much wider similarity at the level of epigenetic 
modifications under different FDR threshold values 
(Figure 2a). Moreover, the vast majority (97.17%) of GO 
terms with high co-expression also show high chromatin 
similarity (Figure 2b). The same tendency was also found 
for two additional ontology branches. In addition, there 
are many GO terms that were only similar at the level 
of chromatin modifications, suggesting that expression 
was not the best predictor for these terms. Interestingly, 
complementary effects were revealed for active and 
repressive chromatin modifications, with many functional 
groups exhibiting high similarity in both kinds of 
modifications (Figure 2c).
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Given that both gene expression and epigenetic 
regulation can act as predictors for function of protein-
coding genes, we wanted to establish an integrative 
method using both expression and modifications to predict 
lncRNA functions genome-wide. First, we trained this 
model on protein-coding genes with known functional 
information (Materials and Methods). We compared 
the predictive power of 9 chromatin features and gene 

expression using the index of average Area Under the 
Curve (AUC). As shown in Figure 3, all the chromatin 
and expression features were much better predictors than 
random ordering, which would give an expected AUC 
of 0.5. The median AUCs of the models learned from 
the chromatin features were all higher than those for 
expression, and there was no difference in performance 
between active and repressive chromatin modifications. 

Figure 1: Workflow for predicting the functions of lncRNAs based on chromatin and expression patterns. a., chromatin 
and expression profiles for lncRNAs and protein coding genes were constructed based on ChIP-Seq and RNA-Seq datasets. b., for each GO 
term and each chromatin and expression profile, a nearest shrunken centroid algorithm based classifier was constructed and the power of 
the classifiers was evaluated by AUC. The classifier with the maximum AUC was selected as the final classifier. c., predicting the functions 
of lncRNAs based on the chromatin and expression patterns. 
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Figure 2: Functionally similar genes have epigenetic and transcriptional similarities. a., the proportion of GO terms with 
epigenetic and transcriptional similarities. b., venn diagram showing the number of GO terms with chromatin and expression similarities. 
c., venn diagram showing the number of GO terms with chromatin similarities, with the chromatin states divided into active and repressive 
based on their effects on gene expression. 

Figure 3: The predictive power of the model using signals from different chromatin or expression features. For each 
GO term, 100 GSNs with the same number of genes as GSPs were randomly selected from the remaining genes, and then cross-validation 
was used to compute the AUC. The average AUCs for 100 times of all GO terms are shown in the boxplot. The left panel is for biological 
process (BP) categories, middle panel for cell component (CC) categories and the right panel for molecular function (MF) categories. 
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The relative predictive power of different chromatin 
features was heterogeneous across different biological 
processes. Some GO terms with higher AUCs learned from 
chromatin features while others learned from expression. 
These results suggested that the integration of these two 
predictors was best; therefore, we used an integrative 
model to predict gene functions for each specific GO term. 
The median AUC value of all terms was ~0.6, comparable 
to the performance of the top-five performing models 
in the CAFA experiment [35], validating our integrative 
model as an effective predictor of gene function.

Integration of transcriptional and epigenetic 
features predicts the functions of lncRNAs

The promoters of genes and lncRNAs were divided 
into 20bp bins and read density was counted. We observed 
that, as shown previously, several histone marks show a 
similar distribution pattern around the transcriptional start 
site (TSS) of both lncRNAs and mRNAs irrespective of 
cell types. This was particularly true for the activating 
signals, H3K4me3 and H3K4me1, as well as the repressive 
histone mark H3K27me3 (Figure 4a and Figure S1-S13). 
These findings suggest that the epigenetic regulation of 
lncRNAs is similar to that of protein coding genes.

Based on our prior hypothesis about predicting 
function of protein-coding genes, we predicted lncRNA 
functions using these same integrative modeling. We used 
the nearest shrunken centroid algorithm to assign lncRNAs 
to each GO term with a confidence score ranging from 
0 to 1 (Materials and Methods). We obtained 5,404,928 
lncRNA-GO associations among 17,998 lncRNAs and 
1,256 GO terms with a confidence score of 1.0, and we 
assigned functions for 97.79% of all lncRNAs for BP, 
97.77% of all lncRNAs for cellular components (CC), 
and 97.77% of all lncRNAs for molecular function 
(MF). LncRNAs were predicted to be involved in diverse 
biological processes including organ/tissue development 
(e.g. neuron, eye and muscle development), cellular 
transport, and metabolism. We next analyzed how 
much each predictive feature contributed to lncRNA 
functional associations. As shown in Figure 4b, H3K9ac 
contributed the highest number of associations, while 
the lncRNA expression contributed the least. H2A.Z, 
H3K27ac, H3K36me3 and H3K4me1/3 are comparable 
in the number of the predicted results. The above analyses 
suggest that the functions of lncRNAs can be at least 
partially deduced from chromatin features.

An integrative model provides a robust method of 
predicting lncRNA functions

While only a small number of lncRNAs have been 
functionally characterized, it is believed that lncRNAs 
interact with DNA, RNA, and proteins [34], acting as 

regulators in chromatin organization, transcription and 
post-transcriptional modulation. In order to validate our 
predictions of lncRNA function, we tested our findings 
against known lncRNA-protein interactions, lncRNA-
chromatin interactions, and lncRNA knockdown/
overexpression datasets. First, we collected the lncRNA-
protein interactions identified by CLIP-Seq datasets and 
predicted the functions of lncRNAs by annotation of 
the interacting genes. Based on these interactions, 4,505 
lncRNAs regulated at least one function, whereas our 
model predicted the same functions for 3,291 (73.05%) 
of these lncRNAs (Figure 4c, P < 0.05). The 3D structure 
of the genome plays a critical role in regulating gene 
expression [36]; thus, we compiled the chromatin 
interaction datasets from the 4Dgenome database, 
involving 616,476 interactions among 12,434 lncRNAs 
and 17,451 genes. The predicted functions of 40.65% 
of lncRNAs overlapped with those predictions from our 
integrative model. Finally, we utilized data from lncRNA 
knockdown/overexpression experiments collected from 
the LncRNA2Target database [16], where the differentially 
expressed genes are considered as the target genes of the 
lncRNAs. Based on these datasets, we found the functions 
were matched with our predictions for 8/23 (34.78%) of 
lncRNAs. 

As these methods predicted the functions of 
lncRNAs from different viewpoints, we analyzed these 
results and found that most of the unique lncRNA-GO 
term pairs were predicted by our method (Figure S14). 
These pairs provide candidates for further experimental 
validation. In addition, we observed that a majority of 
pairs were predicted by H3K9ac histone marks. Recently, 
H3K9ac was shown to have a high power to predict the 
expression of genes [24], suggesting that H3K9ac plays a 
key role in regulating gene expression. We also observed 
that about 91 pairs of lncRNA-GO terms were included 
in the lncRNAdb v2.0 [37], a comprehensive, manually 
curated reference database of lncRNAs that have been 
described independently in the scientific literature.

Taken together, our results indicate the robustness 
of our model at predicting lncRNA functions. To further 
assess our model based on available datasets, we 
gradually reduced the number of cell lines from 13 to 9 to 
perform the above prediction pipeline. When sample size 
decreased, the median AUC pattern never changed (Figure 
S15-Figure S18). In addition, analysis of the lncRNA-
function pairs at varying sample numbers revealed up to 
80% functional consistency across all three ontologies 
at a confidence score of 1.0 (Figure 4d). These analyses 
indicate that sample size may not be a significant part of 
our algorithm’s final performance. 
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Prediction of functions for cancer-associated 
lncRNAs

LncRNAs are dysregulated in several human 
cancers and involved in a broad spectrum of functions 
[38, 39]. Although the biology of cancer is extremely 
complex, there are a few cancer hallmarks that enable 
tumor growth and metastasis dissemination [40, 41]. Here, 
we linked the cellular processes influenced by lncRNAs 

to the hallmarks of cancer, providing a “lncRNA point-
of-view” on tumor biology. We used a list of GO terms 
previously defined as related to cancer hallmarks [42] and 
obtained 109 experimentally-validated cancer lncRNAs, 
including disease lncRNAs in the LncRNADisease 
database [43]. Of these lncRNAs, we found that 55 were 
associated with at least one cancer-associated GO term. 
And these lncRNAs are totally functionally annotated 
with 19 cancer hallmark GO terms. Figure 5a shows the 

Figure 4: Robustness of the predicted functions of lncRNAs. a., lncRNAs share common chromatin patterns with protein coding 
genes. The matrix shows the correlation of chromatin modification around the TSSs (+2kb) of lncRNAs and protein coding genes in each 
cell type. b., the contribution of each chromatin and expression feature to the predicted lncRNA-GO term associations. c., the consistency of 
lncRNA-GO term associations using different number of cell types. d., predicted lncRNA functions show high consistency with commonly 
used methods. 



Oncotarget39799www.impactjournals.com/oncotarget

194 pairs of lncRNA-GO associations. With analysis of 
chromatin and expression patterns, we found that the 194 
pairs of lncRNA-GO associations were predicted based on 
chromatin similarity (Figure 5b). Some functional links 
were consistent with the literature. For example, HOTAIR 
is a well-known lncRNA whose dysregulation correlates 
with poor prognosis and malignant progression in many 
forms of cancer [44, 45]. Knockdown of HOTAIR results 
in the induction of cell cycle arrest and apoptosis [46]. 
Based on chromatin patterns, we observed that HOTAIR 
was associated with DNA repair and the regulation of 
apoptosis. Another example is the lncRNA, MEG3, which 
is highly expressed in non-neoplastic tissues, but lowly 
expressed in cancer tissues. Ectopic expression of MEG3 
inhibits the proliferation of cervical carcinoma cells 
through the induction of cell cycle arrest and apoptosis 
[47]. We found that, based on H3K4me3 and H3K27ac 
patterns, MEG3 is involved in the ‘negative regulation of 
cell cycle’ and ‘negative regulation of apoptotic process’. 
These results identify an important role of MEG3 in the 
molecular etiology of cancer and implicate it as a potential 
target for cancer therapy.

LncRNA Ontology: a database of lncRNA 
functions 

Based on our data, we have developed a free, web 
accessible database, LncRNA Ontology (http://www.
bio-bigdata.com/lncrnaontology/), which makes the 
functions, chromatin, and expression patterns viewable 
to users across cell types. In addition, we also annotated 
the lncRNA-GO pairs predicted based on chromatin 
interaction, lncRNA-gene interaction, and lncRNA over-
expression or knockdown data, as well as those lncRNA-
GO pairs reported in the literature. LncRNA Ontology 
can support rapid searches by individual lncRNA or 
by a specific GO term, and allows for data downloads. 
It currently provides the functions predicted for each 
lncRNA in our study: 5,404,928 lncRNA-GO associations 
among 17,998 lncRNAs and 1,256 GO terms.

DISCUSSION

Although mammalian cells produce many thousands 
of lncRNAs, the functional significance of these 
transcripts has been controversial. Co-expression networks 
of genes and lncRNAs, in which a node represents a 
gene or lncRNA and an edge represents an expressional 

Figure 5: The predicted functions of cancer-associated lncRNAs. a., the lncRNA-GO functional associations are shown as a 
network. Only GO terms associated with cancer hallmarks are shown, and the GO terms with the same hallmarks are shown in the same 
color. The color of edges indicatethe type of histone modification used to predict the functional associations. b., The number of lncRNA-GO 
term associations predicted by different chromatin and expression features.
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correlation, have been used to identify cellular modules 
and predict the functions of unknown lncRNAs [48-50]. 
In addition, genome-wide chromatin-state maps provide 
another rich information source about cellular state, 
yielding insights beyond what is typically obtained by 
transcriptome profiling. Genes with similar expression 
patterns could share a common chromatin pattern or may 
be represented by multiple different chromatin patterns 
[23]. However, chromatin information had been ignored 
when predicting the functions of lncRNAs. 

In this study, we showed that chromatin 
modifications and gene expression are strongly correlated 
with gene function. Although most of genes within a 
GO term show both highly similar chromatin marks and 
expression patterns, some GO terms only show chromatin 
modification similarity. Previous studies have proposed 
that some histone modifications are the memory of past 
transcriptional events resulting from previous active 
transcription [51, 52]. Other studies have shown that 
chromatin modification changes precede changes in gene 
expression [53]. For instance, a recent study in human T 
cells demonstrated that, for both protein-coding and non-
coding RNAs, activating histone marks were already in 
place before the induction of expression, and these marks 
were maintained even after the genes were silenced [54]. 
Thus, these epigenetic signals may be helpful in the 
functional annotation of genes or lncRNAs, beyond the 
functions predicted based on expression patterns. Using 
both gene expression and chromatin data, we developed 
a novel integrated model to predict the functions of 
lncRNAs. We reasoned that lncRNAs that shared specific 
chromatin patterns as those coding genes with functional 
annotations were likely to be involved in comparable 
biological processes. We used ENCODE data to reveal that 
chromatin patterns can predict sets of functionally related 
genes, which implies that functionally related genes 
have specific modes of epigenetic regulation. Moreover, 
we showed that, in terms of function, information from 
different histone modifications is considerably more 
effective at predicting function than gene expression, 
and that integration of chromatin features and expression 
patterns can predict the functions of protein coding genes 
with high accuracy. 

Although our strategy was successful at predicting 
functional annotations of lncRNAs, our method can be 
improved in several ways. First, in this study, we made 
our best effort to collect a number of samples with histone 
modifications. Although we have demonstrated that the 
accuracy of our model is robust regardless of the number 
of samples, as the data become more comprehensive, 
extended range of potential functions will be reliably 
ascribed to a given lncRNA. Secondly, while we used 
GO function categories to annotate the lncRNAs in 
the study [55], the relationships among GO terms may 
lead to correlated functional annotations for lncRNAs. 
Alternatively, the function classification for lncRNAs 

may be not be feasible based on current knowledge. Other 
functional labels, such as pathway information could be 
characterized for lncRNAs in the future. 

Taken together, integrating the chromatin and 
expression patterns, we generated biologically meaningful 
functional annotations for lncRNAs genome-wide. Our 
model illustrates the power in functional prediction of 
lncRNAs, and this study opens up new avenues to study 
and functionally characterize lncRNAs. We anticipate that 
in the future, the integration of computational function 
prediction and more knockout or over-expression 
experiments will offer even deeper insight into the 
lncRNA functions.

MATERIALS AND METHODS

Genomic annotation of lncRNAs and protein-
coding genes

The genomic annotations of lncRNAs were 
compiled from Gencode [11], Ensembl and the study of 
Cabili et al. [17]. If the lncRNAs from Cabili et al. had 
> 80% overlap with those from Gencode or Ensembl, 
we retained the lncRNA annotation from Gencode or 
Ensembl. The annotation of protein coding genes was 
retrieved from the UCSC Genome Browser (Refseq table) 
for the hg19 build of the human genome [56]. In total, 
the annotation information of 18,405 lncRNAs and 44,331 
gene transcripts were obtained. 

Chromatin profiles of lncRNAs and mRNAs

We compiled the genomic distributions of nine 
histone modifications from the ENCODE project, 
including H2A.Z, H3K4me1/2/3, H3K9me3, H3K27me3, 
H3K27ac, H3K36me3 and H3K9ac in 13 human cell lines 
(Figure 1a and Table S1). To aviod the bias of datasets 
provided by different organizations, all ChIP-seq data 
used were generated at the Broad Institute. We directly 
downloaded the mapped files in bam format. Sequence 
reads from each experiment were aligned to the human 
reference genome (GRCh37/hg19) and count coverage 
within a 4kb region centered at the TSS of each lncRNA/
gene transcript was calculated using BEDTools multicov, 
a BAM focused tool [57]. The raw read counts were 
divided by the total number of million mapped reads 
in each sample (Reads Per Million, RPM) [26]. The 
chromatin level of each lncRNA or gene was defined as 
the highest value observed across all transcripts of a gene. 
The lncRNAs or genes that had at least one chromatin 
mark in one cell type were subsequently analyzed, and 
the epigenetic intensity of each lncRNA/gene was log2 
transformed and Z-score normalized. As a result, 16,112 
lncRNAs and 22,524 genes in average were analyzed for 
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chromatin patterns.

Transcriptional profiles of lncRNAs and mRNAs

Gene expression of 9 human cell lines were 
measured by RNA-seq technology, which were also 
downloaded from the ENCODE project (Table S1). The 
raw reads were downloaded and aligned to the hg19 
version of the human genome using TopHat2 with default 
options [58]. Cufflinks was used to generate the gene-
level read counts and estimate the fragments per kilobase 
of exon model per million mapped reads (FPKM) [59]. 
Only lncRNAs/genes expressed in all cell types were 
considered for subsequent analysis. Expression data was 
log2-transformed and Z-score normalized. In total, 4,453 
lncRNAs and 20,746 genes with expression were analyzed 
in this study. 

The functional annotation of protein coding genes

The gene2go table was downloaded from the 
National Center for Biotechnology Information, and 
we extracted human related information including three 
different ontologies-biological process (BP), molecular 
function (MF) and cellular component (CC). Considering 
the hierarchical nature of GO categories, we considered 
all the descendant nodes one level below when computing 
the size of a node. The topology of the ontology was 
downloaded from GO website. GO terms were considered 
only if the number of annotated genes was less than 2000 
but more than 20. We retained 2,385, 339 and 436 terms 
for BP terms, CC terms and MF terms, respectively.

Epigenetic and transcriptional similarities of 
genes within the same function terms

To compute the epigenetic and transcriptional 
similarity among genes of each GO term, their 
corresponding epigenetic profiles or expression profiles 
were extracted, and then we calculated the Pearson 
correlation coefficients for every gene pair. We took 
the average value of all the coefficients to represent 
the similarity of each GO term. In order to measure the 
significance of the similarity, we randomly selected the 
same number of genes and recalculated the similarity 
of the GO term. The procedure was repeated 100 times. 
The significance was defined as the proportion of times 
in which in random conditions, the similarity values were 
higher than the real ones.

Classifier construction based on the chromatin 
states and expression patterns

Gold standard

For each GO term, gold standard positives (GSP) 
were defiend as genes annotated in the GO term or all the 
descendant terms. However, it was difficult to obtain the 
gold-standard negatives (GSN). Here, the GSN was with 
the same gene number as the GSP, which was randomly 
selected from the remaining gene sets. Both GSPs and 
GSNs should exist in the chromatin and expression 
profiles. We constructed 100 GSNs for each GO term.
Classification algorithm and assessment

The nearest shrunken centroid algorithm was used 
to construct a classifier to distinguish genes with the same 
functions from randomly selected gene sets, incorporating 
the expression profile and the 9 chromatin profiles (Figure 
1b). For each GO term, a classifer was constructed based 
on each feature profile. The performance of each classifier 
was evaluated through five-fold cross-validation. We split 
the GSPs and GSNs at random into five approximately 
equal-size parts, where four folds were used to create two 
centroids (‘positive’ and ‘negative’) using the mean profile 
(chromatin or expression) of the mRNAs. And then for 
each gene i in the training set, the distance difference d∆  
to the two centroids were calculated as follow: 
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are the two centroids of the GSP and GSN, and n is the 
size of the feature profiles. Then, if the d∆  of gene i is 
higher than the given cutoff, we proposed that the gene 
was predicted to annotate to this functions, otherwise the 
gene was not predicted to be involved in the function. 
This procedure was repeated five times. The quality of 
the classifier was evaluated by plotting the ROC curve at 
various cutoffs of d∆ . The ultimate performance for each 
function term was evaluated by the average AUC because 
of 100 constructed GSNs. 

Prediction the functions regulated by lncRNAs

As shown in Figure 1c, for each GO term, the 
related lncRNAs were identifed based on the classifier 
with the maximum AUC, which was reconstructed based 
on the whole GSP and GSN datasets to incorporate more 
information. Then the distance difference d∆  from 
the feature vector of lncRNA to the two centroids was 
calculated as described above. The cutoff of d∆  was 
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determined by the Youden’s J statistic [60]. Finally, if d∆  
was higher than the cutoff, we proposed that the lncRNA 
was associated with this function, otherwise the lncRNA 
did not regulate the function. Corresponding to the 100 
randomly selected GSNs, the classifier was carried out 
100 times. Finally, the times of positive predictions were 
defined as the confidence score. The higher the score was, 
the more likely the lncRNA can regulate this function.

Epigenetic similarity of mRNAs and lncRNAs 
across TSS

The genomic regions around the TSS (-2kb to 2kb) 
were divided into bins with 20bp, and then we counted 
the number of reads in each bin. For the calculation of 
densities over a defined window, the methods were 
derived from the one generally used to generate density 
files. And then the average read density of all genes and 
lncRNAs were computed for each bin. All these processes 
were performed by the software seqMINER [61]. And 
then we computed the correlation coefficient of the gene 
and lncRNA using the averge read density across 200 bins.

Compared with other methods

We compared the predicted model in our study 
with two other commonly used methods: (1) based on the 
genes interacting with lncRNAs; (2) based on the genes 
differentially expressed after knockdown or overexpress 
of lncRNAs. The lncRNA-interacting genes were obtained 
from starBase and 4DGenome, and the differentially 
expressed genes were downloaded from LncRNA2Target. 
Then the functions of lncRNAs were predicted by the 
interacting genes or differentially expressed genes. A 
hypergeometric test was used to evaluate the function 
consistence of lncRNAs. 

The web development of the LncRNA Ontology

The LncRNA Ontology web interface (abbreviated 
to LO, http://www.bio-bigdata.com/lncrnaontology/) 
was developed in Java Servlet framework and deployed 
in tomcat 6.0.33 web server and runs under Cent OS 5.5 
system. It is supported by a MySQL database of histone 
modification and expression data. LncRNA ontology is 
fully tested in Google Chrome (version 17 and later).
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