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ABSTRACT
Over 95% of all synovial sarcomas (SS) share a unique translocation, t(X;18), 

however, they show heterogeneous clinical behavior. We analyzed multiple SS to 
reveal additional genetic alterations besides the translocation. Twenty-six SS from 
22 patients were sequenced for 409 cancer-related genes using the Comprehensive 
Cancer Panel (Life Technologies, USA) on an Ion Torrent platform. The detected 
variants were verified by Sanger sequencing and compared to matched normal 
DNAs. Copy number variation was assessed in six tumors using the Oncoscan array 
(Affymetrix, USA). In total, eight somatic mutations were detected in eight samples. 
These mutations have not been reported previously in SS. Two of these, in KRAS 
and CCND1, represent known oncogenic mutations in other malignancies. Additional 
mutations were detected in RNF213, SEPT9, KDR, CSMD3, MLH1 and ERBB4. DNA 
alterations occurred more often in adult tumors. A distinctive loss of 6q was found in 
a metastatic lesion progressing under pazopanib, but not in the responding lesion. Our 
results emphasize t(X;18) as a single initiating event in SS and as the main oncogenic 
driver. Our results also show the occurrence of additional genetic events, mutations 
or chromosomal aberrations, occurring more frequently in SS with an onset in adults.

INTRODUCTION

Synovial sarcoma (SS) accounts for approximately 
8% of all soft tissue sarcomas. Synovial sarcomas 
occur at all ages and sites throughout the body, with a 
predilection for the extremities of young adults. Patients 
with a synovial sarcoma have a 5-year cancer-specific 
survival rate of 66%, with a remarkable better outcome 
for children as compared to adults [1]. Tumors can be 
aggressive, leading to early metastases and recurrences, 
or can be more indolent occurring as a long existing 
swelling that may recur years after the initial diagnosis [2]. 
Predicting tumor behavior has been attempted by relating 
survival to various tumor and patient characteristics. 

Several of these characteristics have been proven to be 
of negative prognostic value, including large tumor size, 
primary tumor location in non-extremities and older 
age at diagnosis. The mechanism(s) underlying the 
differences in tumor behavior, however, remain to be 
resolved [Vlenterie, et al. Abstract 022 presented at CTOS 
2014]. The treatment of localized disease involves surgery 
often supplemented with (neo)adjuvant radiotherapy 
and, occasionally, with (neo)adjuvant chemotherapy or 
a combination of both. Metastatic disease is treated by 
palliative chemotherapy or by applying the angiogenesis 
inhibitor pazopanib, with limited survival benefit [3].

Genetic profiling is believed to be the way forward 
to explore tumor behavior and to discover new therapeutic 
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targets. Currently, genetic screening is being implicated 
in standard clinical practice for several cancers, including 
melanomas, lung and colon cancers. Interestingly, similar 
mutations are shared by different cancer types, and 
within one cancer type different genetic subtypes can be 
found, explaining its biologic behavior and/or therapy 
response. In addition, differences in mutations have been 
observed between primary tumors and their metastases, 
thereby providing insight in tumor evolution and therapy 
resistance [4, 5]. Importantly, these insights have led to the 
development of new targeted therapies based on the use 
of monoclonal antibodies and tyrosine kinase inhibitors. 

Sarcomas have also been subject to genetic 
screening, which has led to diagnostic implementation 
in several subtypes [6], including gene amplifications in 
well-differentiated and dedifferentiated liposarcomas [7] 
or distinct chromosomal translocations in, among others, 
myxoid liposarcomas [8]. Additionally, the discovery and 
treatment of the targetable alterations in hot spot regions 
in the KIT or PDGFRA genes in gastrointestinal stromal 
tumors (GIST) has significantly improved overall survival 
of these patients [9, 10].

A unique reciprocal translocation between 
chromosome X and 18 in over 95% of SS tumors was 
already reported in 1994, leading to fusions between one 
of the SSX genes (1, 2 or 4) and the SS18 (SYT) gene 
[11, 12]. This translocation is not found in any other 
human neoplasm. It has been shown that the SSX and 
SS18 (fusion) proteins participate in the SWI/SNF and 
Polycomb complexes, respectively, known to be involved 
in epigenetic gene (de)regulation [13, 14]. As knockdown 
of the fusion protein leads to cell death in vitro and in 
vivo and introduction of the translocation in mice forms 
histologically alike tumors [15] [16] [17], the translocation 
is believed to act as the central oncogenic driver in SS 
[18]. Next to its significance as a diagnostic marker, the 
clinical targeting of this translocation has so far remained 
elusive [19, 20]. Also the putative predictive value of SS 
translocation subtypes has stayed unclear [21, 22]. 

Besides the X;18 translocation, additional genomic 
alterations have been reported in SS.  First, patients 
with Li-Fraumeni syndrome (loss of p53 function) or 
neurofibromatosis (altered function of NF1 gene) have 
a higher risk for SS [23]. Secondly, Sanger sequencing 
of synovial sarcomas has revealed mutations in several 
cancer-related genes, including TP53, TERT, CDH1, 
CTNBB1, APC, HRAS, PTEN, PI3KCA, EGFR, BCL9, 
SETD2, TRRAP and PDGFRA (Table 1). The targeted 
sequencing of other cancer-related genes, including KRAS 
[24],  BRAF [24, 25], CDKN1A [26], KIT [27] (abstract 
only), JAK2, FOXL2, IDH1, AKT1 and EZH2 [25] did not 
reveal any pathogenic mutations. Since the percentages 
of affected tumors differ widely in comparable studies its 
reproducibility may be questioned, and in most studies 
(10 of 15) the detected variations were not verified in the 
corresponding normal DNAs. Joseph et al. performed 

whole-exome sequencing of a small cohort of SS (n 
= 7), resulting in a relatively low mutation call [28]. 
Besides several mutations of unknown function, driver 
mutations in TP53 and SETD2 were found in one sample 
each. Thirdly, in addition to these nucleotide alterations, 
gross chromosomal aberrations have been detected by 
comparative genomic hybridization (CGH) [29-31], 
providing further insight into its genomic complexity 
next to the recurrent X;18 translocation. A recent array 
CGH (aCGH) and gene expression profiling study by 
Przybyl et al. in a subset of SS revealed up-regulation of 
the AURKA and KIF18A genes in aggressive untreated 
primary tumors and its corresponding metastases or local 
recurrences, compared to untreated primary tumors from 
patients who did not develop metastases/local recurrences 
[32]. Finally, the study of Lagarde et al. showed that 
there is a correlation between genomic complexity, based 
on the number and type of chromosomal aberrations, 
and metastasis-free survival. Their study also showed 
a relation to age at diagnosis, with a larger instability 
being more frequent in adults than children [33]. This 
observation could explain why children show better 
survival rates than adults. 

Here we used next generation sequencing in a 
relatively large SS cohort to assess the occurrence of 
genomic alterations, including mutations and gross 
chromosomal changes. 

RESULTS

We included patients of all ages (range 11-78 
years; including 8 children (< 18years) and 19 adults 
(≥18years)) and both sexes (female: 15, male: 22). Patients 
were diagnosed between 1990 and 2014. Follow-up data 
was available for 32 (86%) patients. For the screening 
of somatic mutations by means of next generation 
sequencing, we included 26 tumors from 22 patients 
(cohort 1) of whom sufficient tissue with matched normal 
tissue was available in the local tissue bank from our 
hospital pathology database. We included tumors with 
both histology and translocation subtypes (Table 2). The 
tumors encompassed 18 primary tumors, 6 metastatic 
tumors and 2 recurrences. Seventy-seven % (n = 20) 
of the tumor samples were from chemotherapy naïve 
patients, three tumor samples were from patients treated 
with neo-adjuvant chemotherapy, one couple consisting 
of two metastatic lesions were derived from one patient 
treated with pazopanib, and one recurrence was from a 
localization previously treated with adjuvant radiotherapy. 
Of four patients paired lesions were available: three 
patients with a metastasis and the corresponding primary 
tumor, and one patient, as mentioned above, with two 
metastases that responded differently to pazopanib. 

The 26 tumors were sequenced using the 
Comprehensive Cancer Panel, containing 409 cancer-
related genes including all previous found mutated 
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Table 1: Previously reported non-synonymous mutations in synovial sarcoma. 

Figure 1: Sanger verification. Figure 1 shows the 8 verified mutations by Sanger sequencing in tumor tissue (top) with the corresponding 
normal tissue (bottom).

*abstract only; CL=cell lines.
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Figure 2: Immunohistochemistry of cyclin D1. Figure 2A shows the abundant overexpression of cyclin D1 by immunohistochemical 
staining. 2B is the positive control (tonsil). Photos are made with 20x enlargement. 

Table 2: Patient characteristics.  

NS = not significant (p > 0.05) 
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genes in SS, except for TERT and CDKN1A. In total 
77,995 variants were called in the 26 tumors (range 755 
- 5713). 96 single nucleotide variants remained after 
filtering. These remaining variants were verified by 
Sanger sequencing. Of these, 57 variants (59%) could be 
confirmed. All were compared to matched normal DNA. 
In total, 49 of the 57 variants were also detected in normal 
DNA and were, thus, considered to be polymorphisms. 
Eight variants were not found in the normal tissues and are 
therefore assigned as somatic mutations (Table 3). These 
mutations were identified in the genes: KRAS, CCND1, 
RNF213, SEPT9, KDR (VEGFR2), CSMD3, MLH1 and 
ERBB4 (HER4) (Figure 1). Seven of these mutations were 
found in primary tumor samples derived from therapy 
naïve patients. The KRAS mutation was found in a tumor 
sample from a patient who was treated with neo-adjuvant 
chemotherapy. The mutations in the oncogenes KRAS and 
CCND1 genes are well-established oncogenic mutations 
in other cancer types. The sample harboring the CCND1 
mutation was further evaluated by immunohistochemistry, 
showing abundant over-expression of the protein (Figure 

2). The sample harboring the MLH1 mutation was also 
evaluated by immunohistochemistry for MLH1, MSH2, 
MSH6 or PMS2 expression in accordance to the effect of 
MLH1 in Lynch [34]. However, no lack of expression of 
any of these proteins was found (data not shown) in the 
tumor sample with the MLH1 mutation. 

No additional mutations were found in the 
metastatic lesions compared to the primary tumor. Since 
all mutations were found only once, we extended our 
cohort with a second cohort (Cohort 2, total n = 15), one 
primary tumor sample was derived from a patient who 
was treated with neo-adjuvant chemotherapy, the rest were 
primary tumor samples from therapy naïve patients, to test 
whether the identified mutations might occur recurrently. 
In addition, we extended the sequencing with coding 
exons 1-5 of the CCND1 gene and coding exons 2-5 of the 
KRAS gene, as the mutations that we found in these genes 
are proven pathogenic and, therefore, these two genes 
were considered to be of particular interest. However, no 
additional mutations were found in cohort 2 which means 
that after analysis of 41 tumors with these platforms, at 

Table 3: Sanger verified mutations 
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maximum one mutation was found in each tumor, and no 
similar mutations were observed.

In addition to the above mutation screen, we 
also used the primary dataset of cohort 1 to search 
for the presence of copy number variations (CNVs). 
To this end, we compared the aligned number of reads 
per gene generated by NGS in tumor tissue with the 
aligned number of reads per gene in healthy tissue. By 
doing so, chromosomal aberrations, like partial loss of 
chromosome 3 or gain of chromosome 8, were detected 
in approximately half of the SS. We confirmed these 
results in 6 samples with genome wide CNV analysis 
using the Oncoscan FFPE assay from Affimetrix (Figure 
3A). Interestingly, differences in copy number alterations 

were seen in 2 of the 4 paired tumor lesions (Figure 
3B) with additional deletions, duplications and loss of 
earlier duplications between the primary tumor and its 
corresponding metastasis. A specific loss of 6q was found 
in the metastatic lesion which progressed under pazopanib 
treatment in contrast to the responding metastatic lesion. 
An additional (partial) deletion of chromosome 6q was 
found in 2 other tumors of cohort 1. Another recurrent 
finding was loss of heterozygosity (LOH) in 5 of the 
6 tumor samples at 3q13.33. Overall, tumors with 
chromosomal aberrations were more frequently seen in 
adults (34.5%) compared to children (12.5%), however 
this was not significant (p = 0.07).

Figure 3: Oncoscan results. Figure 3A shows an overview of the number of copy-number-variations in 6 synovial sarcomas with 
aggregated gains (blue) and losses (red) of the different cases. The width of the bars indicates the number of cases with the gain or loss. 
Figure 3B shows the copy number variations per sample (one per row). Gains and losses of the different chromosomes are represented 
by respectively blue and red lines, under the different chromosomes (depicted in columns). The length of these lines indicates the size 
of the gain or loss. The yellow/orange lines indicate loss of heterozygosity. BI and BII are two individual lesions showing a partial 
loss of chromosome 6q. BIII is a primary lesion (top line) with its corresponding metastasis (bottom line), showing a partial overlap of 
chromosomal aberrations but also differences. BIV are two metastases from the same patient. It shows a new deletion of chromosome 6q in 
the progressive metastasis under pazopanib treatment (bottom) compared to the metastasis responding to pazopanib (top).
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DISCUSSION

Synovial sarcoma is a rare sarcoma subtype, which 
is characterized by a recurring X;18 translocation. Tumors 
show a heterogeneous clinical behavior. An in-depth 
genetic characterization may lead to an explanation of the 
clinical differences in tumor behavior and, ultimately, the 
identification of new therapeutic targets. 

Using a next generation sequencing platform, we 
detected pathogenic mutations that have so far not been 
reported in synovial sarcoma. In contrast to earlier reports, 
all mutations were unique in nature, and no recurrent 
mutations were found. Also, no mutations were found in 
previously reported mutated genes in SS (Table 1). 

Although each mutated gene may be involved in 
tumorigenesis, only two mutations that we identified in 
the KRAS and CCDN1 genes are presently known to be 
functionally important for driving cancer. Cyclin D1, 
encoded by the CCND1 gene, is a cell cycle regulator. It 
can associate with the cyclin-dependent kinases (CDKs) 
CDK4 and CDK6 to phosphorylate the retinoblastoma 
protein (RB) during the G1 phase of the cell cycle. 
Phosphorylation of cyclin D1 at threonine at codon 
286 is required for its ubiquitination, nuclear export 
and degradation. Mutations at codon 287, by which the 
proline changes to threonine or serine, have been reported 
in endometrial carcinomas [35]. These mutations result 
in nuclear accumulation of the active Cyclin D1/CDK 
complex, which is refractory to rapid degradation via the 
26S proteasome. In our cohort, we identified a c.859C > 
G (p.P287A) mutation and, concomitantly, we observed 
a cyclin D1 accumulation by immunohistochemistry. The 
protein encoded by the KRAS gene is involved in recruiting 
and activating proteins necessary for the propagation of 
growth factor and other receptor signaling, such as c-RAF 
and PI3-kinase. The single nucleotide substitution c.34C > 
A that we found represents an activating mutation known 
to result in oncogenesis in several adenocarcinomas. 
Non small cell lung cancer cell lines with this mutant 
had activated phosphatidylinositol 3-kinase (PI3K) and 
mitogen-activated protein/extracellular signal-regulated 
kinase kinase (MEK) signaling [36]. Both mutations are 
involved in different pathways known to be activated 
in SS, i.e. the WNT - β-catenin pathway which targets 
CCND1[37], and KRAS targeting the PI3K pathway [38]. 
The effect of the other mutations is not clear and therefore 
they could be passenger-mutations. As all eight mutations 
are found in genes involved in different pathways, 
including regulation of EGFR degradation (SEPT9) 
[39] or the EGFR-pathway (ERBB4) [40], angiogenesis 
(KDR [41], RNF213 [42]), proliferation (CSMD3 [43]) 
and mismatch repair (MLH1 [34]) pathways, no uniform 
suitable therapeutic target has emerged. The 5-year overall 
survival was significantly worse in patients whose tumor 
harbored an additional mutation, which should be further 
investigated in a larger cohort. Mutations were more often 

found in adult tumors compared to tumors with an onset 
in patient younger than 18 years (Table 2). 

Besides mutations, structural chromosomal 
aberrations have also been reported in SS. In our cohort, 
approximately half of the samples showed chromosomal 
aberrations. Some tumors had multiple alterations whereas 
others showed only a few or none. Also both large, 
including whole chromosomes, and small alterations were 
found. Similarly as Lagarde et al. reported, we found 
more stable genomes in children compared to adults [33]. 
Probably due to our small cohort this was not significant 
in our study. It is unknown if the amount of chromosomal 
aberrations is related to the aggressiveness of the tumor or 
a cause of the aggressive behavior, as genomic instability 
itself is related to aging and related to cancer [44]. Also, 
Chakiba et al. evaluated a possible association between 
genomic instability and response to chemotherapy, but 
no relation was found [45]. The deletion of 6q that we 
found may be an exception that typically raises interest 
in resistance mechanisms to pazopanib. As the working 
mechanism of pazopanib in sarcomas is still not unraveled, 
resistance may occur in various pathways, including anti-
angiogenic pathways. Partial 6q loss has been reported 
before in SS [29-31, 46], but so far no clinical correlation 
was found between 6q loss (or any other chromosomal 
aberration) and the clinical behavior of SS. 

Our study underlines the diversity in SS genomes 
beyond the well-known X;18 translocation. It emphasizes 
the challenge in finding new druggable targets in this 
disease and encourages a personalized medicine approach 
because of the overlapping mutations with other cancer 
types. As was shown by the sets of primary tumor and 
metastases, tumor evolution is unlikely to be explained by 
additional mutations although our sample size was small, 
but change in chromosomal alterations can be found. This 
study also warrants further investigation of a putative 
correlation between chromosomal aberrations (i.e. deletion 
of 6q) and resistance to pazopanib. From this study we 
conclude that not only mutations or copy number changes 
may underlie the immense complexity of human cancers, 
including SS, and, based on our and previous results, also 
further epigenetic research might be a way to explore the 
genetic nature of SS.

MATERIALS AND METHODS

Patients and tissue samples

Tumor samples were obtained from the archives of 
the Department of Pathology at the Radboud University 
Medical Center, Nijmegen (1990-2013). In total, 36 frozen 
and 5 formalin-fixed, paraffin embedded (FFPE) tumor 
tissue samples, representing 37 patients, were included. In 
all patients the specific t(X;18) translocation was identified 



Oncotarget34687www.impactjournals.com/oncotarget

by reverse transcriptase polymerase chain reaction (RT-
PCR). Patient follow-up was retrieved from clinical 
records. All research was performed in consultation and 
agreement with the medical ethical committee.

Mutation analysis

Genomic DNA was extracted by incubating the 
frozen/FFPE tissue samples in 5% Chelex-100 in lysis 
buffer and proteinase K twice overnight. All samples were 
examined by a pathologist to evaluate the neoplastic cell 
load: all tumor cases contained more than 70% neoplastic 
cells. The control samples did not contain neoplastic cells. 
Extracted DNA samples were quantified using the Qubit 
(Invitrogen) and quality was checked by size ladder PCR 
before library preparation. Libraries were generated using 
Life Technologies Ion AmpliSeq™ Comprehensive Cancer 
Panel according to the manufacturer’s recommendations. 
This panel consists of approximately 16 000  
primer pairs covering 409 genes with known cancer 
associations. 10ng of genomic DNA from each sample 
was used to prepare barcoded libraries using IonXpress 
barcoded adapters (Life Technologies). Libraries were 
combined to a final concentration of 3ng/ml using the 
Ion Library Quantification Kit (Life Technologies, USA), 
and emulsion PCR was performed using the Ion Torrent 
OneTouchTM 2 System. Samples were sequenced on the 
Ion Torrent semi-conductor sequencer (Life Technologies, 
USA) using Ion 316 or 318 chips. Sequencing reads were 
aligned to the 409 genes based on the Human Genome 
version 19 using Sequence Pilot v4.2.0 (JSI medical 
systems GmbH). Also read depth and uniformity of 
coverage across individual amplicons were assessed. 

In data analysis the cut-off was set at mutations 
found in ≥20% of the reads. Only non-synonymous and 
non-sense variations in coding regions were included. 
Mutations were filtered for known single nucleotide 
polymorphisms and variations found earlier in our own 
research database. All mutations left after filtering 
were confirmed by Sanger sequencing with specifically 
designed primer sets (Supplemental Data 1), and if 
confirmed, the presence or absence of this specific 
mutation was verified in normal non-neoplastic tissue from 
the corresponding patient (extracted from FFPE normal 
tissue). PCR reactions were performed using the AmpliTaq 
Gold 360 Master Mix (Life Technologies, USA) with 1 µl 
DNA and the following program: 95°C (10 min); 95°C 
(30 sec), 58/60°C (30 sec), 72°C (1 min), 38 cycles; and 
72°C for 7 min. PCR products were analyzed by agarose 
gel electrophoresis. Subsequently, samples were submitted 
to DNA sequencing using the BigDye Terminator reaction 
mix, and samples were analyzed on the 3730 Sequence 
Analyzer (Applied Biosystems). All validation was done 
in duplicate, including the DNA extraction process. 

We extended our cohort with cohort 2 (n = 15) and 
analyzed these by Sanger-sequencing for the mutations 

that were identified in the first cohort. We also included 
all coding exons of KRAS and CCND1 (primers are listed 
in Supplemental Data 1). 

Oncoscan

DNA was extracted from 3 FFPE and 3 frozen 
tissues and purified with ethanol precipitation to a 
concentration of 12 ng/ul. The samples were processed 
with the OncoScan™ FFPE Assay, a whole-genome copy 
number assay, according to the manufacturers’ protocol of 
the OncoScantm FFPE Assay Kit Protocol by Affymetrix. 
The data was analyzed with Nexus Copy Number 7.5.2, 
standard edition, BioDiscovery, Inc. 2014. 

Immunohistochemistry

4 µm sections of FFPE tissue were pretreated in 
a PreTreatment module (Lab Vision) in either sodium 
citrate buffer (pH6.7) for 30 min at 100°C (CCND1) or 
in ethylenediaminetetraacetic acid (EDTA) buffer (pH9) 
for 10 min at 96°C (MLH1, MSH2, MSH6, PMS2). After 
blocking of endogenous peroxidase with 3% hydrogen 
peroxide in methanol, sections were incubated for 1h 
at room temperature (RT) with the primary antibody 
against Cyclin D1 (ILM 30442, clone SP4; 1:40 dilution; 
Immunologic), MLH1 (551092, clone G168-15; 1:40 
dilution; BD Pharmingen), MSH2 (NA26, clone GB12; 
1:40 dilution; Calbiochem), MSH6 (ab92471, clone 
EPR3945; 1:500 dilution; Abcam) or PMS2 (556415, 
clone A16-4; 1:100 dilution; BD Pharmingen). Next, 
sections were incubated with PowerVision poly-HRP-
anti-Ms/Rb/Rt (Immunologic) for 30 min at RT and 
visualized using bright 3,3′-diaminobenzidine (DAB). 
Counterstaining was performed with haematoxylin. 
Immunostaining was evaluated by a pathologist.
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