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Age-related somatic mutations in the cancer genome
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ABSTRACT
Aging is associated with an increased risk of cancer, possibly in part because 

of an age-related increase in mutations in normal tissues. Due to their extremely 
low abundance, somatic mutations in normal tissues frequently escape detection. 
Tumors, as clonal expansions of single cells, can provide information about the 
somatic mutations present in these cells prior to tumorigenesis. 

Here, we used data from The Cancer Genome Atlas (TCGA), to systematically 
study the frequency and spectrum of somatic mutations in a total of 6,969 patients 
and 34 different tumor types as a function of the age of the patient. After using linear 
modeling to control for the age structure of different tumor types, we found that 
the number of identified somatic mutations increases exponentially with age. Using 
additional data from the literature, we found that accumulation of somatic mutations 
is associated with cell division rate, cancer risk and cigarette smoking, with the latter 
also associated with a distinct spectrum of mutations. 

Our results confirm that aging is associated with the accumulation of somatic 
mutations, and strongly suggest that the level of genome instability of normal cells, 
modified by both endogenous and environmental factors, is the main risk factor for 
cancer.

INTRODUCTION

Somatic mutations are generally accepted to cause 
cancer and have also been implicated as a cause of aging 
[1]. Transgenic reporter assays in mice and fruit flies 
have conclusively demonstrated that somatic mutations 
accumulate with age in a tissue-specific manner, with 
respect to both the rate of the age-related increase 
and the types of mutations found to accumulate [2-4]. 
But reporter genes may not always be representative 
of the genome overall, and with the emergence of 
next-generation sequencing it has become feasible to 
inexpensively characterize genome-wide, age-related 
mutation frequencies and spectra directly in different 
organs and tissues. As only one or few cells may contain 
the same somatic mutation, however, the detection of such 
mutations can be challenging even at very high depth. 
By contrast, somatic mutations are readily accessible 
in tumors, as these represent clonal expansions of the 
mutations in the original cell that gave rise to the tumor. 

Indeed, it is clear that the number of somatic mutations in 
tumors is significantly higher when the tumor was derived 
from an old patient as compared to a young one [5, 6]. 
Mathematical modeling strongly suggests that half or 
more of somatic mutations in tumors arise before initiation 
of the tumor, i.e., during development and aging. Hence, 
a considerable fraction of all mutations in a tumor may 
reflect the frequency and spectrum of somatic mutations 
in normal human cells as these accumulated with age [5]. 
Recent massive cancer-sequencing efforts, such as The 
Cancer Genome Atlas (TCGA), have made available a 
wealth of data on tumor-associated somatic mutations 
from many individuals and tissue types [7-9].

Thus far, a systematic analysis of mutation 
frequency and spectrum in human tumors as a function 
of the age of the patient has been lacking. Here, we fill 
this gap by studying a total of 6,969 patients with whole 
exome and/or whole genome sequencing data of mutations 
in 34 different types of tumors. The results show that the 
number of mutations in a tumor increases exponentially 
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with age. Using linear modeling, we show that, despite 
differences between tissue types, this effect is robust and 
not an artifact of certain tumor types, which happen to 
have more mutations, appearing at later ages. Major 
differences in both mutation frequency and spectrum 
were observed between tumor types, with cell division 
rate and environmental exposure as the two main sources 
of variation. Our data underscore the finding that somatic 
mutation accumulation in normal cells, modified by both 
endogenous and environmental factors, is the main risk 
factor for cancer. 

RESULTS

Somatic mutation frequency increases 
exponentially with patient age

Whole exome sequence data from a total of 
6,969 individuals, with 34 different types of tumors, 

was examined. Across all samples and tumor types, the 
number of mutations was found to increase with age. 
Although a linear correlation to the untransformed data 
was statistically significant (P = 2.6*10-10, r = 0.076), a 
better fit (P < 2.2*10-16, r = 0.36) was obtained following 
log-transformation of mutation frequency (Figure 1A). 
Age was still significantly associated with mutation 
frequency even when tumors from juvenile patients (age 
less than 18) were excluded (P < 2.2*10-16, r = 0.33). The 
difference in mutation frequency between young and old 
individuals was very large: tumors from under 20 years 
old had a median mutation frequency of 0.37 mutations 
per megabase (95% CI = 0.30 to 0.43), while tumors 
from patients over 80 years old had a median mutation 
frequency of 2.21 mutations per megabase (95% CI = 1.96 
to 2.51), representing a 6-fold increase over the course of 
a lifetime (Wilcoxon test: P < 2.2*10-16; Figure 1B). A 
robust regression also found a significant correlation (P < 
2*10-16) between age and mutation frequency.

To jointly estimate the age-related increase in 
mutation frequency while accounting for cancer type, 

Figure 1: A. Mutation frequency versus age in tumors of 6,969 individuals. The relationship between the two variables can be expressed 
as an exponential increase (P < 2.2*10-16, r = 0.36). B. Frequency of somatic mutations in different age groups. Subjects over 80 had a 
mutation frequency more than 5 times higher than that of subjects under 20; the differences between all age groups are significant as 
measured by the Wilcoxon rank sum test.
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a linear model of log-transformed mutation frequency 
as a function of age and tumor type was created, such 
that , where yi represents the log-
transformed mutation frequency in sample i, xi represents 
the sample age, ti represents a dummy variable indicating 
one of T tumor types, and ϵi represents the residual for 
sample i This gave a better fit (r = 0.80) than any of 
the previous models; a model with an additional term 
for the interaction between tumor type and age did not 
produce a better fit and was not considered for further 
analysis. Results of the linear model are summarized in 
Supplementary Table 1. In this model, age was still found 
to be associated with mutation frequency (P < 2*10-16), 

accounting for a lifetime increase of 1.17 mutations per 
megabase between birth and age 80. Depending upon the 
tumor type, the estimated lifetime mutation accumulation 
varied from 0.084 in the case of rhabdoid tumors to 4.36 
in the case of melanoma. 

The cumulative number of stem cell divisions has 
been implicated as being a major risk factor for cancer 

[10]. We correlated the data from reference [10] with 
the results of our linear model. The association between 
lifetime mutation accumulation and lifetime cancer risk 
(Figure 2A) trended towards significance (P = .079, r = 
0.53), and there was a significant correlation between 
lifetime mutation accumulation (P = .019, r = 0.66) and 

Figure 2: A. Lifetime risk of cancer of a tissue type [10], as a function of the estimated lifetime mutation accumulation, i.e., the increase 
in mutation frequency calculated for the tissue type by the linear model between birth and age 80 (P = .079, r = 0.53). B. Lifetime mutation 
accumulation, i.e. the increase in mutation frequency calculated for the tissue type by the linear model between birth and age 80, for different 
tissue types as a function of the estimated lifetime number of stem cell divisions (P = .019, r = 0.66). (Abbreviations: LAML=acute myeloid 
leukemia, COAD=colorectal adenocarcinoma, ESCA=esophageal squamous cell carcinoma, GBM=glioblastoma, HSNC=head and neck 
squamous cell carcinoma, LIHC=liver hepatocellular carcinoma, MD=medulloblastoma, SKCM=skin cutaneous melanoma, OV=ovarian, 
PAAD=pancreatic ductal adenocarcinoma, TGCT=testicular germ cell cancer, THCA=thyroid papillary/follicular carcinoma).
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cumulative number of stem cell divisions (Figure 2B). 
The spectrum of mutations did not remain 

constant throughout age. Linear models (summarized 
in Supplementary Table 2) as above, except with yi 
representing the proportion of a particular mutation in 
sample i, found an age-related increase in the proportion 
of C->T (P = .0042) and T->G mutations (P = .04) and 
an age-related decrease in the proportion of C->A (P = 
7.28*10-5) mutations.

Whole-exome data are representative for the 
whole genome

To test if the exomic mutation frequency is 
representative of the mutation frequency in the overall 
genome, we compared mutation frequencies in a set of 14 
bladder tumors for which both whole-exome and whole-
genome mutation frequencies were available [11]. When 
considering the relationship between age and mutation 
frequency, the correlation was stronger with the genomic 
mutation frequency than with the exomic mutation 
frequency (r = 0.5 and r = 0.287, respectively; Figure 
3). This suggests that the frequency of mutations in the 
exome is indicative of the frequency of mutations in the 
whole genome and that using the exomic mutation rate 
may even underestimate the strength of the relationship 
with age as opposed to using the genomic mutation rate. 
Therefore, an age-related increase in the whole-exome 
mutation frequency likely reflects a genome-wide increase 
in mutation frequency.

Tissue-specific mutation rates and spectra

Previous studies of mutations in reporter genes 
in mice have found distinct frequencies and spectra of 
mutations in different tissue types [12]. Specifically, mice 
accumulated more mutations in the small intestine than 
in the heart, liver or spleen, which in turn accumulated 
more mutations than the brain [12]. Comparison of 
the tumor types found in our dataset yielded much 
the same results. In our data, the brain tumor types of 
glioblastoma multiforme, brain lower grade glioma 
and medulloblastoma had estimated lifetime mutation 
accumulations of 0.72, 0.56 and 0.17 mutations per 
megabase, all of which are below the median of 0.82 
mutations per megabase. Rhabdoid tumors, which can 
also occur in the brain, had the lowest estimated lifetime 
mutation accumulation of any tumor type, 0.08. Liver 
hepatocellular carcinoma had an intermediate lifetime 
mutation accumulation of 1.39 mutations per megabase, 
less than one standard deviation (0.95) above the median. 
Finally, colon adenocarcinoma had an estimated lifetime 
mutation accumulation of 2.04 mutations per megabase. 

Reporter gene studies in mice have also found an 
enrichment in all point mutation types other than C->G 
in small intestine compared to brain. The findings of 
our linear models relating tumor type and mutation 
spectra were in partial agreement with this result. 
Although we observed the enrichment for C->A and 
C->T mutations, with γj for those mutations being higher 
in colorectal adenocarcinoma than the average for the 
brain-related tumor types, as well as a lack of enrichment 

Figure 3: Mutation frequency as a function of age in 14 bladder tumors for which both whole exome and whole 
genome were available [11]. Whole exome data: r = 0.50; whole genome data: r = 0.29.
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of C->G mutations, with γj being lower in colorectal 
adenocarcinoma, we did not observe an enrichment for 
T->A, T->C or T->G mutations; for those mutation types, 
γj  in colorectal adenocarcinoma was less than or equal to 
that in the brain-related tumor types. These differences 
between the mouse and human data may be species-
specific, but could also be due to differences in cell type. 
Indeed, while the mouse reporter models analyzed all cells 
in a tissue, tumors are derived from specific cells, such 
as stem cells. Alternatively, these differences may be an 
artifact of the reporter gene system; not all mutations in 
the reporter gene would lead to a visible phenotype [13], 
so the spectrum of mutations found in the reporter gene 
would be biased towards those most likely to produce a 
phenotype.

To further examine the heterogeneity between tumor 
types, a separate exponential regression between mutation 
frequency and age was performed for each tumor type 
(summarized in Supplementary Table 3). At first, lifetime 
mutation accumulation, estimated by the difference 
between the frequency of mutations at age 80 and at 
birth, seemed to be poorly correlated (P = .46, r = -0.14) 
between the linear model and the separate regressions. 
However, this was mainly due to juvenile tumors having 
extremely high estimated amounts of estimated mutation 
accumulation and lung tumors having negative estimated 
mutation accumulation. Once both of these classes 
of tumors were removed, the correlation between the 
two estimates of lifetime mutation accumulation in the 

remaining 28 tumor types was highly significant (P = 
.00024, r=0.64). 

The correlation coefficient varied between tumor 
types, from 0.4749 to -0.1771. The evidence was still 
overwhelmingly in favor of an age-related increase 
in mutation frequency, with the median correlation 
coefficient being 0.1993 and 29 of 34 tumor types having a 
positive correlation coefficient. The five tumor types with 
a negative correlation coefficient were: sarcoma, uveal 
melanoma, rectum adenocarcinoma, lung adenocarcinoma 
and lung squamous cell carcinoma. Sarcoma is primarily 
a juvenile cancer (median age: 6), so the lack of a 
positive correlation between age and mutation frequency 
is probably due to the low and narrow age range of 
patients. The only tumor types with negative correlation 
coefficients for which the P value was also significant 
were the two lung cancer types (P = .0099 and P = .019). 
We hypothesized that the effects of smoking may have 
concealed any age-related increase in mutation frequency 
and describe below our findings on the effects of smoking 
on mutation frequency.

Even among adult tumor types without any known 
association with smoking, the correlation between age and 
mutation frequency was highly variable between tumor 
types. We hypothesized that tumor types with a weaker 
association between age and mutation frequency were 
prone to mutator phenotypes, in which tumors rapidly 
accumulate somatic mutations due to, e.g., mutations 
in DNA repair genes [14]. If this were the case, then we 

Figure 4: Correlation coefficient of mutation frequency increase with age as a function of median mutation frequency 
in the different tumors. For each tumor type, the exponential correlation coefficient for the association between mutation frequency 
and age was plotted against its median mutation frequency. The correlation coefficients were inversely correlated with median mutation 
frequency (P = 0.0059, r = -0.46).
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would expect that the tumor types with a lower correlation 
coefficient would have a higher median mutation 
frequency, which was indeed what we found: there was 
a significant negative correlation (P = .0059, r = -0.46) 
between median mutation frequency of a tumor type and 
its exponential correlation coefficient (Figure 4). 

Principal component analysis of the proportion 
of types of mutation found that lung adenocarcinoma 
tumors, but not lung squamous cell tumors, tend to have 
a distinct spectrum of mutations (Figure 5A). Lung 
adenocarcinoma tumors, compared to tumors overall, are 
significantly enriched (Wilcoxon test: P < 2.2*10-16) for 
C->A mutations (Figure 5B). This is consistent with the 
spectrum of mutations induced by tobacco smoke [15] 
and suggests that smoking has a strong effect on both the 

frequency and spectrum of somatic mutations (see also 
below).

Effects of smoking on mutation frequency and 
spectrum

Information on the number of pack-years of 
smoking was available for 2,407 individuals. Another 
linear model (r = 0.82; summarized in Supplementary 
Table 4) was created to estimate the increase in mutation 
frequency due to smoking while controlling for both tumor 
type and age:  (variables are the 
same as in the initial linear model, except pi represents 
the number of pack-years of smoking for sample i).  

Figure 5: Distinct mutation spectrum in lung adenocarcinoma. A. Principal component analysis of the proportions of mutations 
reveals that lung adenocarcinoma tumors tend to have a spectrum of mutations not shared by other tumor types, including lung squamous 
cell carcinoma tumors. B. Lung adenocarcinoma tumors have a larger proportion of C->A mutations than all tumor types combined (P < 
2.2*10-16, Wilcoxon test).
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Significant associations between mutation frequency and 
both age (P = .0012) and pack-years (P = 4.79*10-10) 
were found. Since β = 0.0061 and ∂ = 0.0038, a pack-year 
of smoking has the mutagenic equivalent of over 6 months 
of normal aging. Among smokers, the median number of 
pack-years was 39 and median age was 65. The number of 
additional mutations due to smoking 39 pack-years by age 
65 is predicted to be between 0.1 and 0.63 per megabase, 
depending upon tissue type. 

Smoking also altered the spectrum of somatic 
mutations. Linear modeling of the proportion of mutation 
types revealed that smoking significantly increases the 
proportion of C->A mutations (P = 3.41*10-10) and T->A 
mutations (P = 1.37*10-10), but significantly decreases the 
proportion of C->T mutations (P < 2*10-16).

DISCUSSION

In this present study, we used the extensive amount 
of cancer genomic data available in TCGA to demonstrate 
a large and life-long increase in somatic mutation 
frequency across many tumor types. The relationship that 
we observed was best modeled as an exponential increase, 
which is consistent with a feedback loop in which somatic 
mutations lead to an overall decline of the functions of 
the cell, including genome maintenance, leading to even 
more somatic mutations. This large and prevalent increase 
strongly supports a possible role for the accumulation of 
somatic mutations in aging and cancer risk.

There was a correlation between number of cell 
divisions in a tissue and estimated lifetime mutation 
accumulation. Cell division, therefore, appears to be a 
major source of endogenous mutation. The association 
between lifetime mutation accumulation and lifetime 
cancer risk trended towards significance, consistent with 
somatic mutations playing a major role in cancer risk. 

The strength of the correlation between age and 
mutation frequency varied greatly between tissue types. 
Although the preponderance of tumor types with a positive 
correlation strongly supported an age-related increase in 
somatic mutation frequency, for some tumor types the 
correlation coefficient was very low, or even negative. We 
found that for some tumor types, smoking acts to conceal 
the age-related increase in mutation frequencies; overall, 
the tumor types with higher median mutation frequencies 
have lower correlation coefficients, consistent with a 
mutator phenotype masking the age-related accumulation 
of somatic mutations. In this respect, it is possible that 
smoking affects mutation frequencies in tumor cells 
more readily than in normal cells (possibly because most 
mutations might be caused by replication errors), thereby 
promoting mutator phenotypes.

We observed an age-related spectrum of mutations, 
including an enrichment of C->T transitions, and a distinct 
spectrum of mutations associated with smoking, which 
included an enrichment of C->A transversions. The former 

is consistent with a widespread mutational signature 
previously found in other cancers and is thought to arise 
from spontaneous deamination of 5-methyl-cytosine, 
while the latter is consistent with a mutational signature 
found in lung cancers [15-17]. In addition to detecting 
the mutational signature of smoking, we were also able 
to quantify its relative contribution to the mutation 
frequency. Based on our linear model, one pack-year of 
smoking increases the somatic mutation frequency by 
the equivalent of over half a year of normal aging. Since 
the smokers in our data had consumed a median of 39 
pack-years of cigarettes, the effect of smoking could be 
estimated to reduce lifespan by 23.7 years. Studies have 
shown that smoking reduces life expectancy by 11 years 
[18]; the overestimation of the lifespan reduction due to 
smoking is likely due to risk of mortality being affected by 
factors other than mutation frequency. Nonetheless, these 
findings suggest that somatic mutation frequency could be 
adopted as a way to predict the lifespan impact of other 
mutagens or lifestyle interventions. 

There are two main limitations to this study: the 
possibility of post-tumorigenesis mutations affecting the 
results, and the possibility that the mutation frequencies in 
exomes are not representative of the genome as a whole. 
First of all, it is possible that in older patients, tumors have 
existed for a longer time and had a greater opportunity 
to accumulate mutations in cells within the tumor, which 
then expanded throughout the tumor. If this were the 
case, then the age-related increase in the frequency of 
tumor mutations would only reflect progression of the 
tumor and not the frequency of mutations in the cells 
prior to tumorigenesis. However, efforts at modeling the 
expansion of mutations within tumors have indicated that 
the majority of mutations found in tumors are present 
prior to tumorigenesis. They also indicate that the fraction 
of mutations present prior to tumor formation increases 
with age, so the expansion of mutations subsequent to 
tumorigenesis would tend to artificially decrease the 
correlation with age instead of increasing it [5]. 

Second, most of the mutation frequency values 
used for our study were obtained using whole-exome 
sequencing. Whole-genome mutation frequencies were 
available for a subset of tumors studied, and had a stronger 
correlation with age than the whole-exome mutation 
frequencies in the corresponding tumors. This is in 
keeping with observations that mutation frequencies tend 
to be lower in actively transcribed genes, possibly because 
of transcription-coupled repair. Therefore, the age-related 
increase in mutation frequency observed by whole-exome 
sequencing is more likely to be an underestimate than an 
overestimate of the age-related increase in whole-genome 
mutation frequency. 

Our present findings constitute the most 
convincing evidence thus far of a widespread, age-
related accumulation of somatic mutations in diverse 
human tissues. Decreased sequencing costs are likely to 
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generate more whole-genome sequencing information, 
not only allowing confirmation of the accuracy of our 
results but also a more comprehensive analysis of 
patterns of mutations across the genome. Meanwhile, the 
observed accumulation of somatic mutations in a broad 
spectrum of human tissues does not provide evidence 
that mutations contribute to age-related diseases other 
than cancer. However, the magnitude of the observed 
mutation frequencies, i.e., varying from about 0.02 to 
almost 1,000 mutations per megabase, suggests that cell 
function can be affected directly without the need for 
clonal expansion and selection. Indeed, there has been an 
increasing interest in genome mosaicism, as this emerges 
during development and aging, and a possible causal role 
of somatic mutations in diseases other than cancer [1, 19]. 

To study this more effectively, new approaches, including 
single cell sequencing [23] have emerged for detecting 
both somatic mutations and their possible consequences 
for the transcriptome directly, without the limitations and 
potential artifacts present when relying on tumor [21]. 
These techniques may shed more light on a possible role 
of somatic mutations in aging and age-related diseases 
other than cancer.

MATERIALS AND METHODS

Source of mutation data and data processing

Clinical data and exomic tumor point mutation 
frequencies from 6,955 individuals were obtained from 
reference [8] and reference [9]. For purposes of comparing 
mutation frequencies, only single base pair substitutions 
were considered. Whole-genome and whole-exome 
mutation frequencies, along with clinical information, for 
an additional 14 individuals were taken from reference 

[11]. 

Statistical analysis

Statistical analysis was performed using R [22]. 
Correlations were estimated using Pearson’s correlation 
coefficient on the age of patients and untransformed or 
log-transformed number of mutations. A linear model 
was fitted to the proportion of a substitution type or the 
log-transformed frequency of mutations as a function 
of age and tumor type, using the functions built-in to R. 
Comparisons between age groups were performed using 
the Wilcoxon rank sum test and 95% confidence intervals 
were determined using the Boot library [23]. Robust 
correlation was performed using the Robust library [24]. 
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