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ABSTRACT

Some single nucleotide polymorphisms (SNPs) influence the existence of CpG 
sites, the basis of DNA modification such as methylation and hydroxymethylation. 
These polymorphisms can lead to gain or loss of CpG sites and were defined as CpG 
site related SNPs (cgSNPs) in this study. The cgSNPs change DNA sequence and might 
potentially affect DNA modification such as methylation. However, the functional 
consequence of cgSNPs is poorly understood. We observed that a considerable 
proportion (23.0%) of common variants were cgSNPs in human genome. Mutations 
involving loss of CpG sites were associated with reduced levels of methylation 
(~20.2%) using The Cancer Genome Atlas (TCGA) data. Using public databases 
(SCAN and seeQTL) of expression quantitative trait loci (eQTLs), we found that the 
cgSNPs were significantly enriched in eQTLs via logistic regression and simulation 
test. Furthermore, we observed that cgSNPs were more likely to be trait-associated 
loci especially cancers using a catalog of published genome-wide association studies 
(GWAS) recorded by National Human Genome Research Institute (NHGRI). Our results 
indicated that cgSNP might be meaningful as annotation either in SNP functional 
prediction or in screening for trait-associated SNPs.

INTRODUCTION

Individual genetic variants contribute to phenotypic 
variants and disease susceptibility. Single nucleotide 
polymorphisms (SNPs) are the most common type of 
genetic variation in human genome. Of those, some SNPs 
that influence CpG dinucleotides, which can generate or 
abolish a CpG site. For example, a C-to-T transition on ‘C’ 
of CpG dinucleotides leads to a loss of a CpG site. Here, we 
defined these variants as CpG site related SNPs (cgSNPs).

In mammals, the majority of cytosines (70%–80%) 
in CpG dinucleotides are methylated in somatic cells. 
[1, 2] DNA methylation has been evidently linked to 
transcriptional regulations [3]. Differentially methylated 
regions (DMRs) have been focused by numerous studies 

in complex diseases. The role of DNA methylation in 
cancer etiology and progression is well established [4, 5]. 

Besides the sequence changes, cgSNPs might 
potentially affect DNA modifications. Several studies 
have explored DNA methylation associated SNPs in 
various human tissues and cell lines [6–8]. Hundreds of 
methylation quantitative trait loci (mQTLs) have been 
reported using high-throughput data [9–11]. The mQTL 
studies have predominantly focused on the mapping 
of methylation of CpG sites without harboring DNA 
sequence variants. However CpG sites containing SNPs 
were rarely explored because the methylation levels of 
CpG sites involving SNPs were not covered by most 
methylation detection platforms [11–14]. Until recently, 
Degui Zhi and his colleagues have focus on cgSNP and 
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they observed that cgSNPs account for over two thirds of 
the strongest mQTL signals [15]. However, the biological 
relevance of cgSNP was still poorly understood.

We raised the question from the fundamental 
changes of DNA sequence and its putative effect in 
epigenetics. Given the essential role of DNA modification 
in the regulation of gene expression, what are the 
functional consequence of cgSNPs in gene expression 
and complex diseases? More specifically, the question 
we might ask: Are cgSNPs more likely to be enriched 
in eQTLs and trait-associated variants? We therefore 
performed this study to test the hypothesis that cgSNPs 
enriched in eQTLs and trait-associated variants. Firstly, we 
identified cgSNPs in human genome from HapMap phase 
II dataset. Then we retrieved eQTLs and trait-associated 
SNPs from online databases. Finally, we utilized logistic 
regression and permutation test to assess whether cgSNPs 
were enriched in eQTLs and trait-associated SNPs.

RESULTS

General descriptions of cgSNPs in genome

We obtained 4,097,556 SNPs from HapMap phase II 
dataset. Of those, 942,429 loci (23.0%) were cgSNPs. There 
were 42 scenarios of single base substitution that could cause 
gain or loss of a CpG site (Supplementary Table 1). 80.7% 
of cgSNPs were attributable to A/G or C/T substitutions 
in eight trinucleotides including CRT, CRG, CRC, CRA, 
AYG, CYG, GYG and TYG (R and Y were the International 
Union of Pure and Applied Chemistry (IUPAC) code which 
refers to A or G and C or T respectively).The proportions 
of cgSNPs among all the variants varied in different 
chromosomes ranging from 20.9% to 27.9%. 365098 and 
9008 SNPs were found to be cgSNPs located in genebodies 
and promoters respectively.

According to the ancestral sequence, cgSNPs were 
classified into cg-gain-SNPs and cg-loss-SNPs. There 
were 489,891 (52.0%) cg-gain-SNPs and 449,796 (47.9%)  
cg-loss-SNPs. Due to the lack of ancestral sequence, a 
very small proportion of cgSNPs could not be classified 

as cg-gain-SNPs or cg-loss-SNPs. We observed that  
cg-loss-SNPs accounted for a major proportion (69.0%) of 
cgSNPs located in CpG islands (Table 1). The proportion 
of cg-loss-SNPs in CpG island shores was 48.7%, which 
was similar to the open seas (47.6%).

Loss of CpG site was associated with reduced 
level of methylation

Totally 53 somatic exon mutations, observed in tumor 
tissue of the colon cancer sample in TCGA, could lead to 
loss of CpG sites (Supplementary Table 2). The methylation 
levels were lower in tumor tissue in 94.3% (50 of 53) of 
the CpG sites compared with paired normal tissue. The 25th 
percentile, Median and 75th percentile of the difference of 
methylation levels (normal tissue minus tumor tissue) were 
9.4%, 20.2% and 30.0%, respectively. We compared the 
methylation levels of the nearby CpG sites as well. As shown 
in Figure 1, the methylation levels of nearby CpG sites 
(within 10bp away from the cgMuts (mutations involving 
gain or loss of CpG sites)) showed no difference between 
tumor and paired normal tissue sample (the Median of 
difference was 0%). We also observed that all of the Medians 
of the differences in the other 5 bins (including ~ ± 50bp, ~ ± 
100bp, ~ ± 500bp, ~ ± 1k and ~ ± 2k bins) were 0%.

cgSNPs were significantly enriched in eQTLs

Significant enrichment of cgSNPs in eQTLs was 
observed from logistic regression after adjusting for 
covariates including MAF and the number of SNPs 
which could be tagged by the tested proxy SNP (see 
methods). The OR and its 95%CI of cgSNPt (a cgSNP or 
a non-cgSNP but could tag at least one cgSNP) was 1.58 
(1.48~1.69). In simulation tests, 303 out of 500 eQTLs 
with top signals were cgSNPts (Figure 2), which was 
significantly higher than matched SNP sets from 300 times 
stratified random sampling (P = 0.04).

Then we conducted logistic regressions with 
SNPs which located near (including islands and shores) 
or distant from CpG islands separately. Results showed 

Table 1: The distribution of cg-gain-SNP and cg-loss-SNP located in CpG island, CpG island shore 
and open sea
Locations cgSNP* cg-gain-SNP (%) # cg-loss-SNP (%) #

CpG island 4486 1300 (29.0) 3095 (69.0)

CpG island shore 40104 20391 (50.8) 19542 (48.7)

Open sea 897839 468200 (52.1) 427159 (47.6)

Global 942429 489891 (52.0) 449796 (47.7)

*The number of cgSNP in each region including cg-gain-SNP, cg-loss-SNP and a fraction of cgSNPs which could not be 
classified due to the lack of ancestral sequence.
#The number of cg-gain-SNPs or cg-loss-SNPs and the proportions (%) of cg-gain-SNP and cg-loss-SNP in cgSNPs located 
in each region.
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Figure 1: The methylation levels at CpG sites, which existed in normal tissue sample and lost in paired tumor sample 
due to mutations (cgMut), were higher in normal than tumor tissue. While no differences of methylation levels of 
nearby CpG sites were observed. The differences of methylation levels between normal and paired tumor tissue sample (TCGA  
ID = 3518) in cgMut related and nearby CpG sites (classified into 6 bins including ~ ± 10bp, ~ ± 50bp, ~ ± 100bp, ~ ± 500bp, ~ ± 1kb and 
~ ± 2kb away from cgMut) were presented as box plot of the 50th percentile (P50, Median) and range of difference of methylation levels. 
The top and bottom of the box represent the 75th and 25th percentile. The whiskers indicate the 10th and 90th percentile. An example was 
given in ~ ± 2kb bin.

Figure 2: cgSNPts are significantly enriched in eQTLs. The theoretical distribution of the counts of cgSNPts in 300 draws (each 
draw containing 500 SNPs, which is matched to the 500 eQTLs) is shown in histogram. The observed count of cgSNPts in the 500 eQTLs 
was 303 (shown as a solid circle). According to the observed count of cgSNPts and the distribution of the counts of cgSNPts in 300 matched 
draws, the enrichment P-value was 0.04.
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that the ORs of cgSNPts near CpG islands were 1.67 
(95%CI: 1.39~2.00) and 1.57 (95%CI: 1.47~1.68) for 
cgSNPs distant from CpG islands. Consistent results were 
obtained from simulation tests.

cgSNPs were significantly enriched in trait-
associated SNPs especially cancers

Trait-associated SNPs (from the catalog of reported 
loci via GWA studies) with reported P-values less than 
E-5 were classified into 8 bins according to the reported 
P-values (Figure 3). The associations between cgSNPt 
and the trait-associated SNP were conducted in each bin 
via logistic regressions adjusted for covariates including 
MAF and the number of SNPs tagged by the tested proxy 
SNP (see more details in methods). The results showed 
that trait-associated SNPs with reported P-values ranging 
from E-5~ to E-11~ were more likely to be cgSNPts 
compared with other SNPs. However, these associations 
were not observed in the rest two bins with the top signals. 
The number (N) of trait-associated SNPs, the OR and its 
95%CI of cgSNPts in each bin were presented in Figure 3. 
Simulation tests got consistent results with logistic 
regressions (Figure 4), showing that the cgSNPts were 
significantly enriched in trait-associated loci with reported 
P-values ranging from E-5~ to E-11~. Enrichment was not 
observed in trait-associated loci with reported P-values 
less than E-14.

SNP function predictions were performed for 
each trait-associated SNP to explore the unique features 
of those trait-associated SNPs without enrichment 
signals. Results suggested that each SNP from the top 
two bins (with the strongest trait associations) could 
averagely tags (LD r2 > 0.8) 1.39, 0.30, 0.28 and 0.21 
SNPs which predicted to be transcription factor binding 
sites, splicing related variants, miRNA binding sites and  
non-synonymous mutations, respectively. While the mean 
numbers of SNPs with potential functions tagged by trait-
associated SNPs from the rest six bins with P-values  
E-5~ to E-11~ were 0.79, 0.13, 0.07 and 0.06, respectively.

We did analyses in cgSNPs near CpG islands and 
cgSNPs located in open sea separately. Results showed 
that the ORs for cgSNPts near CpG islands was 1.16 
(95%CI: 1.05~1.29) and 1.12 (95%CI: 1.08~1.15) for 
cgSNPs in open sea. Consistent results obtained from 
simulations as well.

Additionally, trait-associated SNPs were classified 
into three categories, according to the ‘Disease/Trait’ 
label in the catalog of GWAS in NHGRI, including 
obesity-associated variants, cancer-associated variants, 
neurological disease associated variants etc. We observed 
that the effect sizes of obesity and neurological associated 
sub-categories were similar to pooled category. However 
in cancer associated category, the logistic regression 
revealed significant larger effect than other categories. 
OR for cgSNPt was 1.50 (95%CI 1.26–1.77) for cancer 

Figure 3: Trait-associated loci (all the traits were pooled) were significantly associated with cgSNPts. We classified the 
trait-associated loci into 8 bins according to the reported P-values and did analyses for each bin. The numbers of trait-associated loci in 
8 bins were shown in slash bar graphs. The solid circles indicated the ORs of cgSNPts from logistic regressions. The whiskers represented 
95% confidence intervals (CI) of ORs. A ‘*’ was marked if the logistic regression of enrichment test achieved statistical significance in 
each bin (P < 0.05).
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associated category compared with 1.11 (95%CI 
1.06–1.15) in other trait-associated category (Figure 5). 
We performed the simulation test in 500 cancer associated 
SNPs (Figure 6). Similarly, the effect of cgSNPt was more 
pronounced in cancer associated loci (P < 0.003).

Supplementary analyses

We used varied threshold of LD-pruning to assess 
the enrichment of cgSNPt in trait-associated loci. The 
effect of cgSNPt remained stable when the threshold of 
LD-pruning varied from r2 =0.8 (OR = 1.12 P = 1.1E-8) to 
r2 = 0.5 (OR = 1.12 P = 1.6E-6) and r2 = 0.3 (OR = 1.11  
P = 6.4E-4). Enrichment analyses were performed only using 
CEU-based LD data and association studies from samples 
of European ancestry. Consistent results of the enrichment 
analysis were obtained (Supplementary Figure 1).

DISCUSSION

In this study, we identified cgSNPs in human genome 
and assessed their biological relevance. We observed that 
approximately a quarter of SNPs are cgSNPs in human 
genome. A higher proportion of cgSNPs involving loss of 
CpG sites was found in CpG islands. Logistic regressions 
and simulation tests revealed that cgSNPs were enriched 

in eQTLs and trait-associated SNPs especially in cancers. 
Enrichments were observed for cgSNPs located near CpG 
islands, as well as cgSNPs located distant from CpG islands.

It is well accepted that the existence of CpG sites 
is an essential prerequisite of DNA modifications. While, 
to our knowledge, few studies paid attention to SNPs 
involving CpG sites whether they would be a potential 
biomarker which influence the epigenetic modification 
directly [15]. Recently, a trait-associated cgSNP was 
reported by a genome-wide association study on the 
metabolism of methionine [16]. This study showed a 
genotype-methylation-phenotype three-way association. 
cgSNP rs11752813 simultaneously showed significant 
association with both DNA methylation and the difference 
between pre- and post-methionine load test tHcy levels 
(ΔPOST). The methylation level on this CpG site was 
significantly associated with phenotypes (ΔPOST) after 
controlling for the genotype of the cgSNP. This result 
supported the hypothesis that cgSNPs could be functional 
via creating or eliminating a CpG site. Allele-specific 
methylation patterns, which associated with the overall- 
and disease-specific survival of diffuse large B-cell 
lymphoma, were observed in a recent study [17]. 

The present study assessed the role of cgSNPs 
in a genome-wide level. Of cgSNPs, cg-gain-SNPs 
and cg-loss-SNPs are almost equally distributed. It is 

Figure 4: cgSNPts are significantly enriched in trait-associated loci with the reported P-values ranging from 
E-5~ to E-11~, while no enrichment was observed with P-values less than E-14. The theoretical distributions of the count of 
cgSNPts in 300 draws (each draw containing 500 SNPs, which is matched to the 500 trait-associated loci) are shown in the histograms. The 
observed counts of cgSNPts in the 500 trait associated-loci are shown as solid circles. The left graph shown that cgSNPts were significantly 
enriched in trait-associated loci with P-values ranging from E-5~ to E-11~ (count = 317/500, P = 0.023), while the right graph indicated 
that cgSNPts were not enriched in trait-associated SNPs with P-values less than E-14 (count = 306/500, P = 0.31).
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Figure 6: cgSNPts are significantly enriched in cancer associated loci. The theoretical distributions of the number of cgSNPts in 
300 draws (each draw containing 500 SNPs, which is matched to the 500 cancer associated loci) are shown in the histogram. The observed 
count of cgSNPts in the 500 cancer associated loci is 345 (shown as a solid circle). According to the observed count of cgSNPts and the 
distribution of the counts of cgSNPts in 300 matched draws, the enrichment P-value was less than 0.003.

Figure 5: The comparisons of the enrichment effect sizes between cgSNPts in cancer associated loci and non-cancer 
associated loci. The OR and 95% CI were revealed by logistic regressions in 8 bins (according to the reported P-values). The effect sizes 
of the associations between cancer associated loci and cgSNPts were marked with solid circles. The effect sizes of the associations between 
non-cancer trait-associated loci and cgSNPts were marked with solid squares.
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reported that the mutation rate is significantly increased 
in low-intermediately (20–40% methylation level) to 
intermediately methylated CpG sites (40–60% methylation 
level) of human genome [18]. CpG sites in CpG islands 
(CGI) typically show hypomethylation, whereas CpG 
sites in non-CGI regions exhibit hypermethylation 
as summarized by Jones et al [19]. The difference of 
methylation levels may partly account for the higher 
proportion of cg-loss-SNPs in CGI.

The decreased methylation levels of the cg-loss-
mutations were observed using data from TCGA. The 
methylation levels of the 53 CpG sites were considerably 
higher in normal tissue than paired tumor tissue sample 
that lost CpG sites because of mutations. It should be 
noted that the observed difference levels of methylation 
(20.2% averagely) may be attributable to the mutations as 
well as the difference between tumor and normal tissue. 
However, the methylation levels were similar between 
cancer and normal tissues in CpG sites (~ ± 10bp to  
~ ± 2kb bins) approximate to the cgMuts (Figure 1). That 
means the methylation difference we found were probably 
resulted from these point mutations rather than the tissue 
difference. As CpG sites harboring cg-gain-SNPs were 
not considered as CpG sites according to the refSeq, the 
methylation levels on CpG sites involving cg-gain-SNPs 
were not available for analyses. Although the methylation 
measurements at cg-gain-SNPs were not directly available, 
we speculated that they probably have similar effects 
as those observed cg-loss-SNPs since cg-gain-SNP and  
cg-loss-SNP were defined according to ancestral alleles.

The enrichment of cgSNPts in eQTLs indicated 
that cgSNPs contributed to the regulation of gene 
expression. Besides DNA sequence change, cgSNPs 
are potentially associated with DNA modifications. It is 
well acknowledged that DNA modification especially 
methylation plays a vital role in gene expression. 
The enrichment of cgSNPts in eQTLs supported the 
tight correlation between DNA modification and gene 
expression.

We further observed that cgSNPs either located 
near CGI or distant from CGI were both enriched in 
eQTLs. The effect size was a little bit larger in cgSNPs 
located near CGIs, while the difference was limited 
(1.67 v.s. 1.57). Our results indicated that, globally, 
cgSNPs had an impact on gene expression. These findings 
suggested that enrichment of cgSNPs in eQTLs was 
not limited to cgSNPs in CpG islands or island shores 
which had been demonstrated as faithful locations with 
methylation related biomarkers [20, 21]. 

After controlling for potential confounders, the 
results of logistic regressions and simulation tests 
suggested that cgSNPts were enriched in phenotype-
associated variants. The logistic regressions showed that 
cgSNPts were significantly enriched in trait-associated 
SNPs with the reported P-values ranging from E-5 

to E-14. However this association weakened in SNPs 
with reported P-values ranging from E-14 to E-20 and 
disappeared in SNPs with reported P-values lower than 
E-20. According to the data of SNP function predictions, 
we observed that SNPs with top signals in GWA studies 
had a higher probability to tag SNPs with potential 
functions which we already know (e.g. non-synonymous 
mutations). This finding indicated that the effects of these 
SNPs with the strongest signals in GWA studies might be 
independent of our hypothesis. Enrichments of cgSNPts 
in trait-associated loci were observed near or distal from 
CpG islands and distal. Results prompted that a fair 
amount of buried treasures located in deep open seas 
waited to be explored.

Given the well-established role of DNA modification 
in cancer, we further tested our hypothesis in cancer-
associated loci compared with other traits. cgSNPt confer 
an increased risk of 1.5 fold for cancer-associated variants 
and 1.1 fold for other trait-associated SNPs. Our findings 
suggested that cgSNPs play an important role in cancers. 
Combined with the hypothesis, this finding was consistent 
with the general consensus that DNA modification was 
a critical regulator in carcinogenesis [22, 23]. Previous 
studies mainly focused on differently methylated patterns 
between tumor and normal tissues with the same DNA 
sequence. While another possible mechanism, indicated 
from our results, is that cgSNP influence the genetic 
susceptibility of cancers via influencing DNA modification 
which resulted from the property of gain or loss of  
CpG site.

To investigate the effect of LD in the enrichment 
tests, [24] we conducted additional tests in which we 
retain only one of any SNP set with r2 > 0.5 and r2 > 0.3 
instead of r2 > 0.8. The results revealed that the effect 
sizes of cgSNPs remained stable. Considering the pooled 
populations with different levels of LD between SNPs 
may cause false positive outcomes, [25] further analyses 
were conducted in CEU samples. Enrichments of cgSNP 
in trait-associated loci were observed using data only from 
European ancestry populations.

The tested hypothesis in current study could be 
regarded as a novel annotation strategy which provided a 
supplementary way beyond classical annotations [26–28]. 
It could be considered either as a valuable clue in moving 
from replicated tag mutations to causal variants [29, 30] or 
as a priori in discovery step of association studies beyond 
the P-value [31, 32]. 

In conclusion, the present study highlights the 
biological relevance of cgSNPs. We provided novel 
perspective on these variants which lead to gain or loss 
of CpG sites directly in human genome, and evidenced 
that cgSNPs were significantly enriched in trait-associated 
SNPs especially cancers. Our findings provided a new 
way for SNP annotation and interpretation of association 
studies.
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MATERIALS AND METHODS

Data collections

4,097,556 SNPs reported in HapMap phase II dataset 
were used for genome-wide cgSNP identifications. The 
flanking sequence was retrieved from dbSNP (see URLs) 
using a perl program. Single base substitution that can 
cause gain or loss of a CpG site is defined as cgSNP. As 
the methylation levels at CpG sites in close proximity 
are found to be highly correlated, [33] variants involving 
a shift of the CpG dinucleotides were not considered 
as cgSNPs in the present study. For example, a C-to-G 
transition of the second cytosine in CCG trinucleotides 
(i.e. 5′… C [C/G] G…3′) can lead to a gain as well as a 
loss of a CpG site, namely, single base shift of the CpG 
dinucleotides. Then, taken the ancestral trinucleotides as 
initial state, cgSNPs were classified into ‘cg-gain-SNPs’ if 
the mutations could create CpG sites and ‘cg-loss-SNPs’ 
if the CpG sites would be abolished.

We downloaded data of methylation levels on CpG 
sites harboring somatic mutations of tumor and paired 
normal tissue samples from TCGA (DNA methylation 
was detected by whole-genome bisulfite sequencing, 
sample ID = 3518). Mutations involving gain or loss of 
CpG sites (cgMut) were identified. Then we compared 
the differences of methylation levels of a number of CpG 
sites, which existed in normal tissue and lost in tumor 
tissue sample due to mutations (cgMut). The methylation 
levels of CpG sites near cgMuts were compared between 
tumor and paired normal tissue sample as well.

Minor allele frequency (MAF) and the number of 
SNPs which could be tagged by each proxy SNP were 
calculated via PLINK based on dataset from HapMap 
II with pooled populations [34]. Similar analysis was 
performed only using data from populations of European 
ancestry.

Gene coordinates and refSeq annotations were 
obtained from UCSC (Jul 2013 release, hg19). The 
position of ‘promoter’ was defined as up 2kb of the 
5′ flanking regions of gene body. Coordinates of CpG 
islands were required from UCSC annotations (Jun 2014 
release, hg19). Up and down 2kb of the CpG islands were 
defined as CpG island shores. Open sea regions were 
defined as more than 2kb distance from CpG islands 
in the genome [11]. Data of trait-associated SNPs were 
obtained from a catalog of published genome-wide 
association studies recorded by NHGRI (see URLs). 
All of the trait-associated loci were pooled together for 
enrichment analyses. In addition, traits were separated into 
different categories according to the ‘Disease/Trait’ label 
in the catalog of GWAS in NHGRI, including obesity-
associated, cancer-associated, neurological diseases  
(see supplementary file for details). We also conducted the 
same analysis for each category.

Expression quantitative trait loci (eQTLs) were 
downloaded from seeQTL and SCAN database. [35, 36] 
The seeQTL database integrated human eQTL datasets 
including lymphoblastoid cell lines, human cortical 
samples and monocytes. SCAN collected a series of 
published eQTL data assayed on HapMap lymphoblastoid 
cell lines from 87 HapMap European descent from Utah 
(CEU) and 89 Yoruban from Ibadan Nigeria (YRI) 
samples. The overlapped cis-regulatory (cis was defined 
as within 1Mb of the gene) SNPs from seeQTL and SCAN 
were used for subsequent analysis of enrichment test of 
eQTLs. Linkage disequilibrium (LD) among the SNPs 
may affect enrichment tests, so we defined that SNPs with 
r2 > 0.8 could share the bioinformation of trait associations 
and eQTLs in statistical tests.

SNP function predictions (including transcription 
factor binding sites, splicing related variants, miRNA 
binding sites and non-synonymous mutations) were 
conducted using an online tool supported by National 
Institute of Environmental Health Sciences (see URLs).

As the MAF distribution for SNPs was different 
between all the SNPs reported in HapMap II and the SNPs 
used for GWAS, [24] we used 585,142 proxy SNPs from 
Illumina Human-OmniExpress 760k chip after LD pruning 
(threshold r2 = 0.8) for subsequent analysis. Additionally, 
r2 = 0.5 and r2 = 0.3 were also considered as the thresholds 
for LD pruning.

Logistic regressions

We utilized a logistic regression framework to 
evaluate whether cgSNPs were more likely to be eQTLs 
or trait-associated loci. The regression model (shown 
below) built a linear relationship between the possibility 
of the proxy SNPs to be eQTLs or trait-associated loci 
and a group of independent variables through logit 
transformation.

Model: ln(P/(1-P))=β0+βcgSNPt XcgSNPt +βMAFXMAF+ 
βtagsXtags

Here, the independent variable XcgSNPt represented 
whether a SNP belongs to cgSNPt (a cgSNP or a non-
cgSNP but could tag at least one cgSNP). The binary 
vector XcgSNPt was assigned ‘1′ if this proxy variant is 
a cgSNPt, assigned ‘0′ if not. The Odds ratio (OR) for 
cgSNPt and its 95% confidence interval (95%CI) were 
calculated. MAF (XMAF) and the count of SNPs which 
could be tagged by the proxy SNP (Xtags) were considered 
as potential confounders and controlled as covariates in 
logistic regression model using SAS for Windows (version 
9.2, SAS Institute Inc., Cary, NC, U.S.)

Simulation tests

We conducted simulation tests to assess the 
enrichment of cgSNPs in eQTLs. Firstly, we classified all 
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of the 585,142 proxy SNPs into different bins according 
to the MAF and the count of SNPs which could be tagged 
by the proxy SNP as matching factors in simulation 
test. Secondly, a list of 500 proxy SNPs, with top eQTL 
signals, were selected. Then, 500 SNPs were generated 
for 300 times via stratified random sampling (without 
replacement) matching stratified factors according to the 
500 proxy eQTLs. Then, a distribution of cgSNPts in the 
300 sets was generated as the expectation. The simulation 
test yielded an empirical P-value, calculated as the 
proportion if the observed count of cgSNPts in the 500 
eQTLs exceeds the background level (the expected counts 
of cgSNPts in simulated SNP sets. The same simulation 
processes were conducted for trait-associated SNPs as 
well. The sampling times were dependent on the number 
of available proxy SNPs for sampling. Simulation tests 
were performed using SAS 9.2.

ACKNOWLEDGMENTS AND FUNDING

We thank Dr. Elliot Gershon at The University of 
Chicago for the critical comments on this manuscript.

This work was supported by National Natural 
Science Foundation of China (81101640), the Fundamental 
Research Funds for the Central Universities, the 111 
Project (B13026) and Scientific Research Foundation for 
the Returned Overseas Chinese Scholars, State Education 
Ministry.

CONFLICTS OF INTEREST

No potential conflicts of interest was disclosed.

URLS

dbSNP http://www.ncbi.nlm.nih.gov/ 
projects/SNP/

HapMap http://hapmap.ncbi.nlm.nih.gov/
UCSC http://genome.ucsc.edu/
TCGA http://cancergenome.nih.gov/
PLINK http://pngu.mgh.harvard.edu/~purcell/

plink/
SCAN http://www.scandb.org/
SeeQTL http://www.bios.unc.edu/research/

genomic_software/seeQTL/
NHGRI http://www.genome.gov/gwastudies/
SNP function predictions http://snpinfo.niehs.nih.

gov/snpinfo/snpfunc.htm
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