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ABSTRACT

Until recently, few molecular signatures of drug resistance identified in drug-
induced resistant cancer cell models can be translated into clinical practice. Here, we 
defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal 
cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and 
oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). 
Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of 
genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, 
respectively. The results revealed that DEGs between parental and resistant cells, 
when both were treated with the corresponding drug for a certain time, were 
significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-
chemotherapy CRC specimens of responders and non-responders. This study suggests 
a novel strategy to extract clinically relevant drug resistance genes from both drug-
induced resistant cell models and post-chemotherapy cancer tissue specimens.

INTRODUCTION

Differentially expressed genes (DEGs) between 
parental and drug–induced resistant cells are frequently 
regarded as drug resistance genes [1–6] and used to 
identify predictive markers of therapeutic benefit [7–9]. 
However, findings of such studies can be hardly translated 
into clinical practice [10–14]. It has been recognized that 
genes identified from drug–induced resistant cell models 
may simply represent drug-induced transcriptional 
changes that may be irrelevant to resistance mechanisms 
[15]. Therefore, alternative experimental approaches have 
been proposed.

Stevenson et al. introduced three in vitro gene lists 
[9]: (i) DEGs between parental and resistant cells [termed 
basally deregulated (BD) genes]; (ii) DEGs between 
parental and drug-treated parental cells [inducible in 
the parental cells (IP) genes], and (iii) DEGs between 

resistant and drug-treated resistant cells [inducible in the 
resistant cells (IR) genes]. They considered the pathways 
significantly enriched with any of the three types of genes 
as drug resistance pathways. Apparently, both IP and IR 
genes may mainly represent drug-induced changes, and 
their relevance to drug resistance is unclear. Allen et al. 
proposed that the overlap between BD genes and IP genes 
might represent drug resistance genes [16, 17]. However, 
because BD and IP genes represent sustained and transient 
drug-induced changes, respectively, their overlaps may still 
be irrelevant to drug resistance. Munkácsy et al. proposed 
that IP genes should be excluded from BD genes [18]. 
However, some IP genes could be drug resistance genes, 
and it is difficult to determine which IP genes should be 
excluded. In contrast to the aforementioned studies, Li et al. 
proposed that DEGs between a drug-induced resistant cell 
and its parental cell, both of which have undergone drug 
treatment for a defined time, might represent targets for 
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therapies aimed at reversing drug resistance [19]. Here, 
we define this type of DEG as inducible difference (ID) 
genes, which represent the difference between two cell 
types in response to drug treatment. Given this diversity 
of definition for candidate drug resistance genes, it is 
necessary to evaluate the clinical relevance of various 
genes identified in cell models.

Another problem is that, in microarray or RNA-
sequencing experiments that compare two types of cell 
lines, usually only two or three technical replicates are 
generated. Because commonly used statistical methods, 
such as Significance Analysis of Microarrays (SAM) 
[20] and variation analysis [21], often have insufficient 
statistical power when the sample sizes are small [22–24], 
the FC method is frequently applied to select DEGs in 
such small-scale cell line experiments [25–27]. However, 
genes that are highly expressed in both cells can hardly 
reach large FCs. Moreover, genes with low expression 
levels in both cell types may reach large FCs owing simply 
to measurement variations, resulting in false positives 
[28]. In contrast, the average difference (AD) method can 
identify genes that are highly expressed in both cells and 
show large absolute differences, even if the FCs in their 
expression levels are small [23, 29]. Notably, genes with 
high expression levels are likely to participate in some 
biologically conserved pathways, such as metabolism and 
membrane trafficking [29, 30] Hence, it is necessary to 
leverage its value in detecting drug resistance genes in 
small-scale cell line experiments.

In this study, we defined DEGs between pre-
chemotherapy clinical tissue samples of responders and 
non-responders for 5-fluorouracil and oxaliplatin-based 
therapy as clinically relevant drug resistance genes  
(CRG5-FU/L-OHP). By analyzing the transcriptional profiles 
of drug-induced resistant cell models, we showed that 
BD genes mainly reflected drug treatment response and 
were inconsistent with CRG5-FU/L-OHP. In contrast, ID genes, 
especially when selected according to the AD ranking 
method, were significantly consistent with CRG5-FU/L-OHP.  
We also found that ID genes were significantly consistent 
with DEGs between the post-chemotherapy CRC 
specimens of responders and non-responders, which 
provided compelling evidence for the use of post-
chemotherapy CRC specimens for identifying genes 
relevant to drug resistance.

RESULTS

BD genes are significantly consistent with 
IP genes

The IP genes were denoted as IP6, IP12 and IP24 
for the conditions in which the parental cells underwent 
drug treatment for 6, 12 and 24 hours, respectively. In the 
E-MEXP-390 dataset (Table 1), we selected the top-ranked 
3000 BD genes and the IP genes for 5-FU with the largest 

FC values. The consistency scores (the percentage of genes 
that had the same deregulation directions, see Methods) 
of BD genes with IP6, IP12 and IP24 were 97.16%, 98.42% 
and 98.13%, respectively (binomial test, all P-values 
< 1.11E-16, Table 2). When ranking genes by AD, the 
corresponding consistency scores were 90.92%, 90.96% 
and 86.85% (binomial test, all P-values < 1.11E-16, 
Table 1). Similarly, significant consistency between BD 
genes and IP6, IP12 and IP24 genes of L-OHP was observed 
(binomial test, all P-values < 1.11E-16, Table 1). When 
comparing the top-ranked 1500 BD genes and IP genes, 
the same results were observed (Supplementary Table 1).

Subsequent analysis of HCT116 SN-38-resistant 
cells and doxorubicin-resistant cells from four cancer 
types (gastric, pancreatic, colon and breast) in the 
GSE3926 dataset revealed similar results (Supplementary 
Table 2).

Clinically relevant drug resistance genes

We defined DEGs between pre-chemotherapy tissue 
samples of non-responders and responders of CRC patients 
treated with 5-FU and L-OHP-based therapy as clinically 
relevant drug resistance genes, denoted as CRG5-FU/L-OHP.  
The GSE19860 and GSE28702 datasets (Table 1), which 
were both generated by the Affymetrix microarray 
GPL570 platform, included samples for a total of 25 non-
responders and 19 responders of metastatic CRC patients 
treated with mFOLFOX6 chemotherapy, respectively. 
We combined the two datasets together to detect 2033 
DEGs(FDR < 0.2) using the RankProduct method which 
is resistant to experimental batch effects [31]. Then, we 
detected 179 DEGs (FDR < 0.2) between the 4 non-
responders and 4 responders of metastatic CRC patients 
treated with 5-FU and L-OHP in the E-MEXP-3368 
dataset. As the mFOLFOX6 regimen also included 5-FU 
and L-OHP, the overlapped genes of the two lists of DEGs 
should be CRG5-FU/L-OHP and consistent in deregulation 
directions under the assumption that the drugs used 
together in each of the chemotherapy regimens have no 
or limited antagonistic effects against with each other 
(Supplementary Methods). In fact, the two lists of DEGs 
had 82 overlapped genes and the consistency score was 
79.27% (binomial test, P-value < 5.15E-07). This result 
suggested that CRG5-FU/L-OHP could be detected robustly 
in the independent datasets. It also provided evidence 
for the assumption that the drugs used in combination 
had no or limited antagonistic effects against with each 
other. Finally, the 315 DEGs detected with FDR < 0.2 in 
a dataset and with P-value < 0.05 in another dataset were 
treated as the final CRG5-FU/L-OHP (Supplementary Table3).

We additionally analyzed the GSE52735 dataset 
which included samples for 14 non-responders and 
23 responders of metastatic CRC patients treated with a 
combination chemotherapy including fluoropyrimidine 
(5-FU and capecitabine, an oral prodrug of 5-FU). 
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Table 1: Datasets analyzed in this study
The cell line data used for identifying BD, IP or ID genes

Cell line Dataset Platform Drug Sensitive Resistant

HCT116(colon) E-MEXP-390 GPL570 5-FU 3 3

HCT116(colon) E-MEXP-390 GPL570 L-OHP 3 3

HCT116(colon) E-MEXP-1691 A-AFFY-101 5-FU 3 3

HCT116(colon) E-MEXP-1691 A-AFFY-101 SN38 3 3

HCT116(colon) E-MEXP-1171 GPL570 SN38 3 3

EPP85-
181P(pancreatic)

EPG85-257P(gastric) GSE3926 GPL96 Doxo 1 1

HT29(colon)

MCF-7(breast)

DLD1;HT29; 
LS513;Lovo;(colon) GSE10405 GPL2006 SN38 1 1

The CRC tissue data used for identifying CRGs

Stage Dataset Platform Therapeutic regimen R NR

IV GSE19860 GPL570 mFOLFOX6 3 14

IV GSE28702 GPL570 mFOLFOX6 16 11

IV E-MEXP-3368 A-AFFY-101 5-FU and L-OHP 4 4

IV GSE52735 GPL570 5-FU-based 23 14

IV GSE69657 GPL570 FOLFOX6 13 17

Abbreviations: 5-FU: 5-fluorouracil; L-OHP:Oxaliplatin;SN38: an active metabolite of irinotecan; Doxo: Doxorubicin; 
R:Responder;NR:Non-responder;

Table 2: The consistency scores of the top-ranked 3000 BD and IP6, IP12, IP24 genes detected from 
HCT1116 cell line
Dataset Cell line Drug Method IP Overlapped 

DEGa
Consistent 
DEGb(%)

Binominal P-valuec

E-MEXP-390 HCT116 5-FU

FC
IP6

1198 97.16 <1.11E-16

AD 2026 90.92 <1.11E-16

FC
IP12

1457 98.42 <1.11E-16

AD 2091 90.96 <1.11E-16

FC
IP24

1229 98.13 <1.11E-16

AD 2045 86.85 <1.11E-16

E-MEXP-390 HCT116 L-OHP

FC
IP6

1898 98.84 <1.11E-16

AD 2409 98.22 <1.11E-16

FC
IP12

1833 99.95 <1.11E-16

AD 2298 96.52 <1.11E-16

FC
IP24

1402 99.29 <1.11E-16

AD 2214 91.64 <1.11E-16

(Continued )
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Dataset Cell line Drug Method IP Overlapped 
DEGa

Consistent 
DEGb(%)

Binominal P-valuec

E-MEXP-1691 HCT116 5-FU
FC

IP24

1838 98.80 <1.11E-16

AD 2409 94.69 <1.11E-16

E-MEXP-1691 HCT116 SN38
FC

IP24

1934 98.29 <1.11E-16

AD 2423 95.00 <1.11E-16

E-MEXP-1171 HCT116 SN38

FC
IP6

1341 96.20 <1.11E-16

AD 1974 81.26 <1.11E-16

FC
IP12

1059 88.48 <1.11E-16

AD 1987 82.94 <1.11E-16

FC
IP24

1079 86.75 <1.11E-16

AD 2033 86.77 <1.11E-16

Abbreviations: DEG: differentially expressed genes; BD: basally deregulated genes; IP: inducible parental genes; 5-FU: 
5-fluorouracil; L-OHP: oxaliplatin; SN38: an active metabolite of irinotecan;
aThe number of BD genes overlapped with IP genes;
bThe consistency score of BD genes and IP genes;
cThe binominal distribution P-value.

Using the RankProduct method, we detected 1805 DEGs 
(FDR < 0.2) between the non-responders and responders 
and they overlapped with 167 of the 315 CRG5-FU/L-OHP.  
As the three combination chemotherapy regimens shared 
5-FU only, the overlapped DEGs should represent 
CRG5-FU and consistent in deregulation directions in 
the three gene lists (Supplementary Methods). In fact, 
the consistency score for the 167 overlapped genes was 
78.44% (binomial test, P-value = 7.39E-11). This result 
suggested that CRGs for 5-FU could be detected robustly 
in independent datasets. The 131 DEGs consistently 
detected in the three datasets were defined as the final 
CRG5-FU (Supplementary Table4). We used CRG5-FU to 
evaluate the clinical relevance of candidate genes derived 
from 5-FU resistant cell line models (Figure 1). Due to the 
lack of other independent datasets for CRC patients with 
L-OHP-based chemotherapy, we treated the CRG5-FU/L-OHP  
as the reference to evaluate the clinical relevance of 
BD genes and ID genes of L-OHP (Supplementary 
Methods).

Clinical relevance of BD genes

We defined BDtwo genes as those found in the 
overlap between the top-ranked 3000 BD genes of 5-FU 
and L-OHP, which had the same deregulation directions 
in the drug-resistant cell lines compared with their corre-
sponding parental cell lines(Supplementary Table 5). The 
consistency scores between BDtwo genes and CRG5-FU/L-OHP  

were as low as 45% for the DEGs ranked by the FC 
method. The score was 64.44% for the DEGs ranked by the 
AD method (binomial test, P-value = 3.62E-02, Table 3), 
suggesting significant but weak consistency between 
BDtwo genes and CRG5-FU/L-OHP. In addition, We evaluated 
the clinical relevance of BD genes for each single drug. 
The corresponding consistency scores between the top-
ranked 3000 BD genes of 5-FU and CRG5-FU/L-OHP were 
51.35% for the FC method and 68.57% for the AD method 
(Table 3). Similar results were observed when the CRG5-FU  
were used as the reference to evaluate the clinical 
relevance of BD genes for 5-FU (Supplementary Table 6). 
For L-OHP, no significant consistency was observed 
between BD genes and CRG5-FU/L-OHP when ranking genes 
by either FC or AD (Table 3). For other CRC L-OHP-
resistant cell lines (DLD1, HT29, LS513 and Lovo) in 
the GSE10405 dataset, no significant consistency was 
observed between BD genes and CRG5-FU/L-OHP (Table 3).

Similar results were observed when analyzing the 
top-ranked 1500 BDtwo and BD genes ranked by FC or AD 
(Supplementary Table 7). These results suggest that the 
clinical relevance of BD genes is poor.

Clinical relevance of ID genes

We defined IDtwo genes as the overlap of the top-ranked 
3000 ID genes of 5-FU and L-OHP, which had the same 
deregulation directions in the drug-resistant cell lines treated 
with 5-FU or L-OHP compared with their corresponding 
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Table 3: The consistency scores of CRG5-FU/L-OHP and the top-ranked 3000 BD genes or ID genes
Dataset Drug Cell line Gene set Method Overlapped 

DEGa
Consistent DEG(%)b Binominal 

P-value

E-MEXP-390 5-FU/ L-OHP HCT116

BDtwo

FC 40 45.00 >1.00E-01

AD 45 64.44 3.62E-02

IDtwo-6

FC 11 54.55 >1.00E-01

AD 24 54.17 >1.00E-01

IDtwo-12

FC 18 55.56 >1.00E-01

AD 33 57.58 >1.00E-01

IDtwo-24

FC 10 70.00 1.72E-01

AD 38 84.21 1.22E-05

E-MEXP-390 5-FU HCT116

BD
FC 74 51.35 >1.00E-01

AD 70 68.57 1.27E-03

ID6

FC 79 55.70 >1.00E-01

AD 71 52.11 >1.00E-01

ID12

FC 85 77.65 1.52E-07

AD 89 74.16 2.85E-06

ID24

FC 79 55.70 >1.00E-01

AD 79 72.15 5.13E-05

E-MEXP-390 L-OHP HCT116

BD
FC 85 43.53 >1.00E-01

AD 78 57.69 >1.00E-01

ID6

FC 60 50.00 >1.00E-01

AD 70 51.43 >1.00E-01

ID12

FC 92 28.26 >1.00E-01

AD 82 35.37 >1.00E-01

ID24

FC 71 74.65 1.94E-05

AD 71 83.10 6.74E-09

GSE10405 L-OHP

DLD1

BD

FC 20 70.00 >1.00E-01

AD 21 57.14 >1.00E-01

HT29
FC 26 42.31 >1.00E-01

AD 16 43.75 >1.00E-01

LS513
FC 18 55.56 >1.00E-01

AD 21 52.38 >1.00E-01

Lovo 
FC 23 43.48 >1.00E-01

AD 15 53.33 >1.00E-01

Abbreviations: ID: inducible difference genes;
aThe number of candidate drug resistance genes overlapped with CRG5-FU/L-OHP;
bThe consistency score of candidate drug resistance genes and CRG5-FU/L-OHP.
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parental cell lines also treated with 5-FU or L-OHP 
(Supplementary Table 5). The IDtwo genes were further 
denoted as IDtwo-6, IDtwo-12 and IDtwo-24 for the conditions 
where cells underwent drug treatment for 6, 12, and 24 hours, 
respectively. We then evaluated the clinical relevance of these 
genes. No significant consistency was observed for IDtwo-6 
and IDtwo-12 genes when ranking genes either by FC or AD 
(Table 3). For IDtwo-24 genes, however, the consistency score 
was as high as 84.21% when ranking genes by AD (binomial 
test, P-value=1.22E-05). The score was also as high as 
70% when ranking genes by FC, although it did not reach 
significance. Similar results were observed when analyzing 
the top-ranked 1500 IDtwo genes (Supplementary Table7).

We further evaluated the clinical relevance of the 
top-ranked 3000 ID genes of 5-FU. When ranking genes 
by FC, only ID12 genes were significantly consistent with 
CRG5-FU/L-OHP, with a corresponding consistency score 
of 77.65% (binomial test, P-value = 1.52E-07, Table 3). 
When ranking genes by AD, however, significant 
consistency was observed for both ID12 and ID24 genes 
and the corresponding consistency scores were 74.16% 

(binomial test, P-value = 2.85E-06) and 72.15% (binomial 
test, P-value = 5.13E-05, Table 3), respectively. Similar 
results were observed when the CRG5-FU were used as the 
reference to evaluate the clinical relevance of ID genes for 
5-FU (Supplementary Table 6). With regard to L-OHP, no 
significant consistency was observed for either ID6 or ID12 
genes when ranking genes by either FC or AD (Table 3). 
For ID24 genes, however, the corresponding consistency 
scores were 74.65% when ranked by FC (binomial 
test, P-value = 1.94E-05) and 83.10% by AD (binomial 
test, P-value = 6.74E-09, Table 3). Similar results were 
observed when analyzing the top-ranked 1500 ID genes 
(Supplementary Table 7).

Additionally, we applied two-way analysis of 
variance to identify ID genes. The numbers of ID genes for  
L-OHP and 5-FU were 269 and 361 (P-value < 5.00E-02), 
respectively, and they overlapped with only 6 and 3 of 
CRG5-FU/L-OHP, respectively, due to the limited efficiency of 
variance estimation [22].

We found that the IDtwo-24 genes, BD genes 
of 5-FU and ID24 genes of 5-FU detected by the 

Figure 1: The main idea behind our approach. A. Three gene lists identified in drug-induced resistant cell models. B. Evaluation 
of clinical relevance of candidate drug resistance gene derived from drug-induced resistant cell models and post-chemotherapy cancer 
specimens. Abbreviations: BD genes: basally deregulated genes detected between parental cell line and resistant cell line; IP genes: genes 
detected between parental and drug-treated parental cells; ID genes: genes detected between drug-treat parental cell line and drug-treat 
resistant cell line; clinically relevant drug resistance genes (CRGs): DEGs between the pre-chemotherapy clinical specimens of responders 
and non–responders; IDclinical genes: DEGs between the post-chemotherapy clinical specimens of responders and non–responders.
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AD method were more significantly consistent with  
CRG5-FU/L-OHP compared with the FC method (Table 3). 
With regard to the IDtwo-24 genes, there were 35 genes 
detected by AD but not FC. The average expression 
levels of these genes in parental cells treated with 5-FU 
for 24 hours and 5-FU-resistant cells treated with 5-FU 
for 24 hours were 1992.72 and 2322.72 (Figure 2A, 
Supplementary Table 8). The consistency score of 
these genes with CRG5-FU/L-OHP was 82.86% (binomial  
test, P-value = 5.84E-05, Supplementary Table 8). By  
contrast, 7 genes detected by FC but not AD tended to 
have low expression levels and the corresponding average 
expression levels were 212.93 and 238.03 (Figure 2A, 
Supplementary Table 8). The corresponding consistency 
score was 57.14% (Supplementary Table 8). A similar 
result was also observed in L-OHP-resistant cells 
(Figure 2B, Supplementary Table 4). Subsequent analysis 
of BD genes of 5-FU and ID24 genes of 5-FU revealed 
similar results (Figure 2C–2D, Supplementary Table 8). 
These results demonstrate that AD is biased toward the 
identification of genes expressing at higher levels, whereas 
FC is biased at lower levels. Genes with low expression 

levels in both cell lines may reach large FCs simply due 
to measurement variations that create false positives [32].

It is worth noting that IDtwo-24 and ID24 genes 
of both 5-FU and L-OHP had significant consistency 
with CRG5-FU/L-OHP while no significant consistency 
was observed in IDtwo-6 and ID6 genes (Table 2). We 
combined ID24 genes detected by FC or AD method, 
which were significantly consistent with CRG5-FU/L-OHP, 
resulting in 70 genes of 5-FU resistance and 65 genes 
of L-OHP resistance (Supplementary Table 9). The log2 
FC values and AD values of these genes are shown in 
Figure 3A–3D. We found that resistant genes of both 
5-FU and L-OHP tended to change abruptly before the 
24-hour time point. This result indicates that transient 
changes in expression levels might be unstable when the 
drug treatment time is short. It has been reported that 
many of the genes obtained above correlate with drug 
resistance, as exemplified in Supplementary Table 10 
for the top 20 ID24 genes ranked by AD method for 
each of the two drugs. TYMS is target of 5-FU and its 
overexpression can induce 5-FU resistance [33]. UNG 
can initiate base excision repair and its overexpression 

Figure 2: The distributions of DEGs exclusively detected by FC or AD. The average expression levels of DEGs exclusively 
detected by FC or AD were plotted. A–B. IDtwo-24 genes compared with CRG5-FU/L-OHP in parental cell line treated with 5-FU(or L-OHP) for 
24 h and resistant cell line treated with 5-FU(or L-OHP) for 24 h; C. BD genes of 5-FU compared with CRG5-FU/L-OHP in parental cell line 
and 5-FU resistant cell line; D. ID24 genes of 5-FU compared with CRG5-FU/L-OHP in parental cell line treated with 5-FU for 24 h and resistant 
cell line treated with 5-FU for 24 h; E–F. IDtwo-24 genes compared with IDclinical genes in parental cell line treated with 5-FU(or L-OHP) for 
24 h and resistant cell line treated with 5-FU(or L-OHP) for 24 h;
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may stimulate the development of L-OHP resistance 
[34]. Up-regulation of PSAT1 stimulates cell growth 
and increases chemoresistance of colon cancer cells 
to L-OHP [35]. TTK, MCM2, CLDN7 and TSPAN13 
promote tumor cell proliferation and their overexpression 
could stimulate drug resistance [36–39].

Pathway analysis of ID24 genes

Functional enrichment analysis showed that the top 
3000 ID24 genes of 5-FU separately ranked by FC and 
AD were enriched in 6 and 22 pathways, respectively 
(FDR < 0.1, Supplementary Table 11). With regard to 
L-OHP, the top 3000 ID24 genes separately ranked by FC 
and AD were enriched in 14 and 31 pathways, respectively 
(FDR <0.1, Supplementary Table 11). It has been reported 
that many of the pathways enriched with ID24 genes 
could mediate drug resistance of the corresponding 
drug, as described in the Supplementary Table 11. Genes 
detected by the AD method but not FC were significantly 
enriched mostly in more conserved pathways with 
important biological significance, including glycolysis/
gluconeogenesis, citrate cycle (TCA cycle), fatty acid 

degradation and glutathione metabolism. It has been 
found that targeting metabolic enzymes in the glycolytic 
pathway, citric acid cycle and fatty acid synthesis could 
enhance the efficacy of common therapeutic agents and 
overcome resistance to chemotherapy [40]. Elevation 
of glutathione metabolism pathway involved in the 
deactivation of anticancer agents [41]. Several inhibitors 
which have been reported to target the corresponding 
pathways were listed in the Supplementary Table 12.

Identification of ID genes based on  
post-chemotherapy CRC specimens

We denoted IDclinical genes as DEGs between the post-
chemotherapy CRC specimens of responders and non–
responders, which are similar to ID genes that represent 
the difference between two cell types in response to drug 
treatment. Using the RankProduct method, we detected 
1725 IDclinical genes (FDR < 0.1), with the consistency score 
between IDclinical genes and CRG5-FU/L-OHP (CRG5-FU) as high 
as 83.85% (88.46%) (binomial test, P-value < 1.11E-16, 
Supplementary Table 13). Furthermore, the consistency 
score between IDclinical genes and the top-ranked 3000 

Figure 3: The log2 FC values and AD values of 70 genes of 5-FU resistance and 65 genes of L-OHP resistance. A–B. The 
log2 FC values and AD values of 70 genes of 5-FU resistance in parental cell line treated with 5-FU for 24 h and resistant cell line treated 
with 5-FU for 24 h; C–D. The log2 FC values and AD values of 65 genes of L-OHP resistance in parental cell line treated with L-OHP for 
24 h and resistant cell line treated with L-OHP for 24h.
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IDtwo-24 detected by the AD method was 73.57% (binomial 
test, P-value < 1.09E-08, Supplementary Table 13). Both 
IDtwo-24 and ID24 genes were substantially more consistent 
with IDclinical genes than IDtwo-6, IDtwo-12, ID6, and ID12 
(Supplementary Table 13). Similar results were observed 
when analyzing the top-ranked 1500 ID genes ranked 
by FC or AD (Supplementary Table 13). In addition, the 
IDtwo-24 genes detected by the AD method were also more 
significantly consistent with IDclinical genes compared with 
the FC method (Supplementary Table 8, Figure 2E–2F).

DISCUSSION

Current cancer therapeutics are generally dosed in 
combination [42, 43]. This makes it difficult to directly 
study drug resistance mechanisms for any single drug in 
clinical cohorts. Thus, using cell models would be the only 
practical choice for identifying resistant signatures for 
individual drugs [7, 44–46] although the clinical relevance 
of cancer cell models has been continuously questioned 
[10–14]. Our results demonstrated that, rather than BD 
genes, ID genes which represented the difference between 
parental and resistant cells in response to drug treatment 
would be more likely to be involved in drug resistance. 
Moreover, our analysis supports that samples taken after 
neoadjuvant chemotherapy can be used to ascertain 
functional drug resistance signatures [47, 48].

One caveat of our analysis for identifying ID genes 
is that expression profiles of drug-treated cells were 
only measured at 6, 12, and 24 hours, which might be 
insufficient to investigate the characteristics of sustained 
responses [49, 50]. It would be possible that the difference 
between two types of cell in sustained response to drug 
treatment might be more likely relevant with drug 
resistance. Hence, it is necessary to design experiments 
with prolonged time of drug treatment and to further 
characterize the dynamic transcriptome change. Another 
problem is that many factors such as the choice of a parent 
cell line, drug dose and treatment interval are associated 
with the drug resistance level of the drug-induced resistant 
cell [51]. A reasonable assumption would be that using cell 
models with higher level of drug resistance might have 
larger chance to find drug resistance genes, which deserves 
our future study. The third problem is that the CRGs 
identified from pre-chemotherapy specimens represent 
inherent resistance genes, whereas the process of inducing 
a drug sensitive cell to become a drug resistant cell by 
drug treatment might mimic the process of acquiring 
drug resistance for clinical patients during chemotherapy. 
However, it has been suggested that there might be no 
obvious boundaries between inherent drug resistance 
genes and acquired drug resistance genes [52, 53]. In 
fact, the significant consistency between the ID genes and 
the corresponding CRGs could be regarded as evidence 

supporting the notion that the two type genes might be 
largely consistent [52, 53].

In summary, this pilot study on CRC suggests a 
novel experimental analysis strategy to extract clinically 
relevant drug-resistance signatures from drug-induced 
resistant cell models. It also suggests that tumor tissue 
samples taken at definitive surgery after chemotherapy 
could be useful for identifying drug-resistance signatures.

MATERIALS AND METHODS

Data acquisition and processing

The transcriptional profiles of 30 post-
chemotherapy CRC specimens were submitted to 
Gene Expression Omnibus (GEO) under accession 
number GSE69657. All patients underwent neoadjuvant 
FOLFOX4 chemotherapy, and there were 13 responders 
and 17 non-responders according to the Response 
Evaluation Criteria in Solid Tumors (RECIST) [54]. 
The detailed experimental protocols were described in 
a previous study [55]. All other datasets analyzed in this 
study were downloaded from GEO and ArrayExpress 
(Table 1). The datasets generated from the Affymetrix 
microarray platform were pre-processed using the 
robust microarray average (RMA) algorithm and the 
other datasets generated from the Illumina and Agilent 
microarray platform were log2-transformed and 
quantile normalized. Normalization of GSE10405 was 
performed with Lowess and Dye Swap Sim Fix Filter 
methods [56]. Each probe-set ID was mapped to its 
Entrez gene ID. If multiple probe-sets were mapped to 
the same gene, the expression value for the gene was 
defined as the arithmetic mean of the values of the 
multiple probe-sets.

Reproducibility evaluation of DEGs from 
independent datasets

For DEGs from two independent datasets, sharing 
k DEGs, of which s genes had the same deregulation 
directions (both up-regulated or down-regulated in the two 
gene lists), the consistency score was calculated as s/k. 
The probability of observing at least s of k DEGs with the 
same deregulation directions by chance can be evaluated 
using the cumulative binomial distribution model as 
follows:

p = 1 − as−1

i=0
ak

i
b 1pe 2 i 11 − pe 2 k− i (1)

where pe is the probability of one gene having the 
same deregulation directions in two gene lists by random 
chance (here, pe=0.5).
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Selection of clinically relevant drug 
resistance genes

We have made a strict mathematical derivation to 
prove that if two different regimens share one or several 
drugs, then the overlaps of CRGs for the two different 
regimens should be the CRGs for the shared drug(s) under 
the assumption that the drugs used in combination had no 
(or limited) antagonistic effects(Supplementary Methods).
The RankProduct method [31], which is resistant to batch 
effects, was applied to identify DEGs between responders 
and non–responders. Using 52 samples collected from 
three independent datasets (Table 1), we selected and 
evaluated the reproducibility of the CRG5-FU/L-OHP. The 
GSE52735 dataset including 37 samples was used to 
select the CRG5-FU. The p-values were adjusted using the 
Benjamini and Hochberg procedure [57].

Selection of DEGs from cell lines

The non-log-transformed average expression values of 
gene i in the drug-resistant sample and parental sample were 
denoted as XA

i  and XB
i , respectively. Then, the FC for each 

gene i between the two samples was calculated as follows:

FCi =
XA

i

XB
i

 (2)

The AD for each gene i between the two samples 
was calculated as follows:

ADi = XA
i − XB

i  (3)

All genes were sorted in descending order according 
to FC or AD. If the value of FCiwas larger (or smaller) 
than one, then gene i was defined as up-regulated (or 
down-regulated) in resistant samples. Similarly, if the 
value of ADiwas larger (or smaller) than zero, gene i was 
defined as up-regulated (or down-regulated) in resistant 
samples.

Pathway enrichment analysis

Functional enrichment analysis was performed 
based on the Kyoto Encyclopedia of Genes and Genomes 
[58]. The hypergeometric distribution model was used 
to identify biological pathways that were significantly 
enriched with DEGs.
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