
Oncotarget44403www.impactjournals.com/oncotar-
get

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 42

Metabolic reprogramming: a new relevant pathway in adult 
adrenocortical tumors

Céline Pinheiro1,2,3,4,*, Sara Granja1,2,*, Adhemar Longatto-Filho1,2,4,5, André M. 
Faria6, Maria C. B. V. Fragoso6,7, Silvana M. Lovisolo8, Antonio M. Lerário7, Madson 
Q. Almeida6,7, Fátima Baltazar1,2,*, Maria C. N. Zerbini9,*

1Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
2ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
3Barretos School of Health Sciences Dr. Paulo Prata – FACISB, Barretos, Sao Paulo, Brazil
4Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
5Laboratory of Medical Investigation (LIM-14), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
6 Unidade de Suprarrenal, Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular LIM42, 
Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil

7 Instituto do Câncer do Estado de São Paulo - ICESP, Hospital das Clínicas, Faculdade de Medicina da Universidade de São 
Paulo, São Paulo, Brazil

8Hospital Universitário, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
9Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
*These authors have contributed equally to this work

Correspondence to:
Céline Pinheiro, e-mail: celinepinheiro@gmail.com
Keywords: adrenocortical tumors, metabolic reprogramming, monocarboxylate transporter, Warburg effect
Received: May 09, 2015     Accepted: November 06, 2015     Published: November 16, 2015

ABSTRACT
Adrenocortical carcinomas (ACCs) are complex neoplasias that may present 

unexpected clinical behavior, being imperative to identify new biological markers that 
can predict patient prognosis and provide new therapeutic options. The main aim of the 
present study was to evaluate the prognostic value of metabolism-related key proteins 
in adrenocortical carcinoma. The immunohistochemical expression of MCT1, MCT2, MCT4, 
CD147, CD44, GLUT1 and CAIX was evaluated in a series of 154 adult patients with 
adrenocortical neoplasia and associated with patients’ clinicopathological parameters. 
A significant increase in was found for membranous expression of MCT4, GLUT1 and 
CAIX in carcinomas, when compared to adenomas. Importantly MCT1, GLUT1 and CAIX 
expressions were significantly associated with poor prognostic variables, including high 
nuclear grade, high mitotic index, advanced tumor staging, presence of metastasis, 
as well as shorter overall and disease free survival. In opposition, MCT2 membranous 
expression was associated with favorable prognostic parameters. Importantly, 
cytoplasmic expression of CD147 was identified as an independent predictor of longer 
overall survival and cytoplasmic expression of CAIX as an independent predictor of 
longer disease-free survival. We provide evidence for a metabolic reprogramming 
in adrenocortical malignant tumors towards the hyperglycolytic and acid-resistant 
phenotype, which was associated with poor prognosis.

INTRODUCTION

Adrenocortical carcinoma (ACC) is a rare and highly 
aggressive malignancy with an annual incidence of 0.7– 2.0 
cases per million [1–3]. Surgery is the standard of care for 
localized adrenocortical carcinomas. To date, systemic 

treatment of advanced ACC has shown unsatisfactory overall 
response [4, 5]. Over the past two decades, considerable 
advances have been made into the understanding of molecular 
mechanisms, but is still not yet satisfactory [1, 2, 6].

Adrenocortical neoplasms have been a great 
challenge since they may present an unexpected biological 
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behavior when using classic features commonly used for 
histopathological classification of neoplastic lesions, 
particularly in the borderline Weiss (scores 3 and 4) 
group. Therefore, it is imperative to find alternative 
information that can help determine with greater accuracy 
the possible biological behavior of patients with this 
disease, and, consequently, establish a correct therapeutic 
strategy [7, 8].

During carcinogenesis and tumor progression, 
neoplastic cells may reprogram their metabolism, showing 
a preference for glycolysis pathway for energy production, 
even in the presence of oxygen, a phenomenon known 
as the "Warburg effect". This aerobic glycolysis implies 
the conversion of pyruvate to lactic acid, leading to a 
reduction in intracellular pH [9]. To prevent acid-induced 
apoptosis as well as glycolysis inhibition by accumulation 
of the end product, cancer cells upregulate proteins 
related to pH regulation and lactate transport, including 
the glucose transporter GLUT1, the pH regulator carbonic 
anhydrase IX (CAIX) [10, 11] and monocarboxylate 
transporters (MCTs) [11]. Therefore, many malignancies 
show a significant increase in the expression of these 
plasma membrane transporters, with associations with 
poor patient’s prognosis [12–15]. The MCT family 
has 14 members, being isoforms 1, 2 and 4 the most 
well studied isoforms responsible for the transport of 
monocarboxylates, including lactate, coupled with a 
proton across the plasma membrane. As consequence 
from their substrate affinities, MCT1 and MCT4 mediate 
monocarboxylate efflux from cells, while MCT2 is 
involved in monocarboxylate uptake [16]. Importantly, 
these transporters require co-expression with chaperones 
for proper plasma membrane localization and activity. The 
main chaperone of MCT1 and MCT4 is CD147 [17, 18], 
while MCT2 is mainly associated with gp70 [18]. CD44 
has also been recently described as a MCT chaperone [19]; 
however CD147 and CD44 expressions do not account for 
all MCT1/4 positive cases, suggesting that an additional 
MCT chaperone still remains to be identified [20].

To the best of our knowledge, the metabolic profile 
of adrenocortical tumors is very little explored [21]. 
However, 18F-fluorodeoxyglucose positron emission 
tomography (FDG-PET) data suggest that adrenocortical 
carcinomas show high levels of glucose consumption 
[22–25], indicating a possible clinical relevance of 
the glycolytic metabolism for the management of this 
neoplasia. Given the importance of these neoplasms, 
particularly in the Brazilian environment [26, 27], and the 
potential use of molecular players of aerobic glycolysis 
as prognostic tools and therapeutic targets [10, 12, 28], 
the aim of the present work is to study the pattern of 
expression of the metabolism-related proteins MCT1, 
MCT2, MCT4, their chaperones CD147 and CD44, as 
well as GLUT1 and CAIX in adult ACC, and to determine 
whether these proteins have some biological and/or 
prognostic predictive value.

RESULTS

Expression of MCTs, CD147, CD44, GLUT1 
and CAIX in adrenocortical adenomas and 
carcinomas

The immunohistochemical evaluation of these 
metabolism-related proteins in adrenocortical adenomas and 
carcinomas shows that all proteins can exhibit cytoplasmic, 
plasma membrane or simultaneous expression in both 
localizations, with a predominance of plasma membrane 
expression (exception for CAIX, Figures 1 and 2). As can 
be seen in Figure 2, all 3 MCT isoforms were expressed 
in the plasma membrane of most adrenocortical carcinoma 
samples (around 60–65%) and, MCT4 expression was 
significantly higher in carcinomas than in adenoma cells 
(66.7% versus 20.0%, respectively, p < 0.001). Cytoplasmic 
expression frequencies were more heterogeneous among 
MCT isoforms and did not differ between adenomas and 
carcinomas. CD147 was the protein more frequently 
expressed in the plasma membrane, but, similarly to CD44, 
no significant difference was observed between adenomas 
and carcinomas (Figure 2). In the carcinoma group, an 
increased expression was observed in the cytoplasm and 
plasma membrane for GLUT1 (p < 0.001 and p < 0.001, 
respectively, Figure 2), as well as in the plasma membrane 
for CAIX (p < 0.001, Figure 2). When evaluating the 
co-expression of MCTs with the other proteins at the plasma 
membrane (Table 1), we found co-expression of MCT1 and 
either CD147 (p = 0.001) or GLUT1 (p = 0.007), MCT2 
co-expressed positively with CD147 (p < 0.001) and 
inversely with CAIX (p = 0.023), and MCT4 co-expressed 
with CD147 (p = 0.005), CD44 (p = 0.031), GLUT1 
(p = 0.001) and CAIX (p < 0.001).

Clinicopathological significance of the 
metabolism-related proteins

The analysis of MCT plasma membrane expression 
association with the clinicopathological parameters is 
shown in Table 2. MCT1 was significantly associated 
with stage III+IV (p = 0.029), MCT2 was significantly 
associated with smaller tumor size (p = 0.004), lower 
mitotic index (p = 0.008), absence of sinus invasion 
(p = 0.024) and absence of metastasis (p = 0.022), while 
MCT4 showed no significant associations with the 
clinicopathological data. Table 3 shows the associations 
of CD147, CD44, GLUT1 and CAIX plasma membrane 
expression with the clinicopathological parameters. 
CD147 was significantly associated with smaller tumor 
size (p = 0.009), GLUT1 was significantly associated 
with higher mitotic index (p = 0.011) and presence of 
metastasis (p = 0.004), CAIX was significantly associated 
with higher nuclear grade (p = 0.048) and presence of 
metastasis (p = 0.021), while CD44 showed no significant 
associations with the clinicopathological data. When 
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evaluating the cytoplasmic expression of the proteins 
under study, MCT4 and CD147 were significantly 
associated with absence of metastasis and CAIX with 
absence of necrosis (data not shown).

Survival analysis

Overall survival analysis (Figure 3) shows MCT1 
and GLUT1 plasma membrane expression significantly 
associated with shorter overall survival (p = 0.033 and 
p = 0.005, respectively), MCT2 plasma membrane 
expression significantly associated with longer overall 
survival (p = 0.009), a tendency for CD147 cytoplasmic 

expression to be associated with longer overall survival 
(p = 0.058, data not shown) and CAIX plasma membrane 
expression associated with shorter overall survival 
(p = 0.051). Disease-free survival analysis (Figure 4) 
shows MCT4, CD147 and CAIX cytoplasmic expression 
to be significantly associated with longer disease-
free survival (p = 0.045, p = 0.019 and p = 0.045, 
respectively), GLUT1 plasma membrane expression 
associated with shorter disease-free survival (p = 0.007) 
and a tendency for CAIX plasma membrane expression 
to be associated with shorter disease-free survival 
(p = 0.064, data not shown). The predictive prognostic 
values of the proteins were analyzed by means of Cox 

Figure 1: Immunohistochemical expression of MCT1 A. MCT2 B. MCT4 C. CD147 D. CD44 E. GLUT1 F. and 
CAIX G. in adrenocortical carcinomas. All the proteins were more importantly found in the plasma membrane of cells.

Figure 2: Frequency of staining of the different proteins analyzed in adrenocortical adenomas and carcinomas. Pearson’s 
chi-square (χ2) test was used to assess differences of expression frequency between adenomas and carcinomas. *p < 0.001
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proportional hazards regression models (Table 4). Uni-
variate analysis showed similar results to the ones 
obtained with Kaplan-Meier analysis. Multivariate 
analysis showed that CD147 cytoplasmic expression 
was the only factor with predictive value for overall 
survival, with a hazard ratio of 0.32 (p = 0.008), and 
that CAIX cytoplasmic expression was the only factor 
with predictive value for disease-free survival, with a 
hazard ratio of 0.31 (p = 0.036). Tumor stage according 
to ENSAT system confirmed to be a strong prognostic 
factor for both overall survival and disease-free survival 
in the univariate and multivariate analysis.

Glycolytic versus oxidative phenotype

The major findings described so far allowed us to 
establish 2 predominant expression profiles, the glycolytic 
and the oxidative phenotypes (summarized in Figure 5), 
which were associated with the clinicopathological 
parameters. The staining patterns of the metabolism-
related proteins in cases representative of the glycolytic 
and oxidative phenotypes are shown in Figure 6 and 
Figure 7, respectively. The glycolytic phenotype was 
significantly associated with the mitotic index of the 
cases [8.3% (2/24) of cases with low mitotic index show 
a glycolytic phenotype versus 35.3% (6/17) of cases 
with high mitotic index; p = 0.049] and tumor p53 status 
[10.5% (2/19) of cases with normal p53 show a glycolytic 
phenotype versus 80.0% (4/5) of cases with mutated p53; 
p = 0.006].

DISCUSSION

The increased frequency of MCT4, GLUT1 and 
CAIX plasma membrane expression of in adrenal 
cortical carcinomas suggests a metabolic remodeling 
of malignant cells towards a hyperglycolytic and acid-
resistant phenotype, which is compatible with data 
from FDG-PET [22–25]. MCT2, mainly responsible 
for the uptake of monocarboxylates into cells [16], as 
expected, showed a slight but not significant decrease 
in the frequency of expression from adenomas to 
carcinomas, which is compatible with the metabolic 
reprogramming towards aerobic glycolysis in 
carcinomas. Although CD147 and CD44 showed no 
increase in expression in carcinomas, they were more 
frequently expressed in MCT positive tumors, which 
is in accordance with their role as MCT chaperones 
[17–19]. Notably, CD147 and CD44 did not account 
for all MCT1 or MCT4 positive tumors, suggesting the 
existence of an additional MCT chaperone, as already 
advocated by other study [20].

As vastly described, the metabolic reprograming of 
cancer cells is also involved in cancer cell aggressiveness 
and therapeutic resistance, rendering patients a poor 
prognosis [10]. The prognostic value of the metabolism-
related proteins evaluated in the present study has been 
studied in a variety of tumor types; however, only GLUT1 
has been evaluated in adrenocortical carcinoma [21]. 
In Fenske and colleagues study, GLUT1 was expressed 
in 33% of adrenocortical carcinoma samples, which is 

Table 1: Co-expression of MCTs with CD147, CD44, GLUT1 and CAIX, in adult adrenocortical 
tumor samples (adenomas and carcinomas). Only plasma membrane expressions were considered

CD147 CD44 GLUT1 CAIX

n Positive 
(%)

p n Positive 
(%)

p n Positive 
(%)

p Positive 
(%)

p

MCT1 0.001 0.122 0.007 0.108

Negative 66 39 
(59.1) 65 11 (16.9) 66 8 (12.1) 14 (21.2)

Positive 88 74 
(84.1) 87 24 (27.6) 88 27 

(30.7) 29 (33.0)

MCT2 <0.001 0.150 0.293 0.023

Negative 50 26 
(52.0) 50 8 (16.0) 50 14 

(28.0) 20 (40.0)

Positive 103 87 
(84.5) 102 27 (26.5) 103 21 

(20.4) 23 (22.3)

MCT4 0.005 0.031 0.001 <0.001

Negative 86 56 
(65.1) 85 14 (16.5) 86 11 (12.8) 13 (15.1)

Positive 67 57 
(85.1) 67 21 (31.3) 67 24 

(35.8) 30 (44.8)
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Table 2: Association of plasma membrane expression of MCTs with the clinicopathological 
parameters in adult adrenocortical carcinomas

n MCT1 MCT2 MCT4

Positive (%) p Positive (%) p Positive (%) p

Tumour size 0.111 0.003 0.536

<8 cm 18 14 (77.8) 17 (94.4) 11 (61.1)

≥8 cm 58 33 (56.9) 33 (56.9) 40 (69.0)

Tumour weight 0.417 0.284 0.781

<467.2 mg 30 18 (60.0) 21 (70.0) 21 (70.0)

≥467.2 mg 30 21 (70.0) 17 (56.7) 20 (66.7)

Weiss score 0.382 0.400 0.881

<6 33 19 (57.6) 20 (60.6) 22 (66.7)

≥6 40 27 (67.5) 28 (70.0) 26 (65.0)

Nuclear grade 0.304 1.000 0.620

Low 5 2 (40.0) 4 (80.0) 3 (60.0)

High 36 26 (72.2) 27 (75.0) 26 (72.2)

Mitotic index 0.790 0.008 0.296

Low 24 16 (66.7) 22 (91.7) 15 (62.5)

High 17 12 (70.6) 9 (52.9) 14 (82.4)

Atypical mitosis 0.164 0.241 0.276

Absent 28 17 (60.7) 23 (82.1) 18 (64.3)

Present 13 11 (84.6) 8 (61.5) 11 (84.6)

Tissue p53 status 0.118 1.000 0.272

Normal 19 10 (52.6) 10 (52.6) 12 (63.2)

Mutated 5 5 (100.0) 3 (60.0) 5 (100.0)

Necrosis 1.000 0.700 0.701

Absent 11 8 (72.7) 9 (81.8) 7 (63.6)

Present 30 20 (66.7) 22 (73.3) 22 (73.3)

Venous invasion 0.481 0.064 0.165

Absent 27 17 (63.0) 23 (85.2) 17 (63.0)

Present 14 11 (78.6) 8 (57.1) 12 (85.7)

Sinus invasion 0.645 0.024 1.000

Absent 35 23 (65.7) 29 (82.9) 25 (71.4)

Present 6 5 (83.3) 2 (33.3) 4 (66.7)

Capsular 
invasion 1.000 0.700 1.000

Absent 27 19 (70.4) 21 (77.8) 19 (70.4)

Present 13 9 (69.2) 9 (69.2) 9 (69.2)

Staging 0.029 0.186 0.674

(Continued )
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n MCT1 MCT2 MCT4

Positive (%) p Positive (%) p Positive (%) p

I+II 43 22 (51.2) 31 (72.1) 28 (65.1)

III+IV 33 25 (75.8) 19 (57.6) 23 (69.7)

Metastasis 0.079 0.022 0.200

Absent 37 19 (51.4) 29 (78.4) 22 (59.5)

Present 41 29 (70.7) 22 (53.7) 30 (73.2)

Table 3: Association of plasma membrane expression of CD147, CD44, GLUT1 and CAIX with the 
clinicopathological parameters in adult adrenocortical carcinomas

CD147 CD44 GLUT1 CAIX

n Positive 
(%)

p n Positive 
(%)

p n Positive 
(%)

p Positive 
(%)

p

Tumour size 0.009 0.238 0.299 0.075

  <8 cm 18 18 (100.0) 18 7 (38.9) 18 5 (27.8) 5 (27.8)

  ≥8 cm 58 42 (72.4) 57 14 (24.6) 58 24 
(41.4) 30 (51.7)

Tumour weight 0.347 0.937 0.592 1.000

  <467.2 mg 30 25 (83.3) 29 8 (27.6) 30 10 
(33.3) 14 (46.7)

  ≥467.2 mg 30 22 (73.3) 30 8 (26.7) 30 12 
(40.0) 14 (46.7)

Weiss score 0.895 0.752 0.958 0.969

  <6 33 26 (78.8) 33 8 (24.2) 33 13 
(39.4) 15 (45.5)

  ≥6 40 31 (77.5) 40 11 (27.5) 40 16 
(40.0) 18 (45.0)

Nuclear grade 1.000 0.645 0.382 0.048

  Low 5 5 (100.0) 5 1 (20.0) 5 1 (20.0) 0 (0.0)

  High 36 35 (97.2) 36 13 (36.1) 36 16 
(44.4) 20 (55.6)

Mitotic index 1.000 0.591 0.011 0.279

  Low 24 23 (95.8) 24 9 (37.5) 24 6 (25.0) 10 (41.7)

  High 17 17 (100.0) 17 5 (29.4) 17 11 
(64.7) 10 (58.8)

Atypical mitosis 1.000 0.734 0.075 0.265

  Absent 28 27 (96.4) 28 9 (32.1) 28 9 (32.1) 12 (42.9)

  Present 13 13 (100.0) 13 5 (38.5) 13 8 (61.5) 8 (61.5)

Tissue p53 status 0.272 1.000 0.122 0.317

  Normal 19 12 (63.2) 19 3 (15.8) 19 6 (31.6) 8 (42.1)

  Mutated 5 5 (100.0) 5 1 (20.0) 5 4 (80.0) 4 (80.0)

Necrosis 0.268 0.140 0.736 0.335

(Continued)



Oncotarget44409www.impactjournals.com/oncotar-
get

similar to the expression frequency found in the present 
study [21]. Herein, we show associations between GLUT1 
and high mitotic index, presence of metastasis, and both 
longer overall and disease-free survival. This evidence 
is in agreement with the crucial role of GLUT1 in the 
metabolic reprogramming, as cancer cells are only able 
to depend on glycolytic pathway for energy production if 
the glycolytic flow is highly increased. This demands an 
increased uptake of glucose, mainly provided by GLUT1 
in cancer cells [29].

MCT1 expression at the plasma membrane 
suggests a high lactate efflux from cancer cells, which, 
besides allowing glycolytic flux for energy production, 
also detains an important role in the microenvironment, 
by decreasing the immune response against tumor cells 
[30], increasing tumor cell motility [31], inducing 
angiogenesis [32], as well as stimulating hyaluronan 

and its receptor CD44, molecules involved in the process 
of cancer invasion and metastasis [33]. These roles of 
lactate in the extracellular milieu are in accordance 
with the association of MCT1 expression with high 
stage and shorter overall survival. In opposition, 
plasma membrane expression of MCT4, which was 
increased from adenomas to carcinomas, showed no 
association with the clinicopathological parameters. 
However, cytoplasmic expression of MCT4, as well 
as CD147, was associated with absence of metastasis. 
In accordance, cytoplasmic expression of MCT4 and 
CD147 was also associated with longer disease-free 
survival, while cytoplasmic expression of CD147 also 
showed a tendency to be associated with longer overall 
survival. Further studies are warranted to elucidate the 
role of MCT4 in the cytoplasm. Importantly, MCT2 
plasma membrane expression was associated with good 

CD147 CD44 GLUT1 CAIX

n Positive 
(%)

p n Positive 
(%)

p n Positive 
(%)

p Positive 
(%)

p

  Absent 11 10 (90.9) 11 6 (54.5) 11 4 (36.4) 4 (36.4)

  Present 30 30 (100.0) 30 8 (26.7) 30 13 
(43.3) 16 (53.3)

Venous invasion 1.000 1.000 0.424 0.153

  Absent 27 26 (96.3) 27 9 (33.3) 27 10 
(37.0) 11 (40.7)

  Present 14 14 (100.0) 14 5 (35.7) 14 7 (50.0) 9 (64.3)

Sinus invasion 1.000 0.645 0.066 1.000

  Absent 35 34 (97.1) 35 13 (37.1) 35 12 
(34.3) 17 (48.6)

  Present 6 6 (100.0) 6 1 (16.7) 6 5 (83.3) 3 (50.0)

Capsular 
invasion 1.000 1.000 0.581 0.311

  Absent 27 26 (96.3) 27 9 (33.3) 27 10 
(37.0) 12 (44.4)

  Present 13 13 (100.0) 13 5 (38.5) 13 6 (46.2) 8 (61.5)

Staging 0.550 0.521 0.251 0.193

  I+II 43 35 (81.4) 42 13 (31.0) 43 14 
(32.6) 17 (39.5)

  III+IV 33 25 (75.8) 33 8 (24.2) 33 15 
(45.5) 18 (54.5)

Metastasis 0.559 0.263 0.004 0.021

  Absent 37 30 (81.1) 36 12 (33.3) 37 8 (21.6) 12 (32.4)

  Present 41 31 (75.6) 41 9 (22.0) 41 22 
(53.7) 24 (58.5)
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prognostic variables, including small tumor size, low 
mitotic index, absence of sinus invasion, absence of 
metastasis and longer overall survival. MCT2 expression 
at the plasma membrane suggests monocarboxylate 
consumption (likely lactate) from the extracellular 
environment. Since MCT2 plasma membrane expression 
is independent from MCT1 or MCT4 (data not shown), 
MCT2 positive tumors may present a metabolic 
symbiosis between cancer cells, in which the peripheral 
and oxygenated oxidative cells consume, through MCT2, 
the lactate released, through MCT4, by the central and 
less oxygenated glycolytic cells [34]. As a result, lactate 
will no longer act in the microenvironment to stimulate 
tumor aggressiveness. This rationale is in line with the 
evidence that MCT2 expressing tumors show a less 

aggressive phenotype than MCT2 negative tumors. 
Finally, we found CAIX to be more frequently expressed 
at the plasma membrane of tumors showing high nuclear 
grade and presence of metastasis, which is in accordance 
with the contribution of CAIX to the acid-resistant 
phenotype, rendering cancer cells a survival advantage 
that will contribute to cancer progression. Also, since 
CAIX contributes to the extracellular acidification, this 
pH regulator has a role in the acid-mediated cancer cell 
invasive behavior [35].

In line with the role of the different proteins in the 
metabolic remodeling of cancer cells and the evidence 
from the associations with the clinicopathological data, 
plasma membrane expression of MCT1 or GLUT1 
was identified as a poor prognostic factor and plasma 

Figure 3: Overall survival curves of adrenocortical carcinomas’ patients. The results are stratified according to protein 
immunohistochemical expression. Only significant (or borderline) results are shown. Continuous line refers to positive expression while 
interrupted line refers to negative expression. A. Plasma membrane expression of MCT1; B. Plasma membrane expression of MCT2; C. Plasma 
membrane expression of GLUT1; D. Plasma membrane expression of CAIX.
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membrane expression of MCT2 was identified as a 
good prognostic factor for overall survival in univariate 
analysis. Multivariate analysis showed that none of 
these markers has a stage-independent prognostic value, 
differently from results previously described for GLUT1 
[21]. Importantly, CD147 cytoplasmic expression was 
identified as a stage-independent good prognostic factor 
for overall survival. In disease-free survival, while 
plasma membrane of GLUT1 was identified as a poor 
prognostic factor and plasma membrane expression 
of MCT2 and cytoplasmic expression of CD147 were 
identified as good prognostic value in univariate analysis, 
multivariate analysis showed that none of these markers 
has a stage-independent prognostic value. Importantly, 
CAIX cytoplasmic expression, while showing borderline 

significance in the univariate analysis, was identified as 
a stage-independent good prognostic factor for disease-
free survival.

In the present study, we provided evidence for a 
metabolic reprogramming of adrenocortical malignant 
tumors towards the hyperglycolytic and acid-resistant 
phenotype characteristic of the Warburg effect, which 
associates with a worse prognosis. Since only few studies 
are available on the metabolic reprogramming of adult 
adrenocortical carcinoma, we believe that the results 
from the present study may bring new and relevant 
knowledge about the biology of this rare type of cancer, 
with possible developments in adrenocortical carcinoma 
management and the search for new target-directed 
therapeutic resources.

Figure 4: Disease-free survival curves of adrenocortical carcinomas’ patients. The results are stratified according to protein 
immunohistochemical expression. Only significant results are shown. Continuous line refers to positive expression while interrupted line 
refers to negative expression. A. Cytoplasmic expression of MCT4; B. Cytoplasmic expression of CD147; C. Plasma membrane expression 
of GLUT1; D. Cytoplasmic expression of CAIX.
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Table 4: Prognostic factors for overall survival and disease-free survival in adult adrenocortical 
carcinomas

Univariate analysis Multivariate analysis

Overall survival

HR 95% CI p HR 95% CI p

Male sex 0.73 0.28–1.87 0.51

Age (yrs) 0.99 0.98–1.02 0.76

Tumor size ≥ 8 cm 3.86 1.37–10.9 0.01 3.6 0.7–17.5 0.13

Weiss score ≥ 6 0.86 0.44–1.67 0.64

Tumor stage (ENSAT 3) 5.1 2.4–10.8 0.0001 2.3 1.5–8.8 0.005

MCT1 cytoplasm 1.05 0.47–2.3 0.91

MCT1 plasma membrane 2.27 1.04–4.91 0.038 2.3 0.91–5.7 0.077

MCT2 cytoplasm 0.83 0.41–1.67 0.6

MCT2 plasma membrane 0.409 0.20–0.82 0.01 0.78 0.34–0.74 0.548

MCT4 cytoplasm 0.53 0.24–1.14 0.1

MCT4 plasma membrane 1.59 0.71–3.55 0.26

CD147 cytoplasm 0.49 0.232–1.04 0.063 0.32 0.14–0.74 0.008

CD147 plasma membrane 0.94 0.44–2.05 0.89

CD44 cytoplasm 0.63 0.2–1.8 0.39

CD44 plasma membrane 0.9 0.4–2.0 0.79

GLUT1 cytoplasm 1.3 0.6–2.81 0.5

GLUT1 plasma membrane 2.63 1.3–5.3 0.007 1.97 0.9–4.2 0.088

CAIX cytoplasm 0.545 0.27–1.1 0.092 0.72 0.32–1.62 0.43

CAIX plasma membrane 1.98 0.98–3.99 0.056 0.96 0.42–2.18 0.93

Disease-free survival

HR 95% CI p HR 95% CI P

Male sex 1.1 0.45–2.8 0.81

Age (yrs) 1.06 0.98–1.03 0.63

Tumor size 8 ≥ cm 3.49 1.2–10.4 0.022 1.76 0.45–6.8 0.41

Weiss score ≥ 6 0.695 0.33–1.46 0.33

Tumor stage (ENSAT 3) 4.46 2.1–9.5 0.0001 3.96 1.4–10.9 0.008

MCT1 cytoplasm 1.44 0.58–3.53 0.43

MCT1 plasma membrane 2.1 0.84–5.1 0.11

MCT2 cytoplasm 1.32 0.56–3.1 0.52

MCT2 plasma membrane 0.42 0.18–0.97 0.04 0.74 0.28–1.9 0.527

MCT4 cytoplasm 0.42 0.16–1.08 0.071 1.12 0.36–3.5 0.843

MCT4 plasma membrane 1.22 0.497–2.99 0.66

CD147 cytoplasm 0.36 0.14–0.92 0.033 0.43 0.16–1.18 0.1

(Continued )
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Univariate analysis Multivariate analysis

Overall survival

HR 95% CI p HR 95% CI p

CD147 plasma membrane 1.02 0.37–2.76 0.97

CD44 cytoplasm 0.23 0.03–1.85 0.17

CD44 plasma membrane 0.99 0.35–2.77 0.98

GLUT1 cytoplasm 0.55 0.18–1.61 0.27

GLUT1 plasma membrane 3.84 1.52–9.68 0.004 2.4 0.86–6.74 0.097

CAIX cytoplasm 0.47 0.2–1.1 0.079 0.31 0.1–0.92 0.036

CAIX plasma membrane 1.95 0.84–4.53 0.12

Figure 5: Schematic representation summarizing the major findings of the present work. The schematic representation 
distinguishes the major findings for plasma membrane and cytoplasmic expression of the different proteins studied. Red arrow: significant 
increase in expression frequency when comparing adenomas to carcinomas. * Independent predictors of survival as determined by 
multivariate analysis.



Oncotarget44414www.impactjournals.com/oncotar-
get

MATERIALS AND METHODS

Human adrenocortical tumor samples

The series analyzed included 154 formalin-
fixed paraffin-embedded adrenocortical neoplasias  
(76 adenomas and 78 carcinomas, according to Weiss 
score), retrieved from the files of the Pathology 
Department of the Clinical Hospital, School of 
Medicine, University of Sao Paulo, Brazil. No case 
included in this series fulfills the criteria for oncocytic 
tumor. Samples were organized into tissue microarrays 
(TMA) containing 208 cores each (1.0 mm diameter 
each core). Each case was represented in TMAs by three 
cores and control samples (kidney) were also included 
for TMA orientation. Clinico pathological data for the 
adrenocortical carcinomas included age at diagnosis 
(normal distribution, mean 40.6 years, range: 15 to 81 
years), gender, tumor size (normal distribution, mean 
11.8 cm, range: 2.2 to 23.0 cm; categorized using 8 cm 
as cut-off [36]) and weight (non-normal distribution, 
median 467.2 mg, range: 10 to 2600 mg), Weiss score 
and each of its individual histological parameters [37], 
tumor p53 status, staging (according to ENSAT system 
[38]), metastasis, disease-free survival and overall 
survival (median 13.5 and 30.5 months, respectively). 
Cases that could not be evaluated by Weiss score were 
classified as carcinomas if metastatic disease was detec-
ted (clinically malignant). Detailed information of the 

clinicopathological data for the adrenocortical adenomas 
as well as the adrenocortical carcinomas is presented 
in Tables 5 and 6, respectively. The present study was 
approved by the Local Ethic Committee (number 11090).

Immunohistochemistry

MCT1 immunohistochemistry was performed 
according to the avidin-biotin-peroxidase complex method 
(R.T.U. VECTASTAIN Elite ABC Kit (Universal), 
Vector Laboratories, Burlingame, CA), as previously 
described [39]. Immunohistochemistry for MCT2, MCT4, 
GLUT1, CD44 and CAIX was performed according 
to the streptavidin-biotin-peroxidase complex principle 
 (Ultra vision Detection System Anti-polyvalent, HRP, Lab 
Vision Corporation, Fremont, CA), as previously described 
[20, 40, 41]. CD147 immunostaining was performed using 
a polymer system (UltraVision ONE Detection System: 
HRP Polymer Lab Vision Corporation, Fremont, CA) as 
already described [42]. Negative controls were performed 
by the use of appropriate serum controls for the primary 
antibodies (N1698 and N1699, Dako, Carpinteria, CA). 
Colon carcinoma tissue was used as positive control 
for MCT1, MCT4, CD147 and CD44, head and neck 
squamous cell carcinoma was used for GLUT1, and 
normal stomach was used for CAIX. Tissue sections 
were counterstained with hematoxylin and permanently 
mounted. Please refer to Table 7 for detailed aspects for 
each antibody used.

Figure 6: Immunohistochemical staining patterns of metabolism-related proteins in a case representative of the 
glycolytic phenotype. In this case, MCT1 A. MCT4 C. CD147 D. GLUT1 E. and CAIX F. were found in the plasma membrane while 
MCT2 B. was observed in the cytoplasm.
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Immunohistochemical evaluation

Sections were scored semi-quantitatively for expres-
sion in cancer cells as follows: 0: no immuno reactive 
cells; 1: < 5% of immunoreactive cells; 2: 5–50% of 
immunoreactive cells; and 3: > 50% of immunoreactive cells. 
Also, intensity of staining was scored semi-qualitatively as 
follows: 0: negative; 1: weak; 2: intermediate; and 3: strong. 
The final score was defined as the sum of both parameters 
(extension and intensity), and, for the metabolism-related 
proteins, grouped as negative (score 0 and 2) and positive 
(score 3–6), as previously described [39]. Protein expression 
in the different cellular localizations (cytoplasm and plasma 
membrane) was evaluated separately.

Statistical analysis

Data were stored and analyzed using the IBM 
SPSS Statistics software (version 20, IBM Company, 

Armonk, NY). All comparisons were examined for 
statistical significance using Pearson’s chi-square (χ2) test 
and Fisher’s exact test (when n < 5). Overall survival was 
defined as the time from the date of primary diagnosis to 
death related to adrenocortical cancer or last follow-up. 
Disease-free survival was defined as the time from the 
date of complete tumor resection to the first radiological 
evidence of disease relapse or death. Overall and disease-
free survival curves were estimated by the method of 
Kaplan-Meier and data compared using the log-rank test. 
Predictive factors of prognosis were identified by means 
of Cox proportional hazards regression models, which 
were used to estimate hazard ratios (HR) and their 95% 
confidence intervals in univariate and multivariate analysis. 
All variables that reached a p value < 0.1 at Kaplan-Meier 
estimates were included in the Cox survival analysis. For 
multivariate analysis, variables that reached a p value  
< 0.1 at univariate analysis were included. The threshold 
for significant p values was established as p < 0.05.

Figure 7: Immunohistochemical staining patterns of metabolism-related proteins in a case representative of the oxidative 
phenotype. In this case, MCT2 A. was found in the plasma membrane, while MCT4 B. CD147 C. and CAIX D. were found in the cytoplasm.
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Table 5: Clinicopathological data of the adrenocortical adenoma patients
Variable n %

Age# (n = 76)

≥ 44.2 years 35 46.1

< 44.2 years 41 53.9

Gender (n = 76)

Female 66 86.8

Male 10 13.2

Tumor size (n = 73)

< 8 cm 71 97.3

≥ 8 cm 2 2.7

Tumor weight# (n = 64)

< 20.0 mg 29 45.3

≥ 20.0 mg 35 54.7

Weiss score (n = 76)

0 35 46.1

1 22 28.9

2 19 25.0

Nuclear grade* (n = 42)

Low 37 88.1

High 5 11.9

Mitotic índex* (n = 42)

Low 41 97.6

High 1 2.4

Atypical mitosis (n = 42)

Absent 42 100.0

Present 0 0.0

Necrosis (n = 42)

Absent 38 90.5

Present 4 9.5

Venous invasion (n = 42)

Absent 42 100.0

Present 0 0.0

Sinus invasion (n = 42)

Absent 41 97.6

Present 1 2.4

Capsular invasion (n = 41)

Absent 38 92.7

Present 3 7.3

(Continued )
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Variable n %

Staging (n = 56)

I 49 87.5

II 7 12.5

#The mean value was used for age cut-off, while the median value was used for weight cut-off as these variables followed a 
normal and non-normal distribution, respectively.
*Nuclear grade and mitotic index were defined according to Weiss score definitions (30).

Table 6: Clinicopathological data of the adrenocortical carcinoma patients
Variable n %

Age# (n = 78)

≥ 40.6 years 34 43.6

< 40.6 years 44 56.4

Gender (n = 78)

Female 61 78.2

Male 17 21.8

Tumor size (n = 76)

< 8 cm 18 23.7

≥ 8 cm 58 76.3

Tumor weight# (n = 60)

< 467.2 mg 30 50.0

≥ 467.2 mg 30 50.0

Weiss score (n = 78)

≥ 3$ 5 6.4

3 13 16.7

4 13 16.7

5 7 9.0

6 11 14.1

7 11 14.1

8 14 17.9

9 4 5.1

Nuclear grade* (n = 41)

Low 5 12.2

High 36 87.8

Mitotic índex* (n = 41)

Low 24 58.5

High 17 41.5

Atypical mitosis (n = 41)

Absent 28 68.3

Present 13 31.7

(Continued )
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Variable n %

Necrosis (n = 41)

Absent 11 26.8

Present 30 73.2

Venous invasion (n = 41)

Absent 27 65.9

Present 14 34.1

Sinus invasion (n = 41)

Absent 35 85.4

Present 6 14.6

Capsular invasion (n = 40)

Absent 27 67.5

Present 13 32.5

Staging (n = 76)

I 7 9.2

II 36 47.4

III 15 19.7

IV 18 23.7

Metastasis (n = 78)

Absent 37 47.4

Present 41 52.6

Evolution (n = 78)

Alive 46 59.0

Dead 32 41.0

#The mean value was used for age cut-off, while the median value was used for weight cut-off as these variables followed a 
normal and non-normal distribution, respectively.
$Cases classified as carcinoma (Weiss ≥ 3) based on the presence of metastatic disease.
*Nuclear grade and mitotic index were defined according to Weiss score definitions (30).

Table 7: Detailed aspects for each antibody used in immunohistochemistry
Protein Antigen retrieval Antibody Antibody dilution and 

incubation time

MCT1 Citrate buffer (0.01 M,  
pH = 6), 98ºC, 20’

AB3538P 
Chemicon International 1:200, overnight

MCT2 Citrate buffer (0.01 M,  
pH = 6), 98ºC, 20’

sc-50322  
Santa Cruz Biotechnology 1:200, 2 hours

MCT4 Citrate buffer (0.01 M,  
pH = 6), 98ºC, 20’

sc-50329  
Santa Cruz Biotechnology 1:500, 2 hours

CD147 EDTA (1 mM, pH = 8),  
98ºC, 20’

sc-71038  
Santa Cruz Biotechnology 1:400, overnight

(Continued )
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