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Targeting Batf2 for infectious diseases and cancer
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ABSTRACT
The family members Batf, Batf2 and Batf3 belong to a class of transcription 

factors containing basic leucine zipper domains that regulate various immunological 
functions and control the development and differentiation of immune cells. Functional 
studies by others demonstrated a predominant role for Batf in controlling Th2 cell 
functions and lineage development of T lymphocytes as well as a critical role of Batf, 
Batf2 and Batf3 in CD8α+dendritic cell development. Moreover, Batf family member 
expression was measured in a vast collection of mouse and human cell types by cap 
analysis gene expression (CAGE), a recent developed sequencing technology, showing 
reasonable expression spectrum in immune cells consistent with previously published 
expression profiles. Batf and Batf3 were highly expressed in lymphocytes and the 
earlier moderately expressed in myeloid lineages. Batf2 was predominantly expressed 
in monocytes/macrophages. Functional studies in mice demonstrated that Batf2 has 
a central role in macrophage activation by regulating inflammatory responses during 
lipopolysaccharides stimulation and mycobacterial infection. Hence, Batf2 could 
be used as a biomarker and a potential host directed drug target in tuberculosis. 
Moreover, Batf2 act as a tumor suppressor gene and augmenting Batf2 in malignant 
cells might be an encouraging therapeutic treatment against cancer.

Basic leucine zipper transcription factor (TF) Batf2 
belongs to the activator protein 1 family of transcription 
factors (TFs), which includes Batf and Batf3 [1-6]. The 
Batf family members play important functional roles in 
the development and differentiation of dendritic cells 
and T lymphocytes, in regulating Th2 cell functions and 
antibody class switching [7]. For example, Batf3 is critical 
for CD8α+ dendritic cell development [8] and both Batf 
and Batf2 can compensate for Batf3 in this process (Figure 
1A-1C). Mice deficient in Batf2 have reduced percentage 
of lung resident CD103+ dendritic cells during intracellular 
parasite T. gondii infection [9]. Batf is more specific for 
lymphocytes (Figure 1A), regulating differentiation of 
Th2 [10], Th9 [11] and Th17 cells [12], follicular helper T 
cells [10, 13], effector CD8+ T cells [14], adipose resident 
regulatory T cells [15] and B cell IgG class switching [10, 
13]. Batf2 was cloned, characterized and identified as a 

type 1 IFN (IFN-α/β)-inducible early response gene [5] 
but seem to be mainly restricted to macrophages and DCs 
following LPS and IFN-γ stimulation [9]. Since Batf2 
is induced by type I IFNs [5], one could speculate that 
Batf2 may play a fundamental role during viral infection 
including HIV, however no studies investigated this 
hypothesis so far. 

To further dissect biological roles of Batf family 
members in different cell types, we composed a mRNA 
expression atlas of Batf, Batf2 and Batf3 using a large 
scale genomic analysis, FANTOM (Functional Annotation 
of the Mammalian Genome) that maps transcription start 
sites to generate a promoter-level mammalian expression 
atlas [16] to study the dynamic regulation of enhancers 
and promoters during mammalian cellular activation and 
differentiation [17]. The FANTOM consortium utilized 
the cap analysis gene expression (CAGE) biotechnology 
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Table 1: Batf, Batf2 and Batf3 expression in mouse cell types. 

Figure 1: Batf family members regulate cell lineage development, macrophage activation and cancer growth. A. Batf 
controls the differentiation of Th9, Th17 cells, follicular helper T (Tfh) cells, effector CD8+ T cells and adipose tissue-resident regulatory 
T cells. Immunoglobulin class switching in B cells, TF (GATA3) and effector factors (IL-4, IL-10, CTLA4) in Th2 cells are regulated by 
Batf. B. Batf3 contributes to the control of Th2 cell-associated factors and is necessary for the development of CD8α+ dendritic cells. C. 
Batf2 assists in the lineage development of CD8α+ and CD103+ dendritic cells and controls macrophage activation. D. Batf2 constrains 
cancer cell growth through MET suppression (adapted and modified from Murphy TL, Tussiwand R, Murphy KM: Nat Rev Immunol 2013, 
13(7):499-509).

Expression of Batf family members was quantified by CAGE and tags per million normalized by relative log expression 
are shown. Cell types are ranked according to their highest expression (Exps = experiments). 
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Table 2: Batf, Batf2 and Batf3 expression in human cell types. 

Expression of Batf family members was quantified by CAGE and tags per million normalized by relative log expression are 
shown. Cell types are ranked according to their highest expression (HMDM= human monocyte-derived macrophages).
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[18], which sequences short nucleotide sequence tags from 
the 5’ end of mRNAs. The CAGE tags are then mapped 
to the genome to identify transcription start sites and the 
tag counts are used to quantify the expression of mRNAs. 
Using this method, RNA Batf family members across a 
collection of various cancer cell lines (250), human (573) 
and mouse primary cells (128) were identified (Table 1 and 
2), quantified in tags per million (TPM) and normalized by 
relative log expression. In accordance with the biological 
role for Batf predominantly in lymphocyte function and 
development, high Batf expression was found in T and B 
lymphocytes, as well as in macrophages. In addition, Batf 
was measured in other cell types that were not previously 
shown to express Batf (megakaryocytes, endothelial, 
epithelial and Langerhans cells). Batf2 expression seems 
to be mainly restricted to macrophages in mouse (12.38 
TPM; 56% expression from the dataset collection) and 
human monocytes/macrophages (185.65 TPM; 76% 
expression from the dataset collection), but low expression 
was also found in enterocytes, endothelial cells, adrenal 
cortex cells, chondroblasts and epithelial cells among 
others. Batf3 was strongly expressed in human cells, 
including immature dendritic cells, myeloid, T, NK cells 
and lower levels in human monocytes and macrophages. 
Mouse Batf3 showed minimal expression in macrophages 
and erythroblasts. 

We recently reported that Batf2 was significantly 

induced in macrophages following LPS or IFN-γ 
stimulation [19]. Indeed, alternatively activated or non-
stimulated macrophages showed low or no expression 
but classical activation M(IFN-γ) highly induced Batf2.
Interestingly, Batf2 knockdown experiments in IFN-γ or 
LPS-stimulated macrophages using shRNA resulted in 
reduced expression of host protective genes, such as Nos2, 
Tnf, Ccl5, IL-12b and Socs1. These genes are involved 
in controlling inflammatory cell recruitment and/or the 
activation of bactericidal defense mechanisms (Figure 
2). As the Batf family lack DNA binding domains [5], 
we further demonstrated that Batf2 directly interacts with 
Irf1 by immunoprecipitation. Hence, Batf2/Irf1is likely 
to cooperatively regulate these immune effector genes, 
which is well consistent with that the other family member 
Batf associates with Irf4 and Irf8 to mediate downstream 
gene activation [9, 20, 21]. Importantly, Batf2 was also 
induced during M. tuberculosis (Mtb, Beijing strain 
HN878) infection in classical activated macrophages 
and shRNA-mediated down-regulation of Batf2 resulted 
in decreased expression Nos2, Tnf, Ccl5 and IL-12b in 
heat-killed Mtb-stimulated macrophages (Figure 2). We 
currently investigate the consequence of Batf2 deficiency 
in mice during infection with M. tuberculosis and Listeria 
monocytogenes. Together, these results highlight the 
importance of Batf2 in controlling macrophage activation 
during IFN-γ, LPS and mycobacterial infection. Hence, 

Figure 2: Batf2/Irf1 controls macrophage-specific inflammatory responses. Batf2/Irf1 induces inflammatory responses (Nos2, 
Tnf, Ccl5, IL-12b and Socs1) in IFN-γ, heat-killed Mtb and LPS-stimulated macrophages. 
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Batf2 may be an important transcription factor to control 
the switch of inflammatory responses during certain 
immune processes.We currently started infection studies 
in Batf2 deficient mice, and depending on the biological 
outcome, Batf2 might be an interesting biomarker and 
possible candidate for host directed therapy against 
tuberculosis (TB). 

In recent years, it became evident that adjunctive 
host-directed drug therapy in combination with current 
first and second line treatments with antibiotics could 
develop into a promising innovative approach to treat drug 
resistant Mtb strains by reducing tissue pathology and 
possibly shorten the duration of current treatments [22-
38]. The existing selection of potential host-directed drug 
candidates against TB disease are extensive and do include 
FDA approved drugs that are currently used for treatments 
of other diseases and conditions. This includes Gefitinib 
[39], Fluoxetine [39], Metformin [40, 41], Nitazoxanide 
[42], Prochlorperazine Edisylate [43], Nortriptyline 
[43], Haloperidol [43], Lithium [44], Imatinib [45, 46], 
Rapamycin [47, 48], high-dose immunoglobulin [49], 
TNF blockers [50-52], thalidomide analog [53], Ibuprofen 
[54, 55], leukotriene inhibitors [56], statins [57, 58], 
PPARγ antagonists [59], Vitamin D [59-61], IFNγ [62], 
phosphodiesterase inhibitors [63], metalloproteinase 
inhibitors [64], autologous mesenchymal stromal cell 
infusion [65], and corticosteroids [66, 67], among others. 
We suggest to include Batf2 in the search of new targets 
for host-directed drug therapies against tuberculosis due to 
its important regulation of inflammation and macrophage 
killing effector functions and its specific expression to 
macrophage/DC cells, the primary target cells of Mtb. 

We believe that large scale genomic projects 
consortium are initial steps for the identification of 
potential drug targets, which is certainly of utter 
importance. Indeed, pathogens successfully exploit 
and modulate the host epigenome for their survival and 
persistence, including TFs like Stat1, Daxx or ZNF23 [68]. 
Hence, we identified TFs differentially expressed between 
classical and alternative activated macrophages [69], 
building on the hypothesis that intracellular pathogens 
avoid classical activation, while persisting in alternative 
activated or non-stimulated macrophages [70]. Functional 
characterization of these selected TFs may direct us to 
the identification of host-directed drug targets to increase 
immunity of the infected host. 

We also suggest to include Batf2 as therapeutic 
target against cancer as Batf2 has been shown as a novel 
tumor suppresser gene, inhibiting growth of cancer cells 
[5, 71-73] through repression of hepatocyte growth 
factor receptor / MET signaling (Figure 1D) [74]. Low 
Batf2 expression, in patients with colorectal cancer [74], 
hepatocellular carcinoma (HCC) [75] or oral tongue 
squamous cell carcinoma [76] do have significant 
increased mortality when compared to cancer patients 
with high Batf2 expression and overexpression of Batf2 

[5] promotes growth inhibition and apoptosis in cancer 
cells, but not in normal cells.

In conclusion, for a host-directed drug therapy 
against TB, we recommend targeting Batf2 specifically in 
macrophages and dendritic cells to suppress inflammation 
and limit pathology. Antagonizing Batf2 might be useful 
for other immune-related diseases where inflammation 
induces tissue destruction and pathology. In cancer, Batf2 
could be used as a biomarker for cancer prognosis and a 
promising therapeutic target against cancer, by augmenting 
Batf2 in malignant cells.
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