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ABSTRACT

Different human genes often exhibit different degrees of stability in their DNA 
methylation levels between tissues, samples or cell types. This may be related to 
the evolution of human genome. Thus, we compared the evolutionary conservation 
between two types of genes: genes with stable DNA methylation levels (SM genes) and 
genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary 
characteristics between species, we compared the percentage of the orthologous 
genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM 
genes had greater percentages of the orthologous genes, lower dn/ds, and higher 
protein sequence identities in all the 21 species. These results indicated that the 
SM genes were more evolutionarily conserved than the FM genes. For short-term 
evolutionary characteristics among human populations, we compared the single 
nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree 
in HapMap populations and 1000 genomes project populations. We observed that the 
SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap 
populations and 13 1000 genomes project populations. These results mean that the 
SM genes had more stable chromosome genetic structures, and were more conserved 
than the FM genes.

INTRODUCTION

DNA methylation is an epigenetic mechanism 
[1, 2] that plays important roles in the regulation of gene 
expression [3, 4], development [5–7], X-chromosome 
inactivation [8] and genomic imprinting [9, 10].

Some genomic regions can exhibit different 
methylation statuses among multiple samples (tissues, cell 
types or individuals) [11]. Differences in DNA methylation 
levels can identify a methylation locus associated with 
susceptibility to diseases, such as Alzheimer’s disease 
[12, 13], cardiovascular disease [14, 15], and cancer 
[16, 17]. Other genomic regions may exhibit robust or 
stable methylation statuses between different tissues, 
samples or cell types.

To explore the genetic basis of maintaining DNA 
methylation levels, we investigated the relationship 
between evolutionary conservation and the stability of 
DNA methylation levels. In this study, two types of genes 
were considered: SM genes were defined as genes that 
have stable DNA methylation levels in all cell types of 
every tissue under normal or disease conditions. In other 
words, the DNA methylation statuses of SM genes were 
robust to environmental changes. FM genes were defined 
as genes that have fluctuant DNA methylation levels in 
different cell types, tissues, organisms or samples; i.e., 
FM genes were sensitive to environmental changes. For 
SM genes and FM genes, we compared the long-term 
evolutionary characteristics and short-term evolutionary 
characteristics. We found a strong association between 
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the stability of DNA methylation levels and evolutionary 
conservation.

RESULTS

To make the results more robust, we used a unified 
platform (GPL13534) and a large sample size (8,676 
samples). For each of the 21,231 genes, we employed 
a fluctuation coefficient, FC, to measure the stability of 
DNA methylation levels. We then constructed two gene 
sets, SM genes (4,247 genes) and FM genes (4,247 
genes), and compared their differences in evolutionary 
conservation.

SM genes had a higher percentage of orthologous 
genes than FM genes

For SM and FM genes, we calculated the numbers of 
the one-to-one orthologous genes in each of the 21 species. 
The results are displayed as a bar chart in Figure 1, which 
shows that the bar chart of the SM genes is higher than 
that of the FM genes. We also used the Wilcoxon signed 
rank test to test the statistical significance. The null 
hypothesis is that the SM genes and the FM genes had 
the same percentage of orthologous genes in each of the 
21 species. The P-value was 9.54E-07 and the significance 
level α was 0.05. This indicated that the SM genes had 
a higher percentage of orthologous genes than FM genes 
across the 21 species.

SM genes had a lower evolutionary rate than 
FM genes

For each of the 21 species, we calculated the 
evolutionary rate dn/ds for orthologous genes of the SM 
and FM genes. The bar chart of the SM genes is lower than 
that of the FM genes (Figure 2A). A Wilcoxon signed rank 
test gave a significant P-value (P = 6.41E-05). Thus, the 
SM genes had lower dn/ds than the FM genes across all 
species. For each species, we also drew a box plot of the 
SM genes against the FM genes (Figure 2B). A Wilcoxon 
rank sum test produced significant P-values for each of 
the 21 species (for details, see Supplementary Table S1). 
These results indicated that the SM genes had a lower 
evolutionary rate than the FM genes.

SM genes had a higher protein sequence identity 
than FM genes

We aligned the orthologous proteins between human 
and the other 21 species using BLASTP software. For SM 
and FM genes, we extracted the sequence identity from 
the alignment results. Comparing the medians (Figure 3A) 
showed that the SM genes had a higher protein sequence 
identity across all species (Wilcoxon signed rank test, 
P = 6.41E-05). Furthermore, we also compared the protein 
sequence identity between SM genes and FM genes in 
each of the 21 species. The protein sequence identity of 
SM genes was significantly higher than that of the FM 

Figure 1: A bar chart comparing the percentage of orthologous genes between SM and FM genes. 
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genes for each species (Figure 3B). This also indicated that 
the SM genes were more conserved than the FM genes. 
Supplementary Table S2 showed the detailed information 
about the sequence identity for each species.

SM genes had a lower SNP density than FM genes

We also compared some short-term evolutionary 
characteristics of the SM and FM genes. In the human 

genome, the most common single base genetic variation 
is the SNP [18, 19]. In this study, the SNP density in a 
gene region was used to measure the degree of genetic 
variation. The FM genes had higher SNP densities than the 
SM genes (Figure 4). A Wilcoxon rank sum test produced 
a significant P-value (P < 3.54E-16). This indicated 
that the FM genes contained significantly more genetic 
variations than the SM genes, i.e., the SM genes were 
more conservative.

Figure 2: Comparison of the evolutionary rate, dn/ds, between SM and FM genes. A. A bar chart of the SM genes against the 
FM genes. B. Box plots of the SM genes against the FM genes for each of the 21 species.
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SM genes had a higher degree of LD in all 11 
HapMap populations and 13 1000 genomes 
populations

For each of the 11 HapMap and 13 1000 genomes 
populations, we calculated the LD coefficient, r2, for 
the SM and FM genes. We also drew a bar chart of the 

median r2 of the SM genes against the FM genes across 
all the HapMap populations (Figure 5A) and all the 1000 
genomes populations (Figure 6A). Whether in HapMap 
populations or in 1000 genome populations, the bar 
chart of the SM genes was higher than that of the FM 
genes. Figure 5B and Figure 6B show that the P-values 
were significant for all the 11 HapMap populations and 

Figure 3: Comparison of the sequence identity between SM and FM genes. A. A bar chart of the SM genes against the FM 
genes. B. Box plots of the SM genes against the FM genes for each of the 21 species.
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all the 13 1000 genomes populations. For details, see 
Supplementary Table S3 (the median, upper and lower 
quartiles of r2 for HapMap populations) and Supplementary 
Table S4 (the median, upper and lower quartiles of LD 
coefficient r2 for 1000 genomes populations). Thus, the 
SM genes had a higher degree of LD than the FM genes. 
Compared with FM genes, SM genes had undergone fewer 
recombination events, and had more stable chromosome 
genetic structures, i.e., the SM genes were more conserved.

SM genes had different biological functions 
comparing with FM genes

We found that, for biological process (BP), SM 
genes were mainly annotated to certain metabolic 
processes that are critical to growth, reproduction and 
maintenance of structures and survival of cells, such as 
cellular metabolic process (GO:0044237, BP), cellular 
macromolecule metabolic process (GO:0044260, BP), 
metabolic process (GO:0008152, BP), macromolecule 
metabolic process (GO:0043170, BP), and primary 

metabolic process (GO:0044238, BP). For molecular 
function (MF), SM genes were mainly annotated to 
certain basic binding categories, such as nucleic acid 
binding (GO: 0003676, MF), RNA binding (GO: 0003723, 
MF) and binding (GO: 0005488, MF). These processes 
or functions are important for maintaining the stability 
of cells or organisms. FM genes were mainly annotated 
to processes (BP) or functions (MF) that interact with 
the environment, such as sensory perception of smell 
(GO: 0007608, BP), sensory perception of chemical 
stimulus (GO: 0007606, BP), G-protein coupled 
receptor protein signaling pathway (GO: 0007186, BP), 
sensory perception (GO: 0007600, BP) cognition (GO: 
0050890, BP), olfactory receptor activity (GO: 0004984), 
G-protein coupled receptor activity (GO: 0004930, MF), 
transmembrane receptor activity (GO: 0004888, MF), 
receptor activity (GO: 0004872, MF) and molecular 
transducer activity (GO: 0060089, MF). These annotation 
results hint at the biological reasons underlying the 
differences in evolutionary conservation. Genes that 
maintain the basic survival of the cell tend to have stable 

Figure 4: A box plot comparing the SNP density between SM and FM genes. 
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Figure 5: Comparison of the r2 value between SM and FM genes. A. A bar chart of the SM genes against the FM genes. B. Box 
plots of the SM genes against the FM genes for each of the 11 HapMap populations.
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DNA methylation levels. For details, see Supplementary 
File Section 2 (the GO annotation results of SM genes, 
from Supplementary Table 2–1 to Supplementary 
Table 2–3) and Supplementary File Section 3(the GO 
annotation results of FM genes, from Supplementary 
Table 3–1 to Supplementary Table 3–3).

DISCUSSION

To ensure the reliability of the results, we first 
chose a large sample set (8,676 samples) to identify the 
SM and FM genes. Then we compared three long-term 
(species) evolutionary characteristics (the percentage 

Figure 6: Comparison of the r2 value between SM and FM genes. A. A bar chart of the SM genes against the FM genes. B. Box 
plots of the SM genes against the FM genes for each of the 13 1000 genomes project populations.



Oncotarget40242www.impactjournals.com/oncotarget

of the orthologous genes, evolutionary rate (dn/ds) and 
protein sequence identity) and two short-term (human) 
evolutionary characteristics (the SNP density and LD 
degree) between the SM and FM genes. We came to the 
following six conclusions: (1) the SM genes had a greater 
percentage of the orthologous genes than FM genes for all 
the 21 species; (2) the SM genes had a lower evolutionary 
rate than the FM genes for all 21 species; (3) the SM genes 
had a higher protein sequence identity than FM genes for 
all 21 species; (4) the SM genes had a lower SNP densities 
than the FM genes; (5) the SM genes had a higher degree 
of LD than the FM genes for all 11 HapMap populations; 
and (6) the SM genes had a higher degree of LD than the 
FM genes for all 13 1000 genomes populations. These 
conclusions supported the hypothesis that the SM genes 
were more evolutionarily conserved than the FM genes.

Furthermore, we also compared the functional 
difference between the SM and FM genes using the GO 
database. The BP and MF categories were considered. The 
comparison showed that SM genes were mainly annotated 
to metabolic processes maintaining the basic survival 
of the cell, while FM genes were mainly annotated to 
processes or functions interacting with the environment, 
such as sensory perception of smell and sensory perception 
of chemical stimulus. A broad definition for metabolism is 
the sum of the biochemical processes of living organisms 
[20]. Metabolism performs a fundamental role in biology 
and impacts almost all functions of cells [21]. Many 
studies have demonstrated the relationship between 
metabolism and the pathogenesis of disease [20, 22, 23], 
implying that the SM genes involved in metabolic 
processes play crucial roles in the genome. These genes 
might have stable genomic structures, and undergo few 
mutations and recombination events during evolution. 
Compared with the SM genes, the FM genes showed less 
evolutionary conservation in both long-term evolutionary 
features and short-term evolutionary features. They were 
mainly involved in the response to environmental stimuli, 
implying that the FM genes exhibit less genomic stability 
and evolve faster during evolution to allow adaptation to 
changes in the environment.

To test whether the results of our study were strong 
and reliable, we also extracted top (bottom) 15% and 
top (bottom) 25% genes (as ranked by FC values) and 
investigated the difference of evolutionary features for the 
two extreme gene sets. We found that the results of 15% 
and 25% are consistent with that of top and bottom 20%. 
The results for the top (bottom) 15% and top (bottom) 
25% of genes can be found in the Supplementary File 
Section 4 for 15% (from Supplementary Figure 4–1 to 
Supplementary Figure 4–10 and from Supplementary 
Table 4–1 to Supplementary Table 4–4), and Section 5 for 
25% (from Supplementary Figure 5–1 to Supplementary 
Figure 5-10 and from Supplementary Table 5-1 to 
Supplementary Table 5-4).

In this study, considering the nonuniform of 
methylation levels along the gene region, we re-analyzed 
the relationship between the fluctuation of methylation 
levels and evolutionary conservation on 5 different DNA 
elements including exon, intron, 3’UTR, 5’UTR and 
upstream regions of the transcription start site (TSS1500). 
For each region, we found that the results still supported 
that the SM genes had higher evolutionary conservation 
than FM genes. The results for 5 different regions can 
be found in the Supplementary File Section 6 for exon 
(from Supplementary Figure 6-1 to Supplementary 
Figure 6-10 and from Supplementary Table 6-1 to 
Supplementary Table 6-4), Section 7 for intron (from 
Supplementary Figure 7-1 to Supplementary Figure 7-10 
and from Supplementary Table 7-1 to Supplementary 
Table 7-4), Section 8 for 3’UTR (from Supplementary 
Figure 8-1 to Supplementary Figure 8-10 and from 
Supplementary Table 8-1 to Supplementary Table 8-4), 
Section 9 for 5’UTR (from Supplementary Figure 9-1 
to Supplementary Figure 9-10 and from Supplementary 
Table 9-1 to Supplementary Table 9-4) and Section 
10 for TSS1500 (from Supplementary Figure 10-1 to 
Supplementary Figure 10-10 and from Supplementary 
Table 10-1 to Supplementary Table 10-4). These results 
indicated that the nonuniform of methylation levels along 
the gene region had little effect on the analysis result.

As mentioned above, SM genes were defined as 
genes that have stable DNA methylation levels in all cell 
types of every tissue under normal or disease conditions. 
Therefore, all 8676 samples from the 108 series of 
GPL13534 were put together to form a large data set and 
used to compare the evolutionary conservation between 
SM and FM genes. To illustrate whether the disease 
condition could influence the results, we used a methylation 
dataset (GSE40699) which included 60 different normal 
cell lines from ENCODE Project and investigated 
the relationship between the stability of methylation 
status and evolutionary conservation. The results still 
supported the hypothesis that the SM genes had higher 
evolutionary conservation than FM genes (for details, 
see Supplementary File Section 11, from Supplementary 
Figure 11-1 to Supplementary Figure 11-10 and from 
Supplementary Table 11-1 to Supplementary Table 11-4). 
The consistency of the results suggested that the disease 
information did not affect the results. These tests indicated 
that our results are highly reliable.

By comparing of the evolutionary features between 
the SM genes and the FM genes, we got results and 
conclusions supporting that genes with stable DNA 
methylation levels show higher evolutionary conservation 
than genes with fluctuant DNA methylation levels. These 
results and conclusions may benefit for the following 
researches associated with the stability of methylation levels 
or evolutionary conservation. Based on these results, we 
could further explore the relationship between the stability 
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of methylation levels and the stability of other omics such 
as genomics, transcriptome and proteomics. We also could 
try to investigate the relationship between the stability of 
methylation levels and complex diseases. Ultimately, we 
expect that our results will improve our understanding of 
the stabilizing mechanisms of biological systems.

MATERIALS AND METHODS

DNA methylation data

The DNA methylation data for human genes 
were obtained from the NCBI GEO database [24, 25]. 
We downloaded methylated and unmethylated signal 
data of all the 108 series from the GPL13534 platform 
(Illumina HumanMethylation450 BeadChip, including 
485,577 probes). All the methylated and unmethylated 
signal values were normalized [26]. The total number of 
samples was 8,676. For each sample, we used the -value 
to represent the methylation status at a probed location. 
The -value was defined as

 (1)

, where  is the methylated signal and  is the 
unmethylated signal at a probed location and 100 is 
a constant for regularizing the beta value when both 
methylated and unmethylated probe intensities are low 
[27]. We then mapped the probes to genes based on the 
annotation information of the platform. The methylation 
level of a gene,, was defined as the average -values 
of probes mapped to the gene . Considering the possible 
batch effect among different series, we performed 
adjustment for  in different series using the Empirical 
Bayes (EB) batch correction method [28]. Ultimately, the 
DNA methylation data set included 21,231 genes and their 
DNA methylation levels in 8,676 samples.

SM genes and FM genes

For a gene , we use the variance of  to measure 
the variations of DNA methylation levels. In this study, the 
variance of  is also called the fluctuation coefficient, FC. 
The FC of a human gene  is defined as:

 (2)

where  is the DNA methylation level of gene  in the 
 th sample,  is the number of samples examined, and  
is the average DNA methylation level of gene  across the 
 samples. A higher  value indicates larger variations 
in DNA methylation levels across samples, and a lower 
 value indicates lower variations (or higher stability) 
in DNA methylation levels across samples. We then sorted 
the genes from low  values at the top to highest  
values at the bottom. The top 20% of sorted genes are used 
as SM genes, and the bottom 20% of sorted genes are used 

as FM genes. Finally, we obtained 4,247 SM genes and 
4,247 FM genes.

Orthologous genes

Orthologous genes of the human genes were 
downloaded from the Ensemble database (ftp://ftp.ensembl 
.org/pub/release-69/mysql/ensembl_mart_69) [29–31]. 
There were 21 species (Full names and abbreviations of the 
21 species can be seen in Supplementary Table S5) which 
had non-null data. We extracted the one-to-one orthologous 
genes [32], and the dn (rate of non-synonymous 
substitutions) and ds (synonymous substitutions) values 
from the downloaded files of 21 species. For SM and FM 
genes, the percentage of orthologous genes for each species 
was calculated. For each pair of human-other species 
orthologous genes, we calculated the evolutionary rate  
dn/ds.

To calculate the sequence identity, we downloaded 
the protein sequences between pairwise human-other 
species orthologous genes from BioMart (http://www.
ensembl.org/biomart/martview) [33, 34]. The BLASTP 
program and the BLOSUM62 matrix [35, 36] were used 
to align the orthologous sequences. The sequence identity 
was defined as the percent identity of the match.

SNP data

The SNP data were downloaded from the NCBI SNP 
database (http://www.ncbi.nlm.nih.gov/SNP/) [37]. The ID 
numbers (rs#) and positions of the SNPs were extracted. 
We then downloaded the location information (start and 
end position) of SM and FM genes from NCBI (ftp://ftp 
.ncbi.nlm.nih.gov/genomes/MapView/), and mapped the 
SNPs to the SM and FM genes based on the chromosomal 
location. Finally, we calculated the SNP density (the 
number of SNPs divided by the length of the gene) for 
each SM or FM gene.

The HapMap project data

We used public genotype data of common SNPs 
from the HapMap project [38, 39]. The raw data were 
downloaded from the NCBI HapMap website (ftp://ftp 
.ncbi.nih.gov/hapmap). 1,117 unrelated individuals from 
11 global populations [40] were extracted from the raw 
data (Full names and abbreviations of the 11 HapMap 
populations can be seen in Supplementary Table S5). 
The SNPs included in this study passed the following 
quality control (QC) criteria: minor allele frequency 
(MAF) is greater than 0.01, P-value of the Hardy-
Weinberg equilibrium (HWE) test is greater than 0.001, 
call frequency is greater than 0.75, and the SNP must be 
detected in all 11 populations. We then mapped the SNPs 
to the SM and FM genes based on the location information, 
and calculated the pairwise linkage disequilibrium (LD) 
coefficient, r2, for all the SNPs in an SM or FM gene 
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region using the Haploview software [41]. The median 
pairwise r2 in a gene region was calculated and compared 
between SM and FM genes.

The 1000 genomes project data

To verify our conclusions, we used another high-
quality data set, the 1000 genomes project [42], to 
compare the degree of LD between SM and FM genes. 
The raw genotype data were downloaded from the 
NCBI 1000 genomes website (http://ftp.ncbi.nlm.nih.
gov/1000genomes/). 1,063 unrelated individuals from 
14 global populations were extracted from the raw 
dataset (for details, see Supplementary Table S5). Only 
13 populations were included in this study, because the 
IBS population only had 14 samples. The SNP genotype 
data of the 1000 genomes project were filtered based 
on the same QC criteria as the HapMap genotype data. 
Ultimately, the r2 for each of the SM and FM genes were 
calculated.

Gene ontology (GO) annotation

To better understand the biological reasons for the 
observed differences in evolutionary conservation, we 
compared the Gene Ontology (GO) of the SM and FM 
genes [43–45]. We used the DAVID software [46] to 
annotate the SM and FM genes. The biological process 
(BP) and molecular function (MF) were used to compare 
the functional differences between SM and SM genes. The 
cell component (CC) annotation results are also listed in 
Section 2 and 3 of the Supplementary File.

Statistical analysis

We used the Wilcoxon rank sum test to compare 
whether an evolutionary feature was significantly 
different between the SM and FM genes for each 
individual species or population. We used the Wilcoxon 
signed rank test [47] to test whether the median of an 
evolutionary feature was significantly different between 
the SM and FM genes across all species or populations. 
All data were processed using Perl scripts (http://www 
.activestate.com/activeperl). All statistical graphics and 
calculations were completed using R scripts (http://
cran.r-project.org). All the Perl scripts and R scripts can 
be found at the website: http://www.bioapp.org/research/
SMvsFM.
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