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ABSTRACT:
As published recently in Cancer Cell, p53 impairs the apoptotic response to 

chemotherapy and clinical outcome in breast cancer. I discuss that, while treating 
tumors lacking wt p53, this phenomenon can be exploited to protect normal cells 
from chemotherapy because all normal cells have wt p53. Also, several therapeutic 
paradigms can be reassessed, including the role of cellular senescence in cancer 
therapy.

Background information

By demonstrating that p53-mediated senescence 
impairs the apoptotic response to doxorubicin (Dox), a 
DNA damaging and p53-inducing drug, Lozano and co-
authors suggest the reassessment of the paradigm for p53 
in cancer therapy [1]. Taking up this invitation, I will 
discuss how to spare normal cells from chemotherapy, 
while eliminating cancer cells lacking wt p53. 

In cell culture, any cancer cell can be killed by 
chemotherapy. But chemotherapy poorly discriminates 
cancer and normal cells. It damages both types of cells. 
Side effects limit the therapy, precluding the elimination of 
cancer cells(see appendix footnote 1). If we could protect 
vital normal tissues from chemotherapy without protecting 
cancer cells, then we could cure cancer.

Although this topic is not addressed by Lozano and 
co-workers, the paper hints on the solution. As described, 
doxorubicin-treated p53 mutant tumors failed to arrest 
proliferation, leading to abnormal mitoses and cell death, 
whereas p53 wild-type tumors arrested, avoiding mitotic 
catastrophe and cell death [1].  In tumors lacking p53, this 
can be exploited for selective protection of normal cells 
from chemotherapy. Let us see how.

From drug to drug combination

Since all normal cells have wt p53, its induction 
by Doxorubicin can in theory protect normal cells from 
the cytotoxicity of Doxorubicin itself. In contrast, tumor 
cells with mutant p53 will be selectively killed (Fig. 1 

A). Yet, the selectivity is difficult to achieve by using one 
drug. To do so, Doxorubicin should arrest normal cells 
without permanently damaging them. Therefore, doses 
of Doxorubicin should be low, just sufficient to induce 
p53 in normal cells. But at such doses, the damage may 
be not sufficient to cause mitotic catastrophe in most (or 
any) cancer cells. If the dose is increased, there will be 
harm to normal cells. Doxorubicin cannot protect and kill 
efficiently at the same dose.

The solution is to use two drugs (Fig. 1B): the first 
drug will induce p53 and the second drug will cause 
catastrophe during mitosis [2, 3]. Then, as Russian 
proverb goes, both “the wolves are sated, and the sheep 
are intact.” Low doses of Doxorubicin, which arrest cells 
with wt p53, do not arrest cells lacking wt p53. Cells 
lacking wt p53 enter mitosis. If such cells are treated with 
mitotic inhibitors (MI), then they, for sure, undergo mitotic 
catastrophe. In apoptosis-prone cells, this culminates in 
apoptosis (see appendix, footnote 2).

As a p53-inducing drug, Doxorubicin can be 
substituted with low doses of etoposide, actinomycin D 
and leptomycin.  In cell culture, these agents protected 
normal cells as well as cancer cells with wt p53 from 
mitotic inhibitors (MI) such as paclitaxel, docetaxel, 
vinblastine and nocodazole as well as inhibitors of mitotic 
kinases [2-10]. Especially Actinomycin D could be used 
at extremely low concentrations [6, 8].Still, even at low 
doses, DNA-damaging p53-inducing drugs may be viewed 
as too damaging. Also, they may arrest certain types of 
cancer cells by p53-independent mechanism, requiring 
the inclusion of Chk1 inhibitors in the combination 
[11].  DNA damaging drugs can be substituted by Mdm2 
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Figure 1: Protection of normal cells: From a single drug to ordered combinations. (A) Doxorubicin (Dox) causes G1/G2 
arrest (red) in wt p53 cells, whereas cancer cells with mutant p53 enter mitosis (M) and undergo mitotic catastrophe. (B) Low doses of 
doxorubicin (low DOX) cause a more gentle G1/G2 arrest (orange) in normal cells, whereas cancer cells with mutant p53 enter mitosis (M) 
and are killed by MI (mitotic inhibitor such as Taxol). (C) Nutlin-3a plus rapamycin cause the gentlest G1/G2 arrest (yellow) in normal 
cells, whereas cancer cells with mutant p53 enter mitosis (M) and are killed by a highly apoptotic combination of MI plus TRAIL or TNF.
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inhibitors such as nutlin-3a and MI-219, which induce p53, 
without DNA damage [12-15]. Mdm2 inhibitors can be 
used for protection of normal cells during chemotherapy 
of tumors lacking p53. Nutlin-3a selectively protects cells 
with wt p53 [7, 10, 16-18]. In animals, Mdm2 inhibitors 
do not have dose-limiting side effects [14, 19, 20]. And 
most importantly, nutlin-3a decreases side effects of 
chemotherapy in mice [20]. The main disadvantage of 
Mdm2-inhibtors is that they are not approved yet for 
clinical use. Nutlin-3a analogs are undergoing clinical 
trials as anti-cancer drugs not as protective agents. They 
may (or may not) fail as anticancer drugs. But their 
utility, as protective drugs, is valuable. P53 may cause 
senescence and reversible quiescence [21-28]. A brief 
treatment with Nutlin-3a induces reversible arrest in most 
normal cells [29, 30] (see appendix, footnote 3). Still, to 
avoid senescence caused by nutlin-3a in some cell types, 
rapamyin can be added to the drug combination (Fig. 1C). 
Not only does rapamycin suppress the conversion from 
reversible arrest to senescence [22, 31] but it also can 
protect normal cells from chemotherapy [17, 32]. When 
normal cells are firmly protected, then additional drugs 
can be added to the combination to increase apoptosis in 
cancer cells (Fig. 1C). For example, cancer cells arrested 
in mitosis by MI become extremely sensitive to TNF and 
TRAIL. During mitosis, transcription is inhibited and this 
sensitizes cells to TNF and TRAIL. When transcription 
is inhibited, TNF can induce apoptosis even in the most 
apoptosis-reluctant cells [33], a goal of cancer therapy 
(see the next section). An example of cyclotherapeutic 
combination (footnote 4) containing 4 drugs is: nutlin-3a 
+ rapamycin followed by paclitaxel + TRAIL.

Furthermore, the strategy to protect normal cells is 
not limited to targeting wt p53 (or loss of p53). It may 
involve other targets present or absent in cancer cells 
[34, 35]. For example, Rb is often lost in human cancer, 
rendering cells resistant to arrest caused by CDK4/6 
inhibitors [36]. Yet, CDK4/6 inhibitors arrest normal cells. 
Therefore, co-administration of PD0332991 (a CDK4/6 
inhibitor) plus carboplatin provided protection of bone 
marrow, without protection of Rb-deficient tumors [37]. 
Similarly, administration of PD0332991 to mice reduced 
treatment toxicity of radiation without compromising 
the therapeutic tumor response [38, 39]. Loss of Rb 
and p53 coincided in the most aggressive cancers [40, 
41], rendering them a perfect target for cyclotherapy.
Also, fasting can selectively protect normal cells from 
chemotherapy and decrease side effects in patients [42-
45]. Among other effects, fasting inhibits the nutrient-
sensing mTOR pathway [46]. Noteworthy, a combination 
of rapamycin and metformin protected normal cells from 
MI [17]. Furthermore, the combination of a protective 
drug (a substrate of Pgp/MRP) plus a cytotoxic drug (not 
a substrate) selectively kills multidrug resistant cancer 
cells, while sparing non-resistant cells [4, 47-49]. Finally, 
there are several other strategies of selective protection of 

normal cells [50-58].

Combining letters in words, words in phrases

It is difficult enough to treat cancer. Why should 
this be done in the hardest way: by using a single drug 
and scrambled combinations, instead of cyclotherapeutic 
and other ordered combinations? In analogy, it is difficult 
to write poems like Pushkin, for instance, but absolutely 
impossible to write them by using one letter. By using at 
least 2 “letters”, we can increase a therapeutic window. 
And by using 4 or 5, one can design effective and selective 
therapy. Still, p53-dependent cyclotherapy will eliminate 
cells with mutant p53 while sparing cancer cells with wt 
p53, thus selecting for wt p53 tumors. And such therapy 
cannot be used against wt p53 cancers to start with. Of 
course ordered combinations are not limited to targeting 
p53 [34, 35, 48].

One general solution is alternating super-
combinations: ordered (cyclotherapeutic) combinations 
can be alternated with other modalities such as 
conventional therapy, cancer- and tissue- selective drugs 
[59-63]. For example, nutlin-3 is cytotoxic to cancer cells 
with wt p53 [19, 64, 65]. While causing response, nutlin-
3a (as any drug) will select for drug (nutlin) resistance. 
In fact, nutlin-3a selects for mutant p53 [66]. Then the 
therapy with nutlin-3a can be followed by cyclotherapeutic 
combination. This alternating strategy was recently 
discussed in detail. Like letters (drugs) can be combined in 
words (ordered combinations), the words can be combined 
in phrases.

Cell senescence is not first choice

An important point to reassess is whether 
senescence is a goal of cancer therapy. Fifteen years 
ago, it was accepted that it is apoptosis that is a goal [67-
70]. In fact, chemotherapy induces apoptosis in curable 
malignancies such as leukemia, lymphoma and childhood 
cancers.  Unfortunately, most common cancers are 
apoptosis-reluctant. In most common cancers, apoptosis 
is not a predictive marker of the therapeutic response. 
However, one may argue that these cancers are poorly 
curable exactly because chemotherapy does not induce 
apoptosis. So it is not that apoptosis is not a goal, simply 
it is not easily achievable in the majority of cancers. 
(Note: Still certain drug combinations cause apoptosis in 
the most apoptosis-reluctant cells. These combinations 
could be used when normal cells are protected as shown 
in figure 1C). In apoptosis-reluctant cells, standard 
chemotherapy cause either slow cell death or senescence 
(at low drug concentrations). Therefore, it was suggested 
that senescence is a feasible goal [71, 72], perhaps 
because it can by induced in common cancers by almost 
any cytostatic drug. Conventional anti-cancer drugs at 
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low concentrations all induce senescence in cell culture 
but do not cure cancer patients. Either they do not induce 
senescence in the organism or senescence is not sufficient 
or both.

The paper by Jackson et al demonstrated that 
senescence is not effective, whereas apoptosis is effective 
[1]. Furthermore, a senescent phenotype including hyper-
secretory and pro-inflammatory features seems to be 
counter-productive [1], in agreement with an existing 
paradigm [71, 73]. Senescence is a form of cell-cycle 
arrest, when oncogenic and growth-promoting pathways 
are still active [74]. Whereas cell-cycle arrest is a barrier 
to cancer growth (by definition), a senescent phenotype 
(due to over-activation of growth-promoting pathways in 
arrested cells) is not [74]. Two therapeutic approaches can 
be suggested. First, senescent cells can be further targeted 
[75]. Second, rapamycin can partially suppress the 
senescent phenotype without abrogating cell cycle arrest 
[31]. If the senescent phenotype is not of any importance 
for anti-cancer therapy, co-treatment with rapamycin will 
not prevent antitumor effect of doxorubicin. This could be 
tested in the Lozano model [1]. Noteworthy, rapamycin 
can be employed to prevent senescence of normal cells 
(Fig. 1C) and cancer cells. And the same modalities 
(rapamycin, metformin, nutlin-3a, fasting) can be used for 
protection of normal cells and for cancer prevention [76-
80]. And calorie restriction and rapamycin extend lifespan 
in diverse species [81-83]. This may be not a co-incidence. 
But this is a topic for another article.

Appendix: Footnotes

Footnote 1: In cancer patients only a few types of cancer are 
curable by chemotherapy alone. Curable cancers arise from tis-
sues prone to apoptosis such as lymphoid, testicular, embryonic 
and placental/endometrial. For example, testicular germ cell tu-
mors with wt p53 are very sensitive to p53-inducing chemother-
apy [84, 85]. Following therapy, relapsed tumors often lack wt 
p53 and are resistant to therapy [86-88]. Most common (aging-
related) cancers such as breast, prostate, colon, gastric, thyroid, 
pancreatic, lung are hardly curable by chemotherapy, because 
they are not more sensitive to chemotherapy than normal cells 
are. In such cases, chemotherapy cannot eliminate cancer cells, 
without destroying normal cells of vital tissues. 
Footnote 2: Cells can be apoptosis-prone and apoptosis-re-
luctant [89], which in part determines cell fate following mitotic 
arrest [90]. These effects varied dramatically depending on the 
drug and cell line [91]. In general, p53 is not a marker of re-
sistance to therapy because apoptosis-prone tumors tend to lose 
p53 (to avoid apoptosis), whereas apoptosis-reluctant cancers 
may retain wt p53 [92]. 
Footnote 3: The choice between quiescence and senescence 
is determined in part by the activity of the nutrient-sensing, 
growth-promoting mTOR pathway [24-28, 93-96]. When the 
cell cycle is arrested (by any means) but growth-promoting path-
ways are not, then cells become senescent. Rapamycin decel-
erates geroconversion (the conversion from reversible arrest to 
senescence) [22, 31]. By inhibiting gerogenic pathways such as 

mTOR, nutlin-3a by itself can suppress senescence, thus causing 
reversible arrest instead [21-23].
Footnote 4: Cyclotherapeutic and other ordered combina-
tions are antagonistic in normal cells [97]. So far, cyclotherapeu-
tic combinations were not tested in the clinic, albeit drugs that 
could be used in cyclotherapetic combinations are used in con-
ventional (scrambled) combinations. In conventional (scram-
bled) combinations, each drug is intended to damage cells, not to 
selectively protect normal cells. Drugs are combined for synergy 
usually at full doses, thus increasing side effects.  In contrast 
in cyclotherapeutic (ordered) combinations, the choice of drugs, 
doses and sequences are the key.
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