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ABSTRACT
Anaplastic gliomas are characterized by variable clinical and genetic features, but 

there are few studies focusing on the substratification of anaplastic gliomas. To identify 
a more objective and applicable classification of anaplastic gliomas, we analyzed 
whole genome mRNA expression profiling of four independent datasets. Univariate 
Cox regression, linear risk score formula and receiver operating characteristic (ROC) 
curve were applied to derive a gene signature with best prognostic performance. 
The corresponding clinical and molecular information were further analyzed for 
interpretation of the different prognosis and the independence of the signature. Gene 
ontology (GO), Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis 
(GSEA) were performed for functional annotation of the differences. We found a 
three-gene signature, by applying which, the anaplastic gliomas could be divided 
into low risk and high risk groups. The two groups showed a high concordance with 
grade II and grade IV gliomas, respectively. The high risk group was more aggressive 
and complex. The three-gene signature showed diagnostic and prognostic value in 
anaplastic gliomas.

INTRODUCTION

Gliomas are the most common and lethal 
intracranial tumors [1]. According to the 2007 World 
Health Organization (WHO) classification [2], they have 
been divided into different grades. Even within the same 
WHO grade, the prognosis of patients varied greatly, 
which revealed the shortcomings of current morphology 
based classification systems. Thus, great efforts have been 
spent on finding a more objective and clinically applicable 
classification of gliomas.

The classification systems based on mRNA 
expression profiling of glioblastoma multiforme (GBM) 
or all grades of gliomas have been reported [3–5]. 

Previous studies classified WHO grade II–IV gliomas 
into G1, G2 and G2 or high-grade gliomas into proneural, 
proliferative, and mesenchymal, or GBM into proneural, 
neural, classical, and mesenchymal molecular subgroups. 
The predictive [3] and prognostic value [4] of molecular 
classification of gliomas contribute greatly to personalized 
medicine. But there are few studies focusing on the 
classification of anaplastic gliomas alone. Anaplastic 
gliomas, i.e. WHO grade III gliomas, including anaplastic 
astrocytoma, anaplastic oligodendroglioma and anaplastic 
oligoastrocytoma, were reported to have a median overall 
survival (OS) of 37.6 months [6]. Although it is commonly 
considered that these tumors often invade neighboring 
tissue and are able to progress into grade IV secondary 
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glioblastoma multiforme (GBM) [7], there are few studies 
that could distinguish those tumors from the whole.

In the present study, we obtained whole genome 
mRNA expression profiling data from Chinese Glioma 
Genome Atlas (CGGA) as training set and three 
additional datasets as validation sets. By applying Cox 
regression, linear risk score formula and receiver operating 
characteristic (ROC) curve, we pinpointed a three-gene 
signature. The diagnostic and prognostic value of which 
were identified and validated in CGGA and validation sets. 
There were vital differences between low risk and high 
risk anaplastic gliomas in clinical and molecular features 
and functional annotations.

RESULTS

Prognostic signature identified in CGGA 
anaplastic gliomas

We previously published mRNA microarray data of 
225 Chinese samples (220 WHO grade II–IV gliomas and 
5 normal brain controls) [4]. Here, we used 34 anaplastic 
gliomas from the dataset as training set. Univariate Cox 
regression analysis adjusted by 10,000 times permutation 
tests was performed on the 34 anaplastic glioma samples. 
1173 probes (1040 genes) were significantly associated 
with OS (p < 0.05, FDR < 0.01). The top 10 prognostic 
probes were listed in Table 1. To assess the prognostic 
performance of signatures derived from the top n genes 
ranked ascendingly by p value, we applied ROC curve to 
obtain a series of AUCs (Supplementary Figure S1). The 
final signature was derived from the top four probes (three 
genes), by applying which, we could achieve the maximal 
AUC (0.9382). The three genes were GPR85, SHOX2 and 
HMBOX1.

We then applied the four probes to develop a 
signature using the risk-score method. The signature risk 

score was calculated for each of the 34 patients in the 
training set and then was used to divide them into a high 
risk group and a low risk group based on the cutoff value 
(median risk score). We observed that patients in high risk 
group had a significantly shorter OS than patients in low 
risk group (p < 0.001, Figure 1A). The risk score and OS 
distribution were shown in Figure 2A and 2B.

Validation of the prognostic value of the 
signature in two additional datasets

For the remaining 67, 80 and 263 anaplastic gliomas 
in REMBRANDT, GSE16011 and TCGA datasets, we 
used the same β value obtained from the training set to 
calculate the risk scores. In each validation set, patients 
were divided into high risk group and low risk group 
according to the risk score (cutoff: median risk score). The 
prognostic value of the signatures were validated by all the 
datasets (p < 0.001 for all the three datasets, Figure 1B, 1C 
and Supplementary Figure S2A) who had results similar to 
that of the training set. The risk score and OS distribution 
were also shown in Figure 2A, 2B, Supplementary Figure 
S2C and S2D.

The grade II and grade IV like properties of 
anaplastic gliomas

As was shown in Figure 1D, low risk and high risk 
anaplastic glioma patients illustrated similar prognosis 
with grade II (p = 0.61) and IV (p = 0.68) glioma patients, 
respectively. Namely, the anaplastic glioma patients 
displayed distinct grade II and grade IV like properties 
in prognosis. Similar results were validated in the three 
validation sets (Figure 1E, 1F, Supplementary Figure S2B).

Meanwhile, in order to study the diagnostic value 
of the signature, we performed hierarchical clustering 
of all grades of glioma patients in the training set by the 
expression of the 4 probes. Anaplastic gliomas showed 

Table 1: Top 10 prognostic probes identified by Cox regression
Probe ID Symbol Hazard Ratio β P value AUC

A_24_P21161 GPR85 0.368 −1.000 1.16E-05 0.7188

A_23_P215687 GPR85 0.135 −2.002 1.55E-05 0.8244

A_24_P300021 SHOX2 3.151  1.148 2.00E-05 0.8846

A_23_P134684 HMBOX1 0.103 −2.273 5.18E-05  0.9382a

A_24_P102293 SLITRK5 0.552 −0.594 5.44E-05 0.9182

A_23_P210323 CEP68 0.149 −1.904 5.87E-05 0.9239

A_24_P417526 FRG1B 0.217 −1.528 7.51E-05 0.9346

A_23_P138574 ATE1 0.112 −2.189 7.83E-05 0.9379

A_23_P3602 NUDT7 0.348 −1.056 9.58E-05 0.9290

A_24_P167984 ATMIN 0.052 −2.957  0.0001195 0.9274

athe maximum of AUC.
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Figure 1: Prognostic value of the signature in training and validation sets and the grade II and grade IV like properties 
of anaplastic gliomas. Patients in low risk group showed a better prognosis than those in high risk group. The two groups also respectively 
showed similar prognosis with grade II and grade IV gliomas. A, D. CGGA data; B, E. GSE16011 data; C, F. REMBRANDT data; L, low 
risk group; H, high risk group; II, WHO grade II; IV, WHO grade IV.

Figure 2: Distribution of risk score, OS, gene expression and clinical or molecular pathological features in CGGA, 
GSE16011 and REMBRANDT datasets.
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the most variable features compared with the other two 
grades. The vast majority of low risk anaplastic gliomas 
clustered closely to grade II gliomas while the high 
risk ones clustered in the branch of grade IV. The four 
probes showed definite expression difference between 
the two branches (Figure 3A). The validation sets showed 
high consistency with these findings (Figure 3B, 3C 

and Supplementary Figure S2E). The mutation profile, 
analyzed in TCGA dataset (Supplementary Figure S2E), 
also showed similarities to GBM patients: lower IDH1/2, 
TP53 and ATRX mutation rates and higher EGFR and 
PTEN mutation rates. The results above suggested that the 
signature was also a good diagnostic marker for anaplastic 
gliomas.

Figure 3: Unsupervised hierarchical clustering of WHO grade II–IV glioma patients based on the expression of the 
three genes. Grade II and grade IV gliomas clustered distinctively while grade III gliomas showed a mix of both branches. The vast 
majority of low risk anaplastic gliomas (green in risk group) clustered closely to grade II gliomas (green in grade) while the high risk ones 
(red in risk group) clustered in the branch of grade IV (red in grade). A. CGGA data; B. GSE16011 data; C. REMBRANDT data.
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Expression difference of the three genes in low 
risk and high risk groups

Although the three genes were screened from Cox 
regression, there was a significant difference in expression 
between low risk and high risk group. In accordance with 
previous findings by hierarchical clustering, SHOX2 
was overexpressed in high risk group while GPR85 and 
HMBOX1 showed a reverse situation (Figure 2C and 
Supplementary Figure S2E). None of the three genes was 
widely reported in the field of neuro-oncology. SHOX2, 
a member of the homeobox family of genes, encodes a 
protein characterized as a transcriptional regulator. It 
has been widely studied in lung cancer as a diagnostic 
methylation biomarker [8–10]. GPR85, also known as 
SREB2, is a members of the G protein-coupled receptor 
(GPCR) family. It has been found to be a schizophrenia 
risk factor [11–13]. HMBOX1 is a transcription factor, 
associated with differentiation [14, 15] and immune 
system [16, 17].

Clinical and molecular features of low and high 
risk anaplastic glioma patients

To assess the independence of current risk groups 
with previous widely accepted factors and classification 
system, we collected and analyzed the corresponding 
clinical and molecular information of anaplastic glioma 
patients from the datasets. As was shown in Figure 2D, 
Supplementary Figure S2E and Table 2, especially in the 
large dataset of TCGA samples, the risk group showed 
significant correlation with known prognostic factors (age, 
histology, IDH gene mutation, pre-operative KPS).

In TCGA dataset, we further performed univariate 
and multivariate cox regression analysis. On univariate 
analysis, the risk score was significantly associated with 
survival (p < 0.001) along with IDH status, patient age 
and histology. On multivariate analysis, the risk score was 
also significant (p = 0.036) after adjusting for patient age, 
histology and IDH gene mutation (Table 3).

Functional annotation of the different prognosis

In order to find out the functional basis of the 
notable difference in prognosis, we also performed SAM 
on low and high risk group in three microarray datasets. 
After 1000 times of permutation test, those with FDR < 0.1  
were considered as differently expressed. And the 
overlapped genes (401 genes with decreased expression 
and 308 genes with increased expression in high risk 
group, Supplementary Table S2) were further analyzed by 
GO analysis. As was shown in Figure 4A, the oncogenic 
pathways, such as invasion, proliferation, kinase activity, 
metabolism, and development were significantly enriched 
in high risk group. By applying GSVA, the previously 
reported proliferation associated genes [5] also showed 
higher enrichment score in high risk group (Figure 4B). 

We further validated the results in TCGA RNAseq data. 
GSEA results showed that pathways associated with DNA 
repair, DNA replication, protein binding, and so on were 
highly enriched in high risk group (Figure 4C and 4D). 
It at least partially explained the malignancy and poor 
survival of patients in high risk group.

DISCUSSION

The shortcomings of current histopathologic 
classification, such as a high rate of divergent diagnosis, 
poor prognostic and predictive value, highlighted the 
urgent need for an objective molecular based classification. 
Therefore, much effort have been spent on that of gliomas, 
which are the most common and lethal intracranial tumors. 
TCGA, CGGA and many other groups have reported their 
classification system for GBM alone or all grades of 
gliomas. But little has been done on anaplastic gliomas. 
Here we reported a three-gene signature identified 
and validated by mRNA expression profiling in four 
independent datasets. Risk score method is a widely used 
approach to develop a prognostic signature [18–21]. The 
expression levels of the elements and their independent 
contribution to prognosis were taken into consideration. 
By applying the signature, anaplastic gliomas could be 
divided into low risk and high risk group, which were in 
high consistency with grade II and grade IV gliomas in 
molecular and clinical properties. These findings will aid 
in improving the classification of brain tumors, and the 
selection of patients with genetically homogeneous tumors 
for clinical trials.

Anaplastic gliomas were commonly considered to 
have a medium prognosis between grade II and grade IV. 
Here, we found that they were more like a group of grade 
II and grade IV like gliomas based on the expression of 
three genes: GPR85, SHOX2 and HMBOX1. The two 
groups showed distinct clinical, molecular features and 
prognosis, which were extremely similar to that of grade 
II and grade IV gliomas, respectively. Our findings raised 
a more practical question: how should patients with 
anaplastic gliomas be treated? Could a more aggressive 
therapy benefit the patients in high risk group more? Are 
we over treating those who are now marked low risk?

Anaplastic gliomas have been usually treated 
initially by postoperative radiotherapy or chemotherapy 
alone [22], and the NOA-04 trial had showed similar 
results between the two schemes [23]. Based on the 
randomized clinical trials [24, 25], there seemed to be no 
benefit from radiotherapy following PCV chemotherapy in 
patients with anaplastic gliomas. But the long-term follow-
up of EORTC Brain Tumor Group Study 26951 reported 
that the addition of six cycles of PCV after 59.4 Gy of RT 
increases both OS and PFS in anaplastic oligodendroglial 
tumors [26]. And long-term results of RTOG 9402 also 
revealed that for patients with 1p/19q codeleted AO/AOA, 
PCV plus RT may be an especially effective treatment [27].
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As there have been reports on subtype specific 
therapy for anaplastic gliomas or other grades of 
gliomas, it is reasonable for us to infer that anaplastic 
gliomas in low risk and high risk group should be 
given different therapies. A more specific therapy could 
benefit patients more by giving them a better quality 
of life.

MATERIALS AND METHODS

Datasets and molecular subtype annotation

Whole genome mRNA expression microarray 
data and corresponding clinical information (histology, 
gender, age, Karnofsky Performance score (KPS), 

Table 2: Characteristics of patients in low risk and high risk group in four datasets
CGGA

p
16011

p
REMBRANDT

p
TCGA

p
LR HR LR HR LR HR LR HR

Sample Size 17 17 40 40 34 33 131 132

F 8 8 15 13 12 8 48 65

Gender M 9 9 > .05 25 27 > .05 13 16 > .05 83 67 = 0.05

NA 0 0 0 0 9 9 0 0

Age 38.4 ± 11.2 45.1 ± 15.3 > .05 43.1 ± 11.8 51.9 ± 13.7 < .01 NA NA 41.6 ± 12.7 49.3 ± 13.2 < 0.01

AA 4 4 8 6 20 23 48 76

Histology AO 8 3 > .05 25 17 > .05 12 9 > .05 50 32 < 0.01

AOA 5 10 7 17 2 1 33 24

WT 6 8 8 18 NA NA 9 64

IDH1 mutation Mut 11 9 > .05 21 15 > .05 NA NA 122 68 < 0.01

NA 0 0 11 7 NA NA 0 0

Radiotherapy Y 17 15 35 31 NA NA NA NA

N 0 2 > .05 0 0 > .05 NA NA NA NA

NA 0 0 5 9 NA NA NA NA

Chemotherapy Y 16 11 9 6 NA NA NA NA

N 1 6 > .05 26 27 > .05 NA NA NA NA

NA 0 0 5 7 NA NA NA NA

KPS 87.6 ± 9.2 75.9 ± 12.3 < 0.01 86.2 ± 18.0 80.0 ± 20.8 > .05 NA NA NA NA

P value for age and KPS: t test; p value for others: chi-square test or Fisher’s exact test; LR, low risk group; HR, high risk 
group; F, female; M male; NA, not available; WT, wild type; Mut, mutation; Y, underwent radiotherapy/chemotherapy; 
N, not underwent radiotherapy/chemotherapy; KPS, Karnofsky performance status.

Table 3: Univariate and mutivariate cox analysis in TCGA anaplastic glioma samples
Univatiate Multivariate

HR 95% CI p HR 95% CI p

Lower Upper Lower Upper

Gender 0.898 0.549 1.467 0.666

Age 1.069 1.046 1.092 < 0.001 1.072 1.047 1.097 < 0.001

Histology 1.376 1.039 1.821 0.026 1.390 1.040 1.857 0.026

Risk score 1.146 1.086 1.208 < 0.001 1.069 1.004 1.137 0.036

IDH mutation 0.350 0.211 0.582 < 0.001 0.557 0.288 1.074 0.081

In cox regression analysis: gender was defined as 1, male, 0, female; histology was defined as 1, oligodendroglioma, 2, 
oligoastrocytoma, 3, astrocytoma; IDH gene mutation was defined as 1, mutated, 0, wild type.
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survival information and isocitrate dehydrogenase 
1 (IDH1) gene mutation status) were downloaded 
from CGGA database (http://www.cgga.org.cn) as 
training set [4]. The Repository for Molecular Brain 
Neoplasia Data (REMBRANDT, http://cabig.cancer.
gov/solutions/conductresearch/rembrandt/), GSE16011 
data (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE16011) and The Cancer Genome Atlas 
(TCGA) RNAseq data (http://cancergenome.nih.gov/) 
were obtained as validation sets. The RNAseq data were 
log2 transformed before the following analysis. The 
characteristics of patients from the four datasets were 
summarized in Supplementary Table S1. Prediction 
analysis of microarray (PAM) was performed to annotate 
the three datasets according to the TCGA and CGGA 
classification system as previously reported [4].

Signature development

For preliminary analysis, we first excluded 
anaplastic samples without survival data or had a overall 
survival of <60 days. Such short survival times are more 
likely to be caused by lethal complication rather than 
gliomas. The signature was developed as previously 
reported [19–21]. Univariate Cox regression and the 
corresponding permutation test were performed on 
the remaining 34 anaplastic glioma patients in CGGA 
data to get the corresponding Hazard Ratio (HR) and 
p value. After ranking the genes based on p value of Cox 
regression, a list of 1173 probes (1040 genes, p < 0.05, 
FDR < 0.01) were used to developed a linear combination 
of the gene expression level (expr) weighted by the 
regression coefficient derived from the univariate Cox 

Figure 4: Functional annotation of risk groups. A. GO analysis revealed the significant association of the genes with increased 
expression in high risk group with six main pathways. Column height: gene counts; point height: enrichment p value. B. Gene set variation 
analysis of proliferation associated genes in three datasets. The risk score (upper panel) was calculated with the formula described above 
and ranked from left to right. Gene set enrichment score (lower panel) of proliferation was analyzed by GSVA package of R. These genes 
showed higher expression with the risk score going from low to high. C. The top ten enriched pathways in high risk group, analyzed by 
gene set enrichment analysis of TCGA RNAseq data. D. three representative plots of GSEA from C.



Oncotarget36650www.impactjournals.com/oncotarget

regression analysis (β). The risk score for each individual 
was calculated as follows:

Risk score = exprgene1 × βgene1 + exprgene2 × βgene2 + …    
+ exprgene n × βgene n.

Patients with high risk scores were expected to have 
poor survival. By applying ROC curve (survivalROC 
package of R [28], compute time-dependent ROC curve 
from censored survival data using Kaplan-Meier method), 
we could keep on adding genes in the list from top to 
bottom to the signature to get a series of area under the 
curve (AUC). The final signature was derived from the 
top four probes (three genes), by applying which, we could 
achieve the maximal AUC (Supplementary Figure S1). 
According to the cutoff value (median risk score), patients 
in the training set were stratified into a high risk group and 
a low risk group.

Signature validation

The same β was applied to the validation sets. For 
the gene GPR85, which had two different β values in the 
training set, we chose the probe A_24_P21161 and the 
corresponding β value. It had a larger standard deviation 
(SD), and smaller β value and will be more likely to have 
a prognostic value with less likely to have a bias. Using 
SD or median absolute deviation (MAD) to filtering 
genes with multiple probes are widely used method 
[3]. And for genes with multiple probes in validation 
datasets, we used the average expression value of each 
gene to derive a risk score. For example, for gene A with 
n probes, the risk score = (βA× probe1+ βA × probe2+… 
+ βA × proben)/n. The differences in overall survival 
(OS) between high risk patients and low risk patients 
were estimated by using the Kaplan-Meier method and 
2-sided log-rank test. The differently expressed genes 
were identified by significance analysis of microarray 
(SAM). Those genes with increased expression in high 
risk patients were used for Gene Ontology (GO) analysis 
in DAVID (http://david.abcc.ncifcrf.gov/). Gene Set 
Variation Analysis (GSVA) and Gene Set Enrichment 
Analysis (GSEA) was also performed for functional 
annotation [29]. All the statistical analyses were 
performed by R or GraphPad Prism.

ACKNOWLEDGMENTS AND FUNDING

This work was supported by grants from 1. 
National High Technology Research and Development 
Program (No.2012AA02A508) 2. National Natural 
Science Foundation of China (No. 91229121) 3. Beijing 
Science and Technology Plan (No. Z131100006113018) 
4. National Key Technology Research and Development 
Program of the Ministry of Science and Technology of 
China (No. 2013BAI09B03, 2014BAI04B02).

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

1. Wang Y, Jiang T. Understanding high grade glioma: 
 molecular mechanism, therapy and comprehensive manage-
ment. Cancer Lett. 2013; 331:139–146.

2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, 
Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 
2007 WHO classification of tumours of the central nervous 
system. Acta Neuropathol. 2007; 114:97–109.

3. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, 
Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, 
Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, 
Gabriel S, et al. Integrated genomic analysis identifies clin-
ically relevant subtypes of glioblastoma characterized by 
abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer 
Cell. 2010; 17:98–110.

4. Yan W, Zhang W, You G, Zhang J, Han L, Bao Z, Wang Y, 
Liu Y, Jiang C, Kang C, You Y, Jiang T. Molecular classifi-
cation of gliomas based on whole genome gene expression: 
a systematic report of 225 samples from the Chinese Glioma 
Cooperative Group. Neuro Oncol. 2012; 14:1432–1440.

5. Phillips HS, Kharbanda S, Chen R, Forrest WF, 
Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, 
Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, 
Aldape K. Molecular subclasses of high-grade glioma pre-
dict prognosis, delineate a pattern of disease progression, 
and resemble stages in neurogenesis. Cancer Cell. 2006; 
9:157–173.

6. Yang P, Wang Y, Peng X, You G, Zhang W, Yan W, 
Bao Z, Qiu X, Jiang T. Management and survival rates in 
patients with glioma in China (2004–2010): a retrospec-
tive study from a single-institution. J Neurooncol. 2013; 
113:259–266.

7. Killela PJ, Pirozzi CJ, Reitman ZJ, Jones S, Rasheed BA, 
Lipp E, Friedman H, Friedman AH, He Y, McLendon RE, 
Bigner DD, Yan H. The genetic landscape of anaplastic 
astrocytoma. Oncotarget. 2014; 5:1452–1457.

8. Dietrich D, Kneip C, Raji O, Liloglou T, Seegebarth A, 
Schlegel T, Flemming N, Rausch S, Distler J, 
Fleischhacker M, Schmidt B, Giles T, Walshaw M, 
Warburton C, Liebenberg V, Field JK. Performance 
 evaluation of the DNA methylation biomarker SHOX2 for 
the aid in diagnosis of lung cancer based on the analysis of 
bronchial aspirates. Int J Oncol. 2012; 40:825–832.

9. Mikeska T, Bock C, Do H, Dobrovic A. DNA methylation 
biomarkers in cancer: progress towards clinical implemen-
tation. Expert Rev Mol Diagn. 2012; 12:473–487.

10. Dietrich D, Hasinger O, Liebenberg V, Field JK, 
Kristiansen G, Soltermann A. DNA methylation of the 



Oncotarget36651www.impactjournals.com/oncotarget

homeobox genes PITX2 and SHOX2 predicts outcome 
in non-small-cell lung cancer patients. Diagn Mol Pathol. 
2012; 21:93–104.

11. Chen Q, Kogan JH, Gross AK, Zhou Y, Walton NM, 
Shin R, Heusner CL, Miyake S, Tajinda K, Tamura K, 
Matsumoto M. SREB2/GPR85, a schizophrenia risk fac-
tor, negatively regulates hippocampal adult neurogenesis 
and neurogenesis-dependent learning and memory. Eur J 
Neurosci. 2012; 36:2597–2608.

12. Radulescu E, Sambataro F, Mattay VS, Callicott JH, 
Straub RE, Matsumoto M, Weinberger DR, Marenco S. 
Effect of Schizophrenia risk-associated alleles in SREB2 
(GPR85) on functional MRI phenotypes in healthy volun-
teers. Neuropsychopharmacology. 2013; 38:341–349.

13. Matsumoto M, Straub RE, Marenco S, Nicodemus KK, 
Matsumoto S, Fujikawa A, Miyoshi S, Shobo M, 
Takahashi S, Yarimizu J, Yuri M, Hiramoto M, Morita S, 
Yokota H, Sasayama T, Terai K, et al. The evolutionarily 
conserved G protein-coupled receptor SREB2/GPR85 influ-
ences brain size, behavior, and vulnerability to schizophre-
nia. Proc Natl Acad Sci U S A. 2008; 105:6133–6138.

14. Han L, Shao J, Su L, Gao J, Wang S, Zhang Y, Zhang S, 
Zhao B, Miao J. A chemical small molecule induces mouse 
embryonic stem cell differentiation into functional  vascular 
endothelial cells via Hmbox1. Stem Cells Dev. 2012; 
21:2762–2769.

15. Su L, Zhao H, Sun C, Zhao B, Zhao J, Zhang S, Su H, 
Miao J. Role of Hmbox1 in endothelial differentiation of 
bone-marrow stromal cells by a small molecule. ACS Chem 
Biol. 2010; 5:1035–1043.

16. Wu L, Zhang C, Zheng X, Tian Z, Zhang J. HMBOX1, 
homeobox transcription factor, negatively regulates 
interferon-gamma production in natural killer cells. Int 
Immunopharmacol. 2011; 11:1895–1900.

17. Wu L, Zhang C, Zhang J. HMBOX1 negatively regulates 
NK cell functions by suppressing the NKG2D/DAP10 
 signaling pathway. Cell Mol Immunol. 2011; 8:433–440.

18. Alizadeh AA, Gentles AJ, Alencar AJ, Liu CL, Kohrt HE, 
Houot R, Goldstein MJ, Zhao S, Natkunam Y, Advani RH, 
Gascoyne RD, Briones J, Tibshirani RJ, Myklebust JH, 
Plevritis SK, Lossos IS, et al. Prediction of survival in 
 diffuse large B-cell lymphoma based on the expression of 
2 genes reflecting tumor and microenvironment. Blood. 
2011; 118:1350–1358.

19. Zhang W, Zhang J, Yan W, You G, Bao Z, Li S, Kang C, 
Jiang C, You Y, Zhang Y, Chen CC, Song SW, Jiang T. 
Whole-genome microRNA expression profiling identi-
fies a 5-microRNA signature as a prognostic biomarker in 
Chinese patients with primary glioblastoma multiforme. 
Cancer. 2013; 119:814–824.

20. Bao ZS, Zhang CB, Wang HJ, Yan W, Liu YW, Li MY, 
Zhang W. Whole-Genome mRNA Expression Profiling 
Identifies Functional and Prognostic Signatures in Patients 

with Mesenchymal Glioblastoma Multiforme. CNS 
Neurosci Ther. 2013; 19:714–20.

21. Zhang XQ, Sun S, Lam KF, Kiang KM, Pu JK, Ho AS, 
Lui WM, Fung CF, Wong TS, Leung GK. A Long Non-
Coding RNA Signature in Glioblastoma Multiforme 
Predicts Survival. Neurobiol Dis. 2013; 58:123–31.

22. Wick W, Weller M. Classification and management of ana-
plastic gliomas. Curr Opin Neurol. 2009; 22:650–656.

23. Wick W, Hartmann C, Engel C, Stoffels M, Felsberg J, 
Stockhammer F, Sabel MC, Koeppen S, Ketter R, 
Meyermann R, Rapp M, Meisner C, Kortmann RD, 
Pietsch T, Wiestler OD, Ernemann U, et al. NOA-04 
 randomized phase III trial of sequential  radiochemotherapy 
of anaplastic glioma with procarbazine, lomustine, and 
vincristine or temozolomide. J Clin Oncol. 2009; 
27:5874–5880.

24. van den Bent MJ, Carpentier AF, Brandes AA, Sanson M, 
Taphoorn MJ, Bernsen HJ, Frenay M, Tijssen CC, 
Grisold W, Sipos L, Haaxma-Reiche H, Kros JM, 
van Kouwenhoven MC, Vecht CJ, Allgeier A, Lacombe D, 
et al. Adjuvant procarbazine, lomustine, and vincristine 
improves progression-free survival but not overall survival 
in newly diagnosed anaplastic oligodendrogliomas and oli-
goastrocytomas: a randomized European Organisation for 
Research and Treatment of Cancer phase III trial. J Clin 
Oncol. 2006; 24:2715–2722.

25. Cairncross G, Berkey B, Shaw E, Jenkins R, Scheithauer B, 
Brachman D, Buckner J, Fink K, Souhami L, Laperierre N, 
Mehta M, Curran W. Phase III trial of chemotherapy plus 
radiotherapy compared with radiotherapy alone for pure and 
mixed anaplastic oligodendroglioma: Intergroup Radiation 
Therapy Oncology Group Trial 9402. J Clin Oncol. 2006; 
24:2707–2714.

26. van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, 
Kouwenhoven MC, Delattre JY, Bernsen HJ, Frenay M, 
Tijssen CC, Grisold W, Sipos L, Enting RH, French PJ, 
Dinjens WN, Vecht CJ, Allgeier A, et al. Adjuvant procar-
bazine, lomustine, and vincristine chemotherapy in newly 
diagnosed anaplastic oligodendroglioma: long-term follow-
up of EORTC brain tumor group study 26951. J Clin Oncol. 
2013; 31:344–350.

27. Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, 
Buckner J, Fink K, Souhami L, Laperriere N, Curran W, 
Mehta M. Phase III trial of chemoradiotherapy for anaplas-
tic oligodendroglioma: long-term results of RTOG 9402. J 
Clin Oncol. 2013; 31:337–343.

28. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC 
curves for censored survival data and a diagnostic marker. 
Biometrics. 2000; 56:337–344.

29. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set 
variation analysis for microarray and RNA-seq data. BMC 
Bioinformatics. 2013; 14:7.


