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ABSTRACT
Purpose: microRNAs regulate gene-expression in biological and pathophysiological 

processes, including multiple myeloma. Here we address i) What are the number and 
magnitude of changes in miRNA-expression between normal plasma cells and myeloma- 
or MGUS-samples, and the latter two? ii) What is the biological relevance and how does 
miRNA-expression impact on gene-expression? iii) Is there a prognostic significance, 
and what is its background?

Experimental design: Ninety-two purified myeloma-, MGUS-, normal plasma 
cell- and myeloma cell line-samples were investigated using miChip-arrays 
interrogating 559 human miRNAs. Impact on gene-expression was assessed 
by Affymetrix DNA-microarrays in two cohorts of myeloma patients (n = 677); 
chromosomal aberrations were assessed by iFISH, survival for 592 patients 
undergoing up-front high-dose chemotherapy.

Results: Compared to normal plasma cells, 67/559 miRNAs (12%) with fold 
changes of 4.6 to -3.1 are differentially expressed in myeloma-, 20 (3.6%) in 
MGUS-samples, and three (0.5%) between MGUS and myeloma. Expression of 
miRNAs is associated with proliferation, chromosomal aberrations, tumor mass, 
and gene expression-based risk-scores. This holds true for target-gene signatures 
of regulated mRNAs. miRNA-expression confers prognostic significance for event-
free and overall survival, as do respective target-gene signatures.

Conclusions: The myeloma-miRNome confers a pattern of small changes of 
individual miRNAs impacting on gene-expression, biological functions, and survival.

INTRODUCTION

Multiple myeloma is a malignant disease of 
terminally differentiated plasma cells accumulating in the 
bone marrow [1]. Under the surface of a rather homogenous 
phenotype, myeloma is characterized by a pronounced 
molecular heterogeneity in terms of genetic alterations 

and changes of gene expression compared to normal bone 
marrow plasma cells [2–9]. These expression changes 
can be driven either directly by said genetic alterations, 
or indirectly by changes in signaling, e.g. due to altered 
external stimuli mediated by a changing microenvironment 
[2, 4, 6–8, 10]. Both can either act directly on gene 
expression or on its mediators. Prominent examples of the 
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latter are microRNAs (miRNAs). miRNAs are non-protein-
coding RNAs that function as regulators of mRNA stability 
and translation [11, 12]. miRNAs posttranscriptionally 
repress the expression of their target genes, while an up-
regulation of gene expression in eukaryotes has been found 
under specific conditions, e.g. with specific transcripts, 
in distinct cell types [13]. A single miRNA is typically 
involved in the regulation of several hundred mRNAs. 
In turn, several miRNAs regulate one cognate mRNA. 
miRNAs are predicted to regulate more than 60% of 
protein coding transcripts in the human genome [14]. 
By this means, miRNAs participate in physiological 
and pathological processes, including differentiation, 
angiogenesis, apoptosis, development of cancer, metastasis, 
and drug resistance, and are described as potential 
diagnostic or prognostic biomarkers and therapeutic targets, 
e.g. in monoclonal gammopathy of unknown significance 
(MGUS) and multiple myeloma [11, 12, 14–23].

Referring to multiple myeloma, several global 
miRNA-profiling studies with impact on gene expression, 
biological relevance, and survival have been published, 
and imply a possible association with myeloma 
pathogenesis and molecular sub-entities in terms of 
specific chromosomal aberrations or gene expression-
based high-risk groups [22, 24–31].

Here, we assess three main questions: i) What is the 
number and magnitude of changes in miRNA-expression 
between normal bone marrow plasma cells and myeloma- 
or MGUS-samples, and between MGUS and myeloma? 
Do these relate to single highly changing “myeloma-
miRNAs”, or a network of small changes? ii) What is the 
biological relevance of these changes on miRNA-level and 
how does miRNA-expression impact on gene expression? 
iii) Is there a prognostic significance in multiple myeloma, 
and what is its background?

RESULTS

miRNA expression in malignant vs. normal 
plasma cells

Comparison of miRNA expression at genome 
wide level of primary myeloma cells and normal 
plasma cells identified 38 (6.8%) and 29 (5.2%) 
miRNAs to be significantly down- or up-regulated in 
myeloma cells compared to their normal counterpart 
after controlling the false-discovery-rate at a level of 
5% with fold changes (FC) ranging from -3.1 (minus 
sign depicting down-regulation in myeloma cells) to 
4.6 (Table 1). When comparing MGUS-samples to 
those from healthy donors, eight miRNAs (1.4%) were 
significantly up- and twelve (2.1%) down-regulated 
(Supplementary Table S3). Comparison of myeloma 
cells to cells from MGUS-patients revealed three 

differentially expressed miRNAs (0.5%), i.e. miR-
200b*, miR-432 and miR-486-3p (Supplementary 
Table S3). No significant difference could be found 
between early- vs. late-stage myeloma (Durie-Salmon 
stage I vs. II and III).

To appraise the order of magnitude of the differ-
ences in miRNA-expression, we compared miRNA-
expression of normal, MGUS-samples and primary 
myeloma cells each with myeloma cell lines. In this case, 
89 (15.9%), 173 (30.9%), and 410 (73.3%) miRNAs 
were found to be differentially expressed with FC of 
7.2 to -6.2, 5.7 to -5.5, and 7.4 to -4, respectively, i.e. 
comparably higher compared to the differences observed 
within primary samples. Taking all four aforementioned 
sample types together, miR-302b, miR-490-5p, and miR-
155 were concomitantly differentially expressed between 
all. The latter two are significantly lower expressed in 
cells from MGUS- and myeloma patients compared 
to their normal counterpart, while miR-302b was 
significantly higher (Table 1, Supplementary Figure S1, 
Supplementary Table S3).

In the unsupervised hierarchical clustering, normal 
and malignant plasma cells cluster in one branch, 
myeloma cell lines aggregate together in a separate one 
(Figure 1, Supplementary Figure S2). If MGUS-samples 
are included, they disperse over the normal/malignant 
plasma cell cluster. But for normal plasma cell samples, 
no sub-clusters can be identified.

Biological relevance of miRNA expression

To analyze whether the comparably small changes 
in normal vs. malignant plasma cells and within the latter 
have biological significance, we investigated differences 
in terms of associations with i) biological variables, 
ii) chromosomal aberrations, and iii) gene expression-
based high-risk scores.
Proliferation

Ten miRNAs showed a significant association 
with the gene expression-based proliferation index 
(GPI; Supplementary Table S4). The latter is a gene 
expression-based measure of myeloma cell proliferation 
based on genes over-expressed in proliferating malignant 
(i.e. myeloma cell lines) as well as non-malignant 
cells (i.e. polyclonal plasmablasts) compared to non-
proliferating, non-malignant cells (i.e. normal bone 
marrow plasma cells, memory B-cells) [3]. Of the 10 
miRNAs, three were negatively correlated with the 
GPI as continuous variable, while seven positively 
(Supplementary Table S5). Of the latter, five belong to 
the miR-17–92 cluster. Between GPIlow and GPIhigh, eight 
miRNAs were differentially expressed. All of them were 
up-regulated in the GPIhigh-group with a maximal FC of 
2.3 (Supplementary Table S6), six miRNAs belonging to 
the miR-17–92 cluster.
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Table 1: Differentially expressed miRNAs between normal plasma cells and myeloma cells 
A

miRNA logFC FC Average expression Adjusted P-value

miR-628-3p 1.64 3.1 10.28 < 0.001

miR-30b* 1.44 2.7 11.41 0.003

miR-490-5p 1.37 2.6 9.59 < 0.001

miR-155 1.36 2.6 9.90 0.002

miR-553 1.29 2.4 9.48 < 0.001

miR-659 1.26 2.4 11.44 < 0.001

miR-516b 1.24 2.4 9.76 < 0.001

miR-500* 1.24 2.4 10.03 < 0.001

miR-483-5p 1.15 2.2 11.56 0.003

miR-198 1.06 2.1 10.28 0.005

miR-200b* 1.05 2.1 9.86 < 0.001

miR-768-5p 0.96 1.9 9.68 0.04

miR-411 0.95 1.9 8.58 < 0.001

miR-192 0.95 1.9 9.61 0.02

miR-450a 0.91 1.9 8.24 < 0.001

miR-625 0.89 1.9 9.75 0.04

miR-500 0.84 1.8 9.50 < 0.001

miR-615-3p 0.83 1.8 10.89 0.001

miR-770-5p 0.81 1.8 8.15 0.004

miR-371-5p 0.81 1.8 11.71 0.03

miR-125b-1* 0.72 1.6 10.41 0.003

miR-645 0.71 1.6 9.10 < 0.001

miR-654-5p 0.71 1.6 9.94 0.02

miR-552 0.70 1.6 9.91 0.003

miR-28-3p 0.69 1.6 9.36 0.003

miR-7 0.66 1.6 8.88 0.04

miR-126 0.64 1.6 8.50 0.01

miR-518c* 0.63 1.5 11.38 0.02

miR-885-5p 0.63 1.5 8.84 0.01

miR-548a-5p 0.61 1.5 9.13 0.03

miR-425* 0.61 1.5 8.97 0.009

miR-27a* 0.58 1.5 8.76 0.04

miR-331-5p 0.57 1.5 8.77 0.008

miR-99b* 0.53 1.4 9.88 0.003

miR-549 0.51 1.4 8.53 0.04

miR-576-3p 0.49 1.4 8.49 0.02

(Continued )
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A

miRNA logFC FC Average expression Adjusted P-value

miR-373* 0.47 1.4 8.49 0.03

miR-125a-3p 0.44 1.4 8.62 0.03

Differentially expressed miRNAs between normal bone marrow plasma cells and myeloma cells

B

miR-548a-3p −0.46 −1.4 8.33 0.03

miR-200a* −0.52 −1.4 9.60 0.02

miR-372 −0.54 −1.5 9.15 0.01

miR-148a* −0.55 −1.5 9.15 0.05

miR-370 −0.55 −1.5 12.87 0.01

miR-29a* −0.69 −1.6 8.78 0.04

miR-487b −0.75 −1.7 10.41 0.02

miR-605 −0.78 −1.7 10.50 0.01

miR-634 −0.79 −1.7 10.21 0.004

let-7g −0.85 −1.8 9.79 0.01

miR-29c* −0.87 −1.8 9.12 0.003

miR-487a −0.91 −1.9 10.46 0.003

miR-302b −0.94 −1.9 10.74 < 0.001

miR-30b −0.97 −2.0 10.70 0.007

miR-30d −0.97 −2.0 9.85 0.004

miR-374a −1.00 −2.0 9.22 0.009

let-7i −1.03 −2.0 10.14 0.002

miR-148b −1.07 −2.1 10.62 0.03

miR-30a −1.11 −2.2 10.51 0.03

miR-195 −1.14 −2.2 10.35 0.03

miR-519d −1.15 −2.2 11.70 0.004

miR-24 −1.22 −2.3 10.32 0.02

let-7f −1.24 −2.4 10.02 < 0.001

miR-26a −1.36 −2.6 11.13 0.02

miR-148a −1.51 −2.8 12.30 0.01

miR-29b −1.89 −3.7 12.95 0.002

miR-29c −1.93 −3.8 12.14 0.001

miR-29a −2.17 −4.5 12.48 < 0.001

miR-142-3p −2.20 −4.6 12.05 0.007

A. 38 miRNAs are significantly down-regulated, B. 29 miRNAs are up-regulated in myeloma cells compared to their normal 
counterpart. miRNAs are listed according to the height of their (log) fold change (FC). Minus sign depicting lower expression 
in normal plasma cells and thus an up-regulation in myeloma cells.
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Tumor mass

Two miRNAs, miR-135a and miR-596, show a 
significant association with the International Staging 
System (ISS) (P = .05; P = .02) (Table 2) as surrogate 
of tumor mass. In contrast, there was no correlation of 
miRNA expression with β2-microglobulin alone.

Chromosomal aberrations

Regarding translocation t(4;14), three miRNAs 
are differentially expressed, i.e. miR-135a, miR-596, 
and miR-432*, being significantly down-regulated 
when a t(4;14) is present with a maximal FC of 1.9 
(Supplementary Table S6B). In samples with t(11;14) 
vs. none, 24 miRNAs were significantly differentially 
expressed. Fourteen miRNAs were up-regulated, ten 
down-regulated (FC 2.04 to -1.92) (Supplementary 

Table S6B). Regarding gain of 1q21 vs. no gain, miR-
501-3p is significantly up-regulated (FC 1.62). No 
association was found for deletion 17p13. For deletion 
13q14, three miRNAs are significantly differentially 
expressed, namely miR-23a, miR-23b, and miR-767-
5p. The latter is up-regulated in samples from patients 
without this aberration (FC 1.37), the other two are 
down-regulated (FC 1.39 and 1.40, respectively) 
(Supplementary Table S6B). In hyperdiploid patients a 
significant down-regulation of miR-21, miR-22, miR-93, 
miR-125b, and miR-374b with a maximal FC of 2.1 is 
present (Supplementary Table S6B).
Gene expression-based high-risk scores

Four miRNAs are significantly positively associated 
and correlate with the University of Medical Sciences 
(UAMS) 70-gene risk-score, i.e. miR-135b, miR-432*, 

Figure 1: Unsupervised clustering based on miRNA expression. The unsupervised clustering shows normal bone marrow 
plasma cells (depicted in green) clustering together in a sub-branch within the myeloma cell samples (depicted in red). Patients with 
MGUS (depicted in white) disperse over the normal/malignant plasma cell cluster, no sub-clusters can be found. Human myeloma cell lines 
(depicted in blue) clustering together in a separate branch.
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miR-583, and miR-596 (Supplementary Table S4, S5). The 
same are also differentially expressed between low-risk 
vs. high-risk with a maximal FC of 1.8 (Supplementary 
Table S6A), all being up-regulated in high-risk patients. 
Regarding the Intergroupe Francophone du Myélome 
(IFM) 15-gene score, 32 miRNAs are significantly 
associated with, i.e. 24 showed a negative association, 
eight a positive one (Supplementary Table S4). Thirty-
nine miRNAs show a significant correlation with the IFM-
score as continuous variable: ten miRNAs are negatively 
correlated, 29 positively (Supplementary Table S5). Of 
the latter, nine miRNAs belong to the miR-17–92 cluster. 
Comparing low-risk vs. high-risk samples, 34 miRNAs 
are differentially expressed (Supplementary Table S6A). 
Of these, 10 are significantly up-, 24 down-regulated in 
low-risk patients with nine miRNAs belonging to the miR-
17–92 cluster (maximal FC: 1.42 to –1.74). In contrast 
to gene expression-based high-risk scores we could not 
find a correlation of miRNA expression with molecular 
classifications of multiple myeloma.

Correlation of miRNA- and mRNA-expression

Twelve of 559 miRNAs investigated are signifi cantly 
correlated with the expression of 24 mRNAs with r ≥ 0.6 
or r ≤-0.6 (Table 3). Seventeen correlations were negative, 
twelve positive, and five miRNAs (miR-19b, miR-103, 
miR-106b, miR-424, and miR-623) were correlated with 
more than one mRNA. miR-103, miR-106b, and miR-424 
were significantly up-regulated in GPIhigh-patients and IFM 
high-risk (Supplementary Table S6A). Twenty-two of these 
24 mRNAs showed a prognostic impact and were able to 
significantly delineate two groups of patients with different 
event-free (EFS) and/or overall survival (OS) (Table 3, 
Supplementary Table S7).

The three miRNAs differentially expressed 
between t(4;14) vs. none regulate 379 genes, 355 of 
which are represented on the microarray. Of these, 43 
are significantly differentially expressed between the 
two entities with 23 being up-regulated. For the eight 
miRNAs differentially expressed between GPIhigh vs. 
GPIlow regulating 1693 genes (1586 represented on the 
DNA-microarray), 410 are differentially expressed (362 
up-regulated).

Prognostic significance of miRNA-expression

We next assessed the prognostic relevance and 
without correction for multiple testing finding 72 miRNAs 
to be significantly associated with EFS, 69 with OS. 
Corrected for multiple testing, five miRNAs remained 
significantly associated with EFS as continuous variable, 
i.e. miR-135a, miR-135b, miR-200a, miR-200b, and miR-
596, and, but for miR-200b, also with OS (Figure 2). For 
all miRNAs, a high expression delineates a group with 
inferior EFS and OS.
miRNA signature

A miRNA signature for survival prediction in 
myeloma patients based on the five survival relevant 
miRNAs could be constructed delineating two groups of 
patients with significantly different EFS (P = .003) and OS 
(P = .001) (Figure 3A).

Background of prognostic relevance of miRNAs

Proliferation

Of the five survival relevant miRNAs, the GPI as 
continuous variable is significantly higher in patients with 

Table 2: Association with survival, risk scores and cytogenetic aberrations 
miRNA Expression 

cut
EFS OS GPIC GPI IFM 

score
UAMS 
score

t(4;14) t(11;14) del17p gain 1q21 del13q ISS

P-value P-value P-value mean 
GPI

P-value P-value P-value P-value P-value P-value P-value P-value P-value

miR-135a 8.38 0.004 0.03 0.3 189 / 
215 0.8 0.02 0.06 0.06 0.7 0.7 0.3 0.2 0.05

miR-135b 8.18 < 0.001 < 0.001 0.08 178 / 
215 0.7 0.03 0.04 0.01 0.7 1 0.4 0.4 0.4

miR-200a 8.42 0.01 0.02 0.01 180 / 
245 0.06 0.006 0.2 0.4 0.07 0.4 1 1 0.2

miR-200b 8.89 0.03 0.8 0.3 184 / 
208 0.7 0.5 1 0.7 0.7 0.7 1 0.4 0.2

miR-596 9.61 0.02 0.001 0.02 174 / 
225 0.04 0.1 < 0.001 0.001 0.1 0.2 0.4 0.07 0.02

Shown is the association of the five survival relevant miRNAs with event-free (EFS) and overall survival (OS), as well as 
the IFM- and UAMS gene expression-based risk scores and cytogenetic aberrations. Significant values are depicted in bold. 
GPI(C), gene expression-based proliferation index (as continuous variable), the mean of the low and high GPI group is shown 
for GPIC; IFM score, risk score of the Intergroupe Francophone du Myélome published by Decaux et al.; UAMS score, risk 
score of the University of Arkansas for Medical Sciences published by Shaughnessy et al.; ISS, International staging system.
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a high expression of miR-596 (P = .02), and miR-200a 
(P = .01) (Table 2). Regarding miRNA-596, all patients 
classified as GPIhigh showed a significantly higher 
expression (P = .04).

Chromosomal aberrations

Expression of several survival relevant miRNAs 
is associated with the presence of specific chromosomal 
aberrations (Table 2). High expression of miR-135a  

(P = .02), miR-135b (P = .02), and miR-596 (P = .003) 
is significantly associated with a t(4;14). Besides, miR-
135a (P = .01) and miR-596 (P = .004) are differentially 
expressed between t(4;14) vs. none with an up-regulation 
in myeloma cells from patients with this translocation. 
Furthermore, a high miR-596 expression is associated 
with deletion 13q14 (P =.04). No associations was found 
for gain of 1q21, deletion 17p13, or t(11;14), albeit a 
tendency for the latter regarding miR-200a (P =.07).

Table 3: Correlation between miRNA and mRNA
Gene 
symbol

mRNA 
probeset

miRNA Correlation 
(r)

adjusted 
P-value

EFS OS

Cut-off HR [95% CI] adj.  
P-value

Cut-off HR [95% CI] adj. P-value

KCTD11 235857_at let-7f 0.60 0.02 4.81 0.803 [0.567;1.138] 0.2 4.35 0.65 [0.38;1.113] 0.1

EXTL2 209537_at let-7g −0.60 0.02 8.62 0.708 [0.455;1.101] 0.1 7.32 1.478 [0.933;2.342] 0.1

XRCC4 205071_x_at let-7i −0.62 0.02 8.69 0.638 [0.438;0.928] 0.02 8.86 0.534 [0.295;0.967] 0.04

ITPR1 203710_at miR-19b 0.60 0.02 5.17 1.479 [1.035;2.115] 0.03 3.59 2.433 [1.119;5.289] 0.03

SELM 226051_at miR-19b −0.62 0.02 11.09 0.742 [0.527;1.045] 0.09 9.58 0.463 [0.294;0.732] 0.001

GRN 200678_x_at miR-100 −0.61 0.02 12.48 0.55 [0.335;0.901] 0.02 12.46 0.462 [0.223;0.96] 0.04

SIN3A 225135_at miR-103 0.60 0.02 5.75 1.896 [1.367;2.631] < 0.001 5.81 2.097 [1.351;3.254] 0.001

GRN 200678_x_at miR-103 −0.62 0.02 12.48 0.55 [0.335;0.901] 0.02 12.46 0.462 [0.223;0.96] 0.04

SELM 226051_at miR-103 −0.62 0.02 11.09 0.742 [0.527;1.045] 0.09 9.58 0.463 [0.294;0.732] 0.001

FBXO11 219208_at miR-106b 0.72 < 0.001 6.37 1.634 [1.148;2.325] 0.006 6.39 2.124 [1.355;3.329] 0.001

TMPO 209754_s_at miR-106b 0.66 0.005 6.43 1.587 [1.119;2.252] 0.01 4.34 1.826 [1.107;3.01] 0.02

BUB1 209642_at miR-106b 0.64 0.01 3.65 2.368 [1.68;3.338] < 0.001 4.37 2.965 [1.894;4.64] < 0.001

MCM4 222036_s_at miR-106b 0.63 0.01 6.89 1.883 [1.358;2.612] < 0.001 7.42 2.545 [1.64;3.947] < 0.001

SIN3A 225135_at miR-106b 0.63 0.01 5.75 1.896 [1.367;2.631] < 0.001 5.81 2.097 [1.351;3.254] 0.001

RPS6KA3 203843_at miR-106b 0.62 0.02 7.39 1.699 [1.186;2.433] 0.004 7.39 3.083 [1.971;4.821] < 0.001

BUB1B 203755_at miR-106b 0.60 0.02 7.24 1.969 [1.403;2.764] < 0.001 8.61 2.951 [1.725;5.05] < 0.001

GRN 200678_x_at miR-106b −0.61 0.02 12.48 0.55 [0.335;0.901] 0.02 12.46 0.462 [0.223;0.96] 0.04

HIST1H2AC 215071_s_at miR-186 −0.72 < 0.001 11.59 1.431 [1.011;2.026] 0.04 11.85 1.889 [1.176;3.036] 0.009

HIST1H2AC 215071_s_at miR-374a −0.68 0.002 11.59 1.431 [1.011;2.026] 0.04 11.85 1.889 [1.176;3.036] 0.009

TNIP2 232160_s_at miR-424 0.70 < 0.001 6.06 1.898 [1.304;2.762] 0.001 6.61 1.956 [1.261;3.035] 0.003

GINS2 221521_s_at miR-424 0.65 0.01 6.65 2.223 [1.596;3.096] < 0.001 6.93 2.532 [1.627;3.939] < 0.001

EPB41L2 201719_s_at miR-602 −0.62 0.02 5.60 0.672 [0.482;0.935] 0.02 5.68 0.512 [0.319;0.819] 0.005

WEE1 212533_at miR-623 −0.61 0.02 8.59 1.834 [1.321;2.546] < 0.001 9.53 2.32 [1.484;3.629] < 0.001

GCLM 236140_at miR-623 −0.62 0.02 5.72 1.563 [1.118;2.185] 0.009 5.56 1.503 [0.964;2.344] 0.072

MCM6 201930_at miR-623 −0.62 0.02 8.30 2.169 [1.269;3.705] 0.005 10.75 2.705 [1.63;4.491] < 0.001

STRN 236388_at miR-623 −0.63 0.01 6.39 1.901 [1.297;2.788] 0.001 6.09 1.98 [1.239;3.163] 0.004

RAPH1 225188_at miR-623 −0.63 0.01 5.65 1.824 [1.315;2.531] < 0.001 6.10 1.641 [1.058;2.545] 0.03

ACTR2 200729_s_at miR-623 −0.64 0.01 11.79 1.656 [1.167;2.349] 0.005 12.04 2.521 [1.515;4.193] < 0.001

RMI2 226456_at miR-623 −0.66 0.005 4.85 1.816 [1.296;2.543] 0.001 7.08 2.927 [1.689;5.073] < 0.001

Shown are mRNAs that correlate with miRNAs with a correlation coefficient r ≥ 0.6 or r ≤ -0.6 and their impact on event-free 
(EFS) and overall survival (OS) using the indicated cut-offs.
HR, hazard ratio; CI, confidence intervall.
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Figure 2: miRNAs associated with survival. A. Expression of five miRNAs was associated with event-free and all but one with 
overall survival and allowed the delineation of prognostic groups. These miRNAs are associated with significantly different B. event-free 
and C. overall survival (the latter but for miR-200b). (Continued )
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Gene expression-based high-risk scores

The IFM-score is significantly associated with 
miR-135a (P =.02), miR-135b (P =.03), and miR-200a 
(P =.006). Samples with a high miR-135b-expression were 
significantly more frequently classified as being high-risk. 
For the UAMS-score, miR-135b (P =.04) and miR-596 
(P < .001) were significantly associated with (Table 2). 
Samples with a high expression of these miRNAs are 
significantly more often classified as high-risk, and both 
are also significantly differentially expressed between low- 
and high-risk patients with an up-regulation in the latter 
(P =.03; P =.002).

Tumor mass

Both miRNAs which were significantly associ-
ated with the ISS-stage as a surrogate of tumor mass 
(see above), i.e. miR-135a (P = .05) and miR-596 
(P = .02) (Table 2), are also significantly prognostic 
regarding EFS and OS. Patients with a high expression 
of miR-596 show a significantly higher stage (ISS 
stage III).

Impact of prognostic miRNAs on gene expression

We next investigated whether the predicted target 
genes are likewise survival relevant. Indeed, a significant 
association could be found for EFS and OS (Supplementary 
Figure S3). Target gene signatures for miR-135a, miR-135b, 
miR-200a, and miR-200b significantly predict for EFS and 
OS with a high “target risk-score” delineating a group with 
inferior survival (Figure 3B, 3C). This was validated on an 
independent cohort of 345 myeloma patients treated within 
the total therapy 2 trial (Supplementary Figure S4). Patients 
with a favorable score are more frequently UAMS low-
risk and have a lower GPI. In an ANOVA-model including 
the target risk-scores of miR-135a, miR-135b, miR-200a, 
miR-200b and the UAMS-score, the score of miR-200a 
remains significant (P =.04) alongside the UAMS-score 
(P =.02). Regarding the IFM-score, target risk-scores of 
miR-135a and miR200a (P <.001; P =.04) unlike the IFM-
score show significance. In an ANOVA-model including 
target risk-scores and GPI as continuous variable, only the 
latter remains significant (P <.001).

Figure 2: (Continued ) miRNAs associated with survival. Overall survival. Patients with low expression of these miRNAs show a 
favorable prognosis. hsa, Homo sapiens.



Oncotarget39174www.impactjournals.com/oncotarget

DISCUSSION

miRNA expression in normal and malignant 
plasma cells

The miRNome of malignant plasma cells significantly 
differs from its normal counterpart in 67 of 559 miRNAs 
tested (12%) with FC of 4.6 to -3.1, strong enough to drive 
its own normal plasma cell sub-cluster within primary 
myeloma samples. Comparing normal plasma cells with 

those from MGUS-patients, 20 miRNAs are differentially 
expressed, 18 of which (90%) are likewise differentially 
expressed compared to myeloma cells. Between MGUS- 
and myeloma patients, only 3 significantly different 
miRNAs could be found. On miRNA-level, plasma cells 
from MGUS-patients thus seem to resemble myeloma rather 
than normal plasma cells. This could either suggest a role 
of these miRNAs early in the development of MGUS and 
subsequently myeloma, or an early impact of pathogenetic 
changes on miRNA-expression.

Figure 3: miRNA- and target gene signatures. A. A miRNA-signature for survival prediction was constructed using principal 
component analysis. This signature significantly predicts for event-free (EFS; P =.003) and overall survival (OS; P =.001), with a low risk-
score delineating a group of patients with inferior survival. (Continued )
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miRNAs have been published to be globally down-
regulated in cancer acting as negative regulators of 
tumorigenesis [32–34], others showed an up-regulation 
in tumor samples or those from high-risk patients 
[27, 30, 35]. We found a comparable number being up- or 
downregulated in normal compared to malignant plasma 
cells, thus a network of small bidirectional changes, 

but not a single or group of “unifyingly”, differentially 
expressed miRNAs.

Taken together, we find a network of small changes 
comparing malignant to normal plasma cells, not highly 
changing “myeloma-miRNAs”, with MGUS being closely 
related to myeloma. Cell lines show a much higher 
difference compared to both samples types.

Figure 3: (Continued ) miRNA- and target gene signatures. B,C. By using miRWalk, predicted target genes for miR-135a, miR-
135b, miR-200a, and miR-200b are significantly associated with (B1,C1) event-free survival (miR-135a, P <.001; miR-135b, P = ns (.06); 
miR-200a, P <.001; miR-200b, P <.001) and (B2,C2) overall survival (miR-135a, P <.001; miR-135b, P =.004; miR-200a, P <.001; miR-
200b, P <.001). For validation of the data on an independent cohort of patients treated within the total therapy 2 protocol [53], please see 
Supplementary Figure S4. (Continued )
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Biological relevance of miRNA-expression

We next investigated whether these rather 
small changes show an association with biological 
variables, i.e. proliferation, tumor mass, chromosomal 
aberrations, and gene expression-based risk scores, and 
subsequently, whether miRNA-expression impacts on 
gene expression.

Proliferation

Ten miRNAs showed a significant association 
with the GPI, eight were differentially expressed 
between GPIlow vs. GPIhigh. All of them were up-
regulated in the GPIhigh-group and six belong to the miR-
17–92 cluster. Of these, miR-106b correlates with BUB1 
(see subsequent paragraph) being part of the expression-

Figure 3: (Continued ) miRNA- and target gene signatures. B,C. By using miRWalk, predicted target genes for miR-135a, miR-
135b, miR-200a, and miR-200b are significantly associated with (B1,C1) event-free survival (miR-135a, P <.001; miR-135b, P = ns (.06); 
miR-200a, P <.001; miR-200b, P <.001) and (B2,C2) overall survival (miR-135a, P <.001; miR-135b, P =.004; miR-200a, P <.001; miR-
200b, P <.001). For validation of the data on an independent cohort of patients treated within the total therapy 2 protocol [53], please see 
Supplementary Figure S4. (Continued )
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based proliferation index by Zhan et al. [7]. The miR-
17–92 cluster was described as potential oncogene 
(onco-miR-1) targeting pro-apoptotic genes [27, 36]. 
Up-regulation in GPIhigh-patients could thus contribute 
to anti-apoptotic signaling in this group, in agreement 
with members of the miR-17–92 cluster being within 
the most up-regulated miRNAs in proliferating 
myeloma cell lines compared to (non-proliferating) 
normal and malignant plasma cells. This association 
with proliferation is in line with the rather large 
changes between proliferating myeloma cell lines and 
the other samples types. This is also in accordance with 
data from Pichiorri et al. who showed members of the 
oncogenic miR-17–92 and miR-106b-25 clusters, both 
sharing a high degree of homology, being upregulated 
in malignant vs. normal plasma cells with the highest 
fold changes in myeloma cell lines [27]. Interestingly, 
a high expression of members of the miR-17–92 cluster 
is associated with a shorter progression-free survival in 
myeloma patients [37].

Tumor mass

ISS-stage as surrogate of tumor mass is associated 
with the expression miR-135a and miR-596. For 
the latter, patients with a high expression show a 
significantly higher ISS-stage. Interestingly, both 
miRNAs were also prognostic regarding EFS and OS 
(see below).

Chromosomal aberrations

miRNAs have been shown to be associated with 
different cytogenetic subgroups of myeloma patients 
[25, 26, 29, 31]. We likewise found an association with 
the IgH-translocations t(4;14) and t(11;14), as well as 
del13q14, and 1q21-gain, but the overlap to previous 
studies is limited. Besides the limitations discussed below, 
this could be explained in part by the fact that in these 
studies myeloma samples with a particular aberration have 
been compared with normal plasma cells [25] instead of 
patient samples without this aberration as in our study.

Gene expression-based high-risk scores

For both, the UAMS- [38] and the IFM-score [39], 
we identified a significant association with miRNA-
expression. All four miRNAs being significantly 
positively correlated with the UAMS-score are up-
regulated in high-risk patients. Nevertheless, we found 
no overlap with the work by Zhou et al. [30], probably 
due to the limitations discussed below. However, 6 of 
8 miRNAs which are significantly higher expressed in 
GPIhigh-patients, and five of ten miRNAs being positively 
correlated with the GPI are overlapping, but for miR-103 
all being part of the miR-17–92 cluster. Among others, 
miRNAs of the miR-17–92 and miR-106b-25 cluster are 
also positively correlated with the IFM-score being up-

regulated in high-risk patients and have been described 
being upregulated in malignant vs. normal plasma cells 
with the highest FC in cell lines [27].

Impact on gene expression

As about 60% of the human transcriptome is 
regulated by miRNAs [14], we investigated if there is 
a correlation between miRNA- and mRNA-expression. 
We found 12/559 miRNAs to be correlated with 
24 genes with r ≥ 0.6 or r ≤ -0.6. Twenty-two genes 
were able to delineate two groups of patients with 
significantly different EFS and/or OS. miR-19b and 
miR-106b are members of the miR-17–92 cluster 
and correlated to genes, e.g. BUB1 and BUB1B, that 
have been described as components of the mitotic 
checkpoint control [40]. miR-106b is also correlated to 
TMPO as part of the UAMS 70-gene risk-score [38]. 
A differential expression regarding predicted target 
genes of differentially expressed miRNAs can likewise 
be found for biological features, e.g. t(4;14) vs. none, 
or GPIhigh vs. GPIlow.

Our findings need to be interpreted on the 
background of general miRNA-regulatory mechanisms: 
A single miRNA is typically involved in the regulation of 
hundreds of mRNAs, and several miRNAs regulate one 
cognate mRNA. Direct target genes can in turn impact 
on several other (indirect target) genes or miRNAs [41]. 
Single miRNA-target interactions typically yield less than 
2-fold reductions in protein expression [42]. To yield 
observable biological effects, seemingly all members of 
seed and non-seed families with overlapping functions 
need to be knocked-out [43]. The more striking is that the 
small differences in miRNA-expression, indeed associate 
with biological variables, and impact on gene expression.

Prognostic impact of miRNA expression and its 
background

Given their biological significance, we investigated 
whether this transmits into and/or parallels survival 
relevance. Indeed, a comparably high number of 
miRNAs was significantly associated with survival. 
Those remaining significant after correction for multiple 
testing, i.e. miR-135a, miR-135b, miR-200a, miR-
200b, and miR-596, have recently been published to 
play a role in solid tumors and hematologic cancers, 
respectively, e.g. functioning as either oncogenes or 
tumor-suppressors and prognostic markers [44–48]. In 
myeloma, a high expression of these miRNAs delineates 
a group of patients with inferior survival. The same 
holds true if a miRNA-signature is build based on these 
miRNAs. Associations with proliferation, chromosomal 
aberrations, and gene expression-based high-risk could 
be possible explanations. Indeed, a high expression of 
miR-135a, miR-135b, and miR-596 is significantly 
associated with a t(4;14), miR-596 also with del13q14. 
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Although patients with a high expression of miR-596 and 
miR-200a show a significantly higher GPI which is in 
turn associated with 1q21-gain [3], no association with 
this aberration could be found. Except for miR-200b, 
all survival relevant miRNAs show also a significant 
association with gene expression-based risk-scores 
[38, 39]. For miRNA-135b and miR-596, samples with 
a high expression were significantly more frequent in 
the particular high-risk group. As all GPIhigh-patients 
showed a high miR-596-expression, miR-596 is not 
only linked to survival and high-risk disease in terms of 
chromosomal aberrations, tumor mass, and the UAMS-
score [38], but also to proliferation, one of the strongest 
independent risk-factors in myeloma [3]. Besides these 
associations, published data also suggest a possible role 
in angiogenesis as shown for exosomal miR-135b derived 
from myeloma cells which enhances angiogenesis by 
targeting factor-inhibiting HIF-1 [49], or myeloma 
bone disease, with miR-135b, being upregulated in 
mesenchymal stromal cells from myeloma patients, 
being involved in an impaired osteogenic differentiation 
process [21]. Next, we investigated whether the signature 
of regulated genes impacts on survival, which is the case 
(Figure 3B,C).

Taken together, differences in miRNA-expression 
between normal and malignant plasma cells are small, 
but biologically relevant with impact on survival.

Caveats

Compared to gene expression profiling, there are 
few whole miRNA-profiling studies in myeloma, with 
comparatively small patient cohorts, and varying results. 
The latter is especially true if the lack of overlap between 
different studies is considered [22, 24–28, 30]. Reasons 
can be seen in technical and biological imponderabilities. 
First, the limited representativeness of small cohorts 
due to the significantly lower availability of samples 
for miRNA- compared to mRNA-profiling because of 
the comparatively high cell number necessary to obtain 
sufficient miRNA. This will likely be overcome by next 
generation sequencing approaches necessitating lower 
amounts of starting material. Second, miRNAs show 
relatively small FC compared to mRNAs regarding 
differential expression between normal and malignant 
plasma cells. Correcting for multiple testing to reduce 
false discoveries thereby takes a higher toll. Identified 
miRNAs are thus likely “truly” differentially expressed, 
whereas those not identified are not necessarily not 
differentially expressed. In this case, small differences, 
also in the cohort constitution, might lead to the selection 
of different miRNAs in different studies. The same holds 
true for different normalization strategies [50]. The 
differences between studies are in turn in line with our 
interpretation of the miRNome in myeloma as a complex 

network with small changes in individual miRNAs and 
absence of single highly changing “unifying” miRNAs. 
The latter would presumably have been identified in 
the majority of studies. Therefore, current functional 
validation strategies down- or up-regulating single 
miRNAs by several log-decades can thus only with great 
care be taken as validation of the small changes of a 
comparably large number of miRNAs. On the basis of 
the said above, it currently seems difficult to exploit the 
miRNome in a diagnostic or therapeutic manner.

In conclusion, miRNAs form a network in which 
small changes in individual miRNAs act together in 
changing the (global) miRNA- and mRNA-expression 
pattern. The miRNome is thus a complex and survival 
relevant regulator of gene expression whose alterations 
have biological and prognostic impact in multiple 
myeloma.

MATERIALS AND METHODS

Patients, healthy donors and samples

Patients presenting with previously untreated 
multiple myeloma or MGUS at Heidelberg University 
Hospital, and healthy donors were included after written 
informed consent in the study approved by the institutional 
ethics committee (#229/2003 and S-152/2010). Normal 
and malignant plasma cells were purified as published 
[2–6]. Median plasma cell purity after CD138-sorting 
was 96% [range: 80–100%] as assessed by flow 
cytometry. Myeloma cell lines were purchased from the 
German Collection of Microorganisms and Cell Cultures 
(Braunschweig, Germany) or American Type Culture 
Collection (Wesel, Germany), HG-1 was generated in the 
Myeloma Research Laboratory Heidelberg, the XG-lines 
were generated as published [51, 52]. For an overview, see 
Supplementary Table S1, S2.

Samples for miRNA-profiling

For miRNA-profiling, 62 primary myeloma cell-
samples, 7 MGUS-, 3 samples from healthy donors 
(pooled from three donors each), and 20 myeloma 
cell lines were investigated. Of the former, 53 patients 
underwent frontline high-dose chemotherapy with 200mg/
m2 melphalan and autologous stem cell transplantation 
(Supplementary Table S1, S2).

Samples for gene expression profiling

Three-hundred-thirty-two primary myeloma 
cell samples, 22 MGUS-, 10 samples from normal 
donors, and 32 myeloma cell lines were used. Of these, 
247 myeloma patients underwent up-front high-dose 
chemotherapy with 200mg/m2 melphalan and autologous 
stem cell transplantation and were available for survival 
analysis. As validation, an independent cohort of 345 
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patients treated within the total therapy 2 protocol was 
used [53] totaling 677 myeloma cell samples with gene 
expression data from which survival data were available 
for a total of 592 patients (Supplementary Table S1, S2).

RNA and miRNA extraction

RNA extraction was performed using the AllPrep 
DNA/RNA Mini Kit (Qiagen, Hilden, Germany). The 
flow-through containing miRNAs was processed using 
the RNeasy MinElute Cleanup Kit (Qiagen). RNA quality 
was assessed using an Agilent 2100 Bioanalyzer (Agilent 
Technologies, Boeblingen, Germany).

miRNA profiling

miRNA profiling by miChip (Exiqon LNA Array 
probes V9.2, Vedbaek, Denmark) was performed as 
published [54]. Data were deposited in the ArrayExpress 
repository under the accession number E-MTAB-1363. 
Expression of three survival relevant miRNAs (miR-135a, 
miR-135b, and miR-596) was validated in ten cell lines 
and nine primary myeloma cell samples using qRT-PCR 
(miQPCR). For miQPCR, RNA was extracted from 2.5x105 
cells using the Allprep-/RNeasy MinElute Cleanup Kit in 
50μl RNase-free water, speedvaced and re-eluted in 10μl 
RNase-free water. One μl of RNA was reverse transcribed 
and 2.5 μl of cDNA were used for RT-PCR. cDNAs were 
amplified by using gene specific primers and SYBR Green 
(Applied Biosystems) and run on a ABI 7500 instrument 
(95°C for 10 min, followed by 40 cycles of 95°C for 15 sec, 
60°C for 40 sec) with a dissociation step (ramping from 
60°C to 95°C) as published [55]. All reactions were run in 
triplicates and two independent experiments.

Gene expression profiling

Gene expression profiling was performed as published 
[2–4, 6] using Affymetrix U133 2.0 plus microarrays 
(Affymetrix, Santa Clara, CA, USA). Expression data are 
deposited in ArrayExpress under the accession number 
E-MTAB-317.

Interphase fluorescence in situ hybridization

Analyses were performed on CD138-purified 
plasma cells as described [9, 56]. For an overview of 
used probes (Kreatech Diagnostics, Amsterdam, The 
Netherlands; MetaSystems, Altlussheim, Germany), see 
Supplementary Table S1.

Statistical analysis

Gene expression data were assessed as previously 
described [2–6]. Signal calls on the miChip were 
preprocessed using MiChip package selecting only 
spots associated with human miRNAs for further 
preprocessing (http://www.bioconductor.org/packages/

devel/bioc/html/MiChip.html). The summarized signal 
calls on the miChip were log2 transformed after scaling 
with a constant (114) so that the smallest value was 
1 before log transformation. For normalization, an 
invariant-based normalization method was applied 
[50]. For unsupervised analysis, hierarchical clustering 
using the average linkage method with the centered 
Pearson correlation method was used. Differential 
miRNA expression was assessed using empirical Bayes 
statistics in linear models for microarray data [57] and 
P-values were adjusted for multiple testing controlling 
the false-discovery-rate as defined by Benjamini 
and Hochberg at a level of 5% [58]. To assess the 
association of total miRNA expression and miRNA 
target genes, respectively, with EFS and OS [3], the 
gene expression-based proliferation index (GPI) [3], as 
well as the IFM- [39] and the UAMS [38] high-risk 
score, Goeman’s global test was applied [59]. Cox 
regression was used to identify miRNAs associated 
with EFS and OS at a significance level of P <.05. 
Maximally selected rank statistics (http://cran.r-project.
org/web/packages/maxstat/index.html) were conducted 
to find optimal cutoffs for defining high- and low-risk 
groups and survival outcomes were compared using 
the log-rank test. Differences in clinical parameters 
between defined groups were investigated by Wilcoxon 
rank-sum test. Correlation was assessed using Pearson’s 
correlation coefficient and the relationship between 
categorical variables by Fisher’s Exact Test. An effect 
was considered as statistically significant if the P-value 
of its corresponding statistical test was ≤ 5%.

miRNA target prediction

Target gene prediction was carried out using 
miRWalk [60] integrating the predicted target transcripts of 
the following prediction tools: DIANA-microT, miRanda, 
miRWalk, miRDB, PITA, RNAhybrid and TargetScan. To 
limit the number of false-positives, we only retained those 
transcripts for further analysis identified by at least 6 out 
of 7 target prediction algorithms.

miRNA signature

A miRNA signature for survival prediction was 
constructed using principal component analysis on the 
53 samples for which survival data were available and 
5 survival associated miRNAs. First, taking the first and 
second principal component, two weighted averages 
for each sample were computed. Second, multivariate 
proportional hazards coefficients for the two weighted 
averages were assessed for EFS an OS each. Third, the 
score for each sample was computed as the vector product 
of the mean proportional hazard coefficients for EFS and 
OS and the samples weighted averages. Fourth, maximal 
selected rank statistics were used to find within the 
univariate score an optimal cut-off for defining a high- and 
low-risk group.
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miRNA target scores

miRNA target scores were generated for the 
survival relevant miRNAs using 247 mRNA expression 
samples for which survival data were available. Each 
target score was generated using the predicted target 
genes for the specific miRNA and applying the same 
principal component analysis-based algorithm that 
was used for generating the miRNA signature (see 
preceding paragraph). Generated target scores were 
validated regarding their impact on EFS and OS using 
an independent cohort of 345 samples from myeloma 
patients treated with up-front high-dose chemotherapy 
and autologous stem cell transplantation within the 
total therapy 2 protocol [53]. First, each sample was 
normalized by applying preprocessing information from 
test group by using a documentation-by-value strategy 
[61]. Second, the cut-off value from the test group was 
used to depict the high- and low-risk group.

Correlation of miRNA expression with mRNA expression

For 56 samples for which miRNA- and mRNA 
expression data were available, Pearson correlation 
was calculated. The latter was used as straightforward 
method to analyze the relationship between miRNAs 
and mRNAs [62]. miRNA and mRNA expression data 
were filtered by 80% least variable probesets resulting 
in 112 miRNAs and 8088 mRNA probesets. P-values 
were adjusted for multiple testing controlling the false-
discovery-rate as defined by Benjamini and Hochberg 
at a level of 5% [58]. Correlation cut-offs were set to 
r > 0.6 and r < -0.6, and corresponding correlations 
were plotted and manually checked for plausibility by 
removing artificial correlations.

All statistical computations were performed 
using R version 2.12.2 (http://www.r-project.org/), 
and Bioconductor version 2.7 [63]. An effect was 
considered statistically significant if the P-value was 
below 5%.
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