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ABSTRACT
MicroRNAs (miRNAs) regulate disease-relevant metabolic pathways. However, 

most current pathway identification methods fail to consider miRNAs in addition 
to genes when analyzing pathways. We developed a powerful method called 
Subpathway-GMir to construct miRNA-regulated metabolic pathways and to identify 
miRNA-mediated subpathways by considering condition-specific genes, miRNAs, and 
pathway topologies. We used Subpathway-GMir to analyze two liver hepatocellular 
carcinoma (LIHC), one stomach adenocarcinoma (STAD), and one type 2 diabetes 
(T2D) data sets. Results indicate that Subpathway-GMir is more effective in identifying 
phenotype-associated metabolic pathways than other methods and our results are 
reproducible and robust. Subpathway-GMir provides a flexible platform for identifying 
abnormal metabolic subpathways mediated by miRNAs, and may help to clarify the 
roles that miRNAs play in a variety of diseases. The Subpathway-GMir method has 
been implemented as a freely available R package.

INTRODUCTION

MicroRNAs (miRNAs) are short, endogenous, non-
coding RNAs that regulate transcription by inhibiting the 
expression of target genes. MicroRNA-induced inhibition 
of transcription can affect the initiation, progression, and 
prognosis of cancers [1–5]. High-throughput technologies, 
such as microarray and next-generation sequencing, have 
helped identify many novel, disease-relevant genes and 
miRNAs. However, the precise mechanisms by which 
these biomolecules contribute to disease pathologies are 
often unclear. Metabolic pathway analysis is a useful 
approach for identifying the roles of certain biomolecules. 
For example, the Over-Representation Analysis method 
(ORA) [6] evaluates whether a predefined group of genes 
is significantly over-represented in a second gene set using 
such analyses as the hypergeometric test [7]. Recently, 
Kretschmann et al. conducted pathway enrichment 
analysis directly based on miRNAs, counting each miRNA 
once, regardless of the number of genes in the pathway it 

targets [8, 9]. Though these methods are powerful tools 
for pathway identification, they have limitations. The 
ORA and Kretschmann et al. method focused on only 
genes and miRNAs, respectively, and both neglected the 
joint effect exerted by genes and miRNAs on disease 
phenotypes. Because genes and miRNAs can work 
together to disrupt biological pathways and cause diseases, 
integrative analysis of both is necessary when identifying 
disease-related pathways affected by miRNAs. Databases 
of interactions between miRNAs and their targets, such 
as TarBase [10], miRecords [11], mirTarBase [12], and 
miR2Disease [13], are valuable resources for exploring 
the regulation of genes and miRNAs in disease.

Gene expression can be regulated not only by 
miRNAs, but also by neighboring genes. Therefore, 
in addition to miRNAs, pathway topology should be 
considered in metabolic pathway identification. Li et al. 
developed a method for incorporating pathway topologies 
along with miRNAs in disease mechanism models by 
combining sample matched miRNA-mRNA profiles with 
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pathway structure [14]. Moreover, Li et al. confirmed 
that key local subregions, rather than entire pathways, 
were disordered under disease phenotypes [15, 16]. 
This indicates that focusing on subpathways rather than 
complete metabolic pathways might be more effective 
when identifying disease-relevant pathway topologies. 
Calura et al. developed the micrographite method to 
identify subpathways based on sample matched miRNA-
mRNA profiles and the topology structures of pathways 
with linked miRNAs [17]. However, they focused on 
signaling rather than metabolic subpathways.

Here, we developed a new method called 
Subpathway-GMir. The goal of this method is to identify 
miRNA-mediated metabolic subpathways important in 
different diseases. We first analyzed the LIHC data set to 
evaluate the better effectiveness of Subpathway-GMir 
than other methods. We second analyzed the STAD data 
set to examine the roles of miRNAs, both individually and 
in clusters, in mediating crosstalking genes from multiple 
subpathways. We then analyzed the T2D data set to 
demonstrate that Subpathway-GMir is useful for diseases 
other than cancers. Finally, we tested the reproducibility 
and robustness of pathways identified by Subpathway-
GMir. Subpathway-GMir has been implemented as a 
freely available R package at http://cran.r-project.org/web/
packages/SubpathwayGMir/, and it can currently support 
six species for the identification of metabolic subpathways.

RESULTS

Reconstructing metabolic pathways embedded 
by miRNAs

Metabolic pathways were reconstructed from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) by 
integrating miRNA-target interactions verified by low-
throughput experiments. A total of 101 miRNAs were 
embedded with the converted pathway graphs, and the final 
reconstructed metabolic pathway graphs (RMPGs) contained 
gene and miRNA nodes, gene-gene edges, and miRNA-
gene edges. The “Glycolysis/Gluconeogenesis” metabolic 
pathway graph is shown before and after reconstruction as 
an example in Supplementary Figure S1. We then analyzed 
the average number of nodes and edges in all RMPGs. As 
shown in Figure 1, each RMPG contained an average of 5.45 
miRNAs and 6.15 targets by node level and 9.66 miRNA-
target and 137.99 gene-gene pairs by edge level.

Identifying metabolic subpathways mediated  
by miRNAs in LIHC

We first assessed the effectiveness of Subpathway-
GMir. We used Subpathway-GMir to identify dysregulated 
subpathways involving 3357 differential genes and 394 
differential miRNAs from LIHC data set 1. We identified 
29 subpathways, associated with 29 distinct complete 
pathways at FDR < 0.01 (Supplementary Table S1). 

After manually curating from literatures, we found that 
18 complete pathways are known to be associated with 
cancers. We then compared Subpathway-GMir results to 
results obtained from ORA [6] and the method used by 
Kretschmann et al. [8, 9]. The ORA and Kretschmann 
et al. method were implemented by hypergeometric test 
based on only genes and miRNAs, respectively, and 
both of them were all complete pathway identification 
methods. A total of 9 pathways were identified by ORA 
and the Kretschmann et al. method (FDR < 0.01), all 
of which were included in the list generated using 
Subpathway-GMir (Figure 2). Furthermore, 11 of the 20 
LIHC pathways not detected by ORA or the Kretschmann 
et al. method are associated with cancers, and 10 of those 
involve cancer-related miRNAs [18]. It is obvious that 
Subpathway-GMir is more effective than other methods 
to identify LIHC-relevant metabolic pathways.

In further analyses, we focused on three of these 
metabolic subpathways mediated by miRNAs. The first 
was the most significant subpathway, path:00590_1 
(FDR = 4.07E-12), an important subregion within the 
arachidonic acid metabolic (AAM) pathway (Figure 3A). 
When analyzing the complete AAM pathway, neither 
ORA (FDR = 0.016) nor the Kretschmann et al. (FDR = 1) 
method returned a significant result. Studies demonstrate 
that the inhibition of AAM pathway can suppress the 
development and apoptosis of hepatomas [19, 20]. As 
the pivotal subregion of AAM pathway, path:00590_1 
contained 13 consecutive differential molecules, including 
10 genes and 3 miRNAs. Among these differentials were 
Cyclooxygenase-2 (COX-2), its downstream metabolite 
Prostaglandin H2 (PGH2) and miR-101. Overexpression 
of the differential gene (COX-2), which was at the center 
of path:00590_1, promotes LIHC cell growth of in vitro 
and in animal models [21]. Moreover, COX-2 catalyzes 
the conversion of arachidonic acid to PGH2. PGH2 
synthesis facilitates the development and progression 
of neoplasms by inhibiting tumor angiogenesis and 
immune function [22–24]. The miRNA miR-101 was 
also an important regulator in path:00590_1, and miR-
101 downregulation can promote apoptosis and suppress 
tumorigenicity in LIHC [25]. Normally, miR-101 inhibits 
COX-2 expression to promote progression of multiple 
cancers [26, 27]. The presence of miR-101 and COX-2 
at core positions within path:00590_1 suggests that 
Subpathway-GMir can identify novel LIHC-relevant 
subpathways within larger metabolic pathways.

The second significant subpathway, path:00561_1, 
is part of the glycerolipid metabolic pathway (Figure 3B). 
Path:00561_1 was identified by Subpathway-GMir at FDR 
= 1.52E-10, but the glycerolipid metabolic pathway as a 
whole was detected by neither ORA (FDR = 0.015) nor 
the Kretschmann et al. (FDR = 1) method. Path:00561_1 
contained miR-1, a non-differential miRNA. It also contained 
the initial position gene Aldehyde Dehydrogenase-2 (ALDH2) 
and central position gene Phosphatidic Acid Phosphatase Type 
2C (PPAP2C), both of which are targets of miR-1. Both of 
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these target genes were differentially expressed in LIHC 
data set 1 analysis. The knockdown of PPAP2C decreases 
cancer proliferation in in vitro transformed stem cells, and 
drugs targeting PPAP2C may prove useful in treating LIHC 
[28]. Additionally, abnormal expression of ALDH2 was 
closely associated with increased risk of LIHC [29]. MiR-1, 
a key regulator of ALDH2 and PPAP2C in path:00561_1, 
is involved in the development of many cancers, including 

bladder, liver, lung, prostate, and colorectal cancer [30–34]. 
Moreover, miR-1 can simultaneously inhibit growth 
and promote differentiation of hepatocytes by inhibiting 
expression of its target genes [34, 35]. Even low levels of miR-
1 are sufficient to partially suppress the activity of oncogenic 
target genes in cancer cells [32]. Though miR-1 expression 
did not change dramatically, Subpathway-GMir was still able 
to identify it as a key miRNA in an LIHC-relevant pathway.

Figure 1: Analysis for RMPGs. A. Node analysis. The number of all nodes, genes, miRNAs and targets within RMPGs. B. Edge 
analysis. The number of all edges (gene to gene and miRNA to target gene) within RMPGs.

Figure 2: Comparison of pathways identified by Subpathway-GMir, ORA and the Kretschmann et al. method in LIHC 
data set 1 (FDR < 0.01). Venn diagram depicting the overlap of pathways. These pathways were sorted by statistical significance (using 
Subpathway-GMir) in descending order. Each row represents a pathway and each column represents a method. The purple and grey grid 
represents that the pathway was or wasn’t identified by the method, respectively. Pathways supported by scientific studies are marked with 
red stars.
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The third subpathway, path00030_1, is part of the 
pentose phosphate metabolic pathway (PPP) and also 
overlaps extensively with the glycolysis/gluconeogenesis 
pathway (Figure 3C). Path:00030_1 was identified using 
Subpathway-GMir at FDR = 6.28E-09, and neither ORA 
(FDR = 0.18) nor the Kretschmann et al. (FDR = 0.56) 
method detected PPP. Furthermore, the Kretschmann 
et al. method also failed to detect the glycolysis/
gluconeogenesis pathway (FDR = 0.14). Decreases in 
oxidative phosphorylation upregulates glycolysis in cancer 
cells [36], so the energy-switching role of path:00030_1 
might contribute to LIHC development. The three 

miR-520 family members (miR-520a-3p, miR-520b, and 
miR-520e) in path:00030_1 together inhibited the core 
gene Platelet Isoform of Phosphofructokinase (PFK). 
Both the differential miR-520 family and target gene PFK 
can disrupt metabolic processes by triggering switches 
between the PPP and glycolysis pathways in LIHC. 
Hasawi et al. found that PFK catalyzes the conversion of 
fructose-6P-phosphotransferase to diphosphate-fructose-
6-phosphate-1-phosphotransferase, which increases 
glycolysis and contributes to cancer progression [37]. 
The miR-520 family also inhibits the expression of PFK, 
upregulating glycolysis and promoting the proliferation 

Figure 3: Subpathways identified using the Subpathway-GMir method. Ellipse, triangle and circle nodes represent genes, 
miRNAs and metabolites, respectively. Red and grey nodes represent differential and non-differential genes and/or miRNAs, respectively, 
and purple nodes represent metabolites. A. Arachidonic acid metabolic subpathway (path:00590_1, FDR = 4.07E-12). B. Glycerolipid 
metabolic subpathway (path:00561_1, FDR = 1.52E-10). C. Pentose phosphate metabolic subpathway (path:00030_1, FDR = 6.28E-09).
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and progression of cancer cells [38]. Transitions between 
PPP and glycolysis are also important in glioblastoma 
stem-like cells, and PFK expression is elevated during PPP 
and reduced during glycolysis [36, 39]. Our Subpathway-
GMir results suggest that PPP and the glycolysis/
gluconeogenesis pathway are likely important in LIHC 
as well.

Dissecting key risk miRNAs in STAD-relevant 
metabolic subpathways

We had evaluated the effectiveness of Subpathway-
GMir in identifying phenotype-associated metabolic 
pathways, we further dissected the mechanisms of 
miRNAs in mediating crosstalking genes from multiple 
subpathways. We then used Subpathway-GMir to analyze 
the STAD data set using 5633 differential genes and 
344 differential miRNAs. We identified 20 significant 
subpathways (FDR < 0.01) associated with 20 complete 
pathways, of which 18 involved cancer-related miRNAs 
(Supplementary Table S2). Furthermore, 14 of these 
pathways are involved in carcinoma genesis. Additionally, 
up to 10 of the miRNA-mediated pathways were not 
detected by either ORA or the Kretschmann et al. method 
(Supplementary Figure S2).

To identify key miRNAs common to multiple 
subpathways, we built the STAD-relevant regulatory 
network by merging the 18 miRNA-mediated metabolic 
subpathways identified using Subpathway-GMir method 
(Figure 4). The hub miR-1 had up to 20 target genes, 
of which 6 genes were associated with cancers and 
involved at least three subpathways (Figure 4: The blue 
shaded region). The knockdown of one of those genes, 
PPAP2C, decreases the proliferation of cancer cells 
[28]. Two more of these target genes, NT5E and PNP, 
are candidate biomarkers for malignant melanoma [40]. 
Increased activity of the PGM2 target gene can facilitate 
immortalization of primary mouse embryo fibroblasts [41]. 
Finally, gene targets GSTO1 and ALDH2 are associated 
with breast, ovarian, and esophageal squamous cell cancer 
[42, 43]. Together, this indicates that miR-1 might disturb 
multiple subpathways by affecting crosstalking genes, 
ultimately promoting the development of STAD.

Multiple miRNAs together also regulated multiple 
subpathways in the STAD-relevant regulatory network. 
As shown in the purple shaded region in Figure 4, miR-1 
and miR-133a-3p targeted the key gene PNP; this miRNA 
pair also regulated the Purine, Pyrimidine and Nicotinate 
and nicotinamide metabolic subpathways. MiR-133a-3p, 
a second regulator, clusters with miR-1 to inhibit genes 
involved in multiple cancer-relevant subpathways. When 
such clusters form between miRNAs separated by less 
than 50Kb, high correlations in expression result [44]. 
Correlations between miR-1/miR-133a have been observed 
in many cancers, including maxillary sinus squamous 
cell carcinoma (MSSCC), head and neck SCC, renal cell 

carcinoma, esophageal SCC, prostate cancer, colorectal 
cancer, and rhabdomyosarcoma [45–47]. The oncogenic 
PNP gene, an important metabolic enzyme which may 
be a therapeutic target in malignant lymphoproliferative 
diseases [48], is regulated by the miR-1/miR-133a cluster. 
Nohata et al. demonstrated that downregulating the miR-
1/miR-133a cluster can significantly upregulate PNP and 
enhance carcinogenesis in MSSCC [45]. Additionally, 
decreasing miR-1/miR-133a cluster expression promotes 
oncogenesis by increasing PNP expression in prostate 
cancer [49]. These results suggest that Subpathway-GMir 
is able to identify miRNA clusters and their target genes in 
a variety of other pathways.

Applying T2D data set

To examine the utility of Subpathway-GMir for 
diseases other than cancers, 131 T2D-related miRNAs and 
2391 differential genes were used to identify T2D-relevant 
metabolic pathways. We identified 10 subpathways 
associated with 10 complete pathways using Subpathway-
GMir method (FDR < 0.01). Seven of these complete 
pathways involved the development and progression of 
T2D (Supplementary Table S3). However, no and only 
three pathways were detected using the Kretschmann et al. 
and ORA method, respectively (FDR < 0.01). Moreover, 2 
of 3 ORA pathways were also identified with Subpathway-
GMir and verified by previous research (Supplementary 
Figure S3). The purine metabolism pathway was most 
significant among those identified by Subpathway-GMir 
(FDR < 1.00E-16) but not by ORA or the Kretschmann 
et al. method. Research suggests that the six purine 
metabolites of purine metabolism pathway might be 
useful in monitoring the progression, and evaluating the 
treatment, of T2D [50, 51]. These results indicate that 
Subpathway-GMir is useful for identifying metabolic 
pathways related to diseases other than cancers.

Reproducibility and robustness analyses

Reproducibility analysis

To confirm that the results obtained using 
Subpathway-GMir were reproducible, we used it to 
analyze a second LIHC data set. Subpathway-GMir 
identified 18 significant subpathways associated with 18 
complete pathways using 81 differential miRNAs and 
2427 differential genes from LIHC data set 2 (FDR < 0.01, 
Supplementary Table S4). Among these, 14 pathways were 
identified only by Subpathway-GMir and not ORA or the 
Kretschmann et al. method (Supplementary Figure S4). 
We used a hypergeometric test to evaluate the significance 
of shared pathways between the two LIHC data sets 
(Table 1). The results showed that LIHC data set 1 and 2 
shared 15 Subpathway-GMir pathways (P = 2.33E-10), 
and 7 of these pathways, undetected by both ORA and 
the Kretschmann et al. method, were specifically identified 
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by Subpathway-GMir (P = 4.60E-04) method (Figure 
5A–5B). This indicated that the results obtained using 
Subpathway-GMir were reproducible. Of the 15 pathways 
in both data sets, 11 are known to be associated with 
cancers; examples include the glycerophospholipid [52], 

fatty acid [53] and inositol phosphate metabolic pathways 
[54, 55]. 83% of LIHC data set 2 pathways were also 
identified in LIHC data set 1. We then evaluated whether 
this reproducibility was due to common differential genes 
and miRNAs that regulated the shared subpathways. 

Figure 4: The global regulatory network of miRNAs in STAD. Nodes represent genes or miRNAs within subpathways. Circle 
and triangle nodes represent genes and miRNAs, respectively. The gene (miRNA) node size is proportional to the number of linked 
miRNAs (genes). Differential nodes are colored red and non-differential nodes are colored blue. Edges represent the linking of two nodes 
involved the common subpathways. The line width is proportional to the number of subpathways involving the two linked two nodes. The 
blue and purple shaded regions show miR-1 and the miR-1/miR-133a cluster, respectively, mediating multiple subpathways.
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Table 1: Comparison of pathways identified by subpathway-GMir, ORA and the kretschmann  
et al. method for the two LIHC data sets
PathwayName TCGA Data Set GEO Data Set

Subpathway-
GMir

ORA Kretschmann 
et al.

Subpathway-
GMir

ORA Kretschmann 
et al.

Glycolysis / Gluconeogenesis √ √

Purine metabolism √ √ √ √

Pyrimidine metabolism √ √ √ √

Inositol phosphate metabolism √ √ √

Glycerophospholipid metabolism √ √ √

Metabolism of xenobiotics by 
cytochrome P450 √ √ √

Lysine degradation √ √

Arachidonic acid metabolism √

Fatty acid metabolism √ √ √

Glycerolipid metabolism √ √

Retinol metabolism √ √

Fructose and mannose metabolism √

Drug metabolism - cytochrome P450 √

Sphingolipid metabolism √ √

Pentose phosphate pathway √

Steroid hormone biosynthesis √ √

Tryptophan metabolism √ √

Starch and sucrose metabolism √

Arginine and proline metabolism √ √ √

Ether lipid metabolism √

Alanine, aspartate and glutamate 
metabolism √ √ √

Pyruvate metabolism √

beta-Alanine metabolism √

Tyrosine metabolism √

Valine, leucine and isoleucine 
degradation √ √

Glutathione metabolism √ √

Glycine, serine and threonine 
metabolism √

Galactose metabolism √

Histidine metabolism √

One carbon pool by folate √ √

Aminoacyl-tRNA biosynthesis √

Butanoate metabolism √

Note: The bold pathways were verified that associated with LIHC.
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Surprisingly, only 30% of the differential genes and 5% of 
the differential miRNAs identified in LIHC data set 1 were 
also identified in LIHC data set 2. Though there was a big 
difference in differential genes and miRNAs between two 
LIHC data sets, the findings identified by Subpathway-
GMir still showed the well reproducibility.
Robustness analysis

To test the stability of Subpathway-GMir, we 
evaluated its performance after randomly introducing 
noise in differential molecular sets and RMPGs. We 
first randomly deleted the expressions of N% genes 
and miRNAs from corresponding profiles. For each 
parameter N (= 5, 10, …, 30), we repeated this deletion 
process 1000 times to obtain 1000 randomly-generated 
profiles of genes and miRNAs, and then produced 1000 
differential molecular lists. Subpathway-GMir, ORA, and 
the Kretschmann et al. method were used separately to 

obtain 1000 pathway lists from these 1000 differential 
molecular lists. For original 29, 8, 1 identified pathways 
as the reference sets, we compared the mean ratio of the 
reference pathways recalled from 1000 random pathway 
lists (FDR < 0.01), the results can be shown in Figure 5C. 
As the deletion ratio was increased, the performance 
of all three methods declined, but Subpathway-GMir 
consistently had higher recalled ratios than the other 
methods. Specifically, the recalled ratio for Subpathway-
GMir was 87% when deletion ratio was 10%, whereas 
only 72% and 57% were recalled using ORA and the 
Kretschmann et al. method, respectively. When the 
deletion ratio was increased to 30%, the recalled ratio for 
Subpathway-GMir was 64%, while it was less than 50% 
for both ORA and the Kretschmann et al. method. Then 
we broaden the significance threshold of pathways, we 
found that our Subpathway-GMir method still produced 
better performance than both ORA and the Kretschmann 

Figure 5: Reproducibility and robustness analyses. A–B. Reproducibility analysis. Venn diagram A depicts all significant pathways 
identified by Subpathway-GMir in LIHC data sets 1 and 2. Venn diagram B depicts the significant pathways identified by Subpathway-
GMir but not by both ORA or the Kretschmann et al. method in LIHC data sets 1 and 2. C–D. Robustness analysis. Figure C shows 
the mean ratio of recalled pathways using Subpathway-GMir, ORA and the Kretschmann et al. method after randomly deleting N% of 
genes and miRNAs from the corresponding profiles, where N = 5, 10, …, 30. Figure D shows the mean ratio of recalled pathways using 
Subpathway-GMir after randomly deleting N% of the edges in each RMPG, where N = 5, 10, …, 30.
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et al. method when setting FDR < 0.05 (Supplementary 
Figure S5).

We next tested the performance of Subpathway-
GMir by randomly deleting a percentage of the edges 
within each RMPG. For each deletion percentage (N = 5, 
10, …, 30), we repeated the deletion process 1000 times 
to obtain 1000 random RMPG lists. Then we performed 
the Subpathway-GMir method using 3751 differential 
molecules for each random RMPG list as pathway 
background, and we obtained 1000 random pathway lists. 
As the same, we calculated the mean ratio of recall for 
29 reference pathways out of the 1000 random pathway 
lists (Figure 5D). As the deletion percentage increased, 
the recalled ratio declined slightly. Subpathway-GMir 
displayed the best performance when the deletion ratio 
was 10%, recalling more than 94% of the pathways. When 
the deletion ratio was increased to 30%, the recalled ratio 
was 88%. In summary, the above results suggested that 
the pathways identified by Subpathway-GMir was robust 
in resisting the disturbance of differential molecular sets 
and RMPGs.

DISCUSSION

MiRNAs generally disturbed metabolic pathways 
by inhibiting the expression of their target genes. To 
locate miRNA-mediated key subregions within complete 
pathways and explore the potential regulatory mechanisms 
of miRNAs and genes, we developed Subpathway-GMir 
method.

The Subpathway-GMir method has several 
advantages. First, the inclusion of both genes and 
miRNAs in reconstructed RMPGs, which is more 
reflective of real biological networks, likely contributed 
to the improvements in pathway detection seen with 
Subpathway-GMir. For example, the larger AAM pathway, 
of which LIHC-associated path:00590_1 is a part, was not 
detected by ORA and Kretschmann et al. method. This 
detection failure may be due to the neglect of differential 
miRNAs and genes, respectively, in those methods. 
Second, pathway topology was considered when locating 
candidate subregions, which was better to reflect the 
transmission of disease signals. Both PPP and glycolysis 
pathway, as the whole of Path:00030_1, are important for 
switching the metabolic processes in LIHC. However, 
the ORA and Kretschmann et al. method, independent of 
pathway topologies, failed to detect PPP pathway. Third, 
we set up two flexible parameters n and s to locate the 
candidate subpathways. Setting n = 1 requires that there is 
no more than one non-differential molecule between any 
two differential molecules, which makes disease signals 
stronger and the transmission more direct. The parameter 
s = 10 increases the number of differential molecules 
included in candidate subpathways, with the result that 
the subpathways may be sufficient to dysregulate the 
complete pathway of which they are a part. Therefore, we 

can identify miR-1 as a key miRNA in an LIHC-relevant 
pathway though the expression level of it was weakly 
changed.

The upstream regulators of metabolic pathways, 
miRNAs generally regulated the complete pathway 
by inhibiting their downstream targets within key 
subpathways. To further investigate the roles of cancer-
related miRNAs, we constructed the global STAD-
relevant regulatory network. The hub miRNAs, as a 
central part of network, were important to the stability 
of the global metabolic system. Thus we focused on the 
miRNAs that impact the largest numbers of metabolism 
genes. We found that miR-1 targeted most genes in 
network, and the six of them were cancer-relevant 
and crosstalked by multiple subpathways. Moreover, 
miR-133a-3p can cluster with miR-1, in manifold 
cancers, to inhibit the crosstalking genes from multiple 
subpathways. It suggests that Subpathway-GMir can 
be used to identify individual miRNA, miRNA clusters 
and the genes they target in multiple pathways, thereby 
aiding in the development of novel therapies for many 
different cancers.

The flexibility of the Subpathway-GMir model 
makes it useful in evaluating many pathways related to 
diseases other than cancers, as demonstrated in T2D data 
set analysis. The highly reproducible nature of miRNA 
and gene pathways identified using Subpathway-GMir, 
by comparing two different LIHC data set results, also 
suggests that it will be a useful tool for understanding 
metabolic regulation in many diseases. Subpathway-GMir 
method was implemented as a freely avaliable R-based 
tool. The users can flexibly choice the environment 
variables, supporting one of six species, to identify 
organism-specific metabolic subpathways.

MATERIALS AND METHODS

Materials

Experimentally verified miRNA-target 
interactions

We collected experimentally verified miRNA-target 
interactions from miRTarBase [12], mir2Disease [13], 
miRecords (V4.0) [11] and TarBase (V6.0) [10] databases. 
These interactions were identified from research done in 
six species. After redundancy processing, 55146 miRNA-
target interactions among 20186 genes and 1110 miRNAs 
were obtained as follows: 96 pairs from mir2Disease, 518 
pairs from miRecords (V4.0), 26388 pairs from TarBase 
(V6.0), and 50381 pairs from miRTarBase. A total of 
40990 human specific miRNA-target interactions involving 
14653 genes and 579 miRNAs were obtained; 7630 of 
these pairs, involving 4376 genes and 371 miRNAs, had 
been verified by low-throughput experiments.
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LIHC data set 1

The RNA-seq datasets of genes and miRNAs 
(quantile-normalized and background-corrected at level 
three) were downloaded from The Cancer Genome Atlas 
(TCGA) database (http://tcga-data.nci.nih.gov/). Here, 
we used reads per kilobase of exon per million fragments 
mapped (RPKM) and read count datasets. The miRNA 
expression profile included 100 cancer samples and 50 
normal samples; the gene expression profile included 
17 cancer samples and 9 normal samples. For each 
type of dataset, we used average expression for genes 
and miRNAs more than one value. To get differentially 
expressed genes and miRNAs, we applied fold change 
(FC) method to the RPKM data set and the edgeR [56] 
method to the read count data set. Genes and miRNAs 
were considered differentially expressed when the edgeR 
method false discovery rate (FDR) was < 0.05 and the 
FC ratio |log2(FC)| > 1. We identified 3357 differentially 
expressed genes and 268 differentially expressed miRNA 
precursors (pre-miRNAs). Finally, we converted 268 pre-
miRNAs to 394 mature miRNAs (mat-miRNAs) basing on 
the corresponding relationships between pre-miRNAs and 
mat-miRNAs from the miRBase [57] database.

LIHC data set 2

Processed expression matrices of genes and 
miRNAs were extracted from Gene Expression Omnibus 
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/). The 
miRNA expression matrix included 68 cancer samples and 
21 normal samples (GSE36915) [58]; the gene expression 
matrix included 6 cancer samples and 6 normal samples 
(GSE46408) [59]. We considered genes and miRNAs 
differentially expressed when the significance analysis 
of microarrays (SAM) [60] method had FDR < 0.05 and 
FC ratio |log2(FC)| > 1. We identified 2427 differentially 
expressed genes and 81 differentially expressed mat-
miRNAs.

STAD data set

The RPKM and read count datasets of genes and 
miRNAs were downloaded and processed the same as for 
LIHC data set 1. We extracted sample-matched gene and 
miRNA profiles in this case, including 231 cancer samples 
and 33 normal samples. Using the same process as for 
LIHC data set 1, we identified 5633 differential genes and 
229 differential pre-miRNAs corresponding to 344 mat-
miRNAs.

T2D data set

The gene expression profile data was originally 
analyzed and processed by Jain et al. (GSE29221) [61] 
and included 12 diabetic and non-diabetic samples 

each. We obtained 2391 differential expressed genes 
using the SAM method with an FDR < 0.1 and FC 
ratio |log2(FC)| > 1. Searches were conducted for 
the T2D-related risk miRNAs in titles or abstracts 
using PubMed with the following terms: (‘miRNA’, 
‘type 2 diabetes’) or (‘microRNA’, ‘type 2 diabetes’). 
A total of 131 miRNAs from 66 sources were obtained 
(Supplementary Table S5).

Methods

Subpathway-GMir implements the credible 
reconstruction of KEGG metabolic pathways by 
embedding miRNAs with target genes verified by low-
throughput experiments. MiRNA-mediated metabolic 
subpathways are identified by topologically analyzing 
the positions and cascade regions of condition-specific 
genes and miRNAs. Furthermore, Subpathway-GMir 
has been implemented as a freely available R package at 
http://cran.r-project.org/web/packages/SubpathwayGMir/. 
It can support the identification of miRNA-mediated 
metabolic subpathways in six species, abbreviated as 
follows: cel (Caenorhabditis elegans), dme (Drosophila 
melanogaster), dre (Danio rerio), hsa (Homo sapiens), 
mmu (Mus musculus) and rno (Rattus norvegicus). 
Users can alter the environment variables to identify 
organism-specific metabolic subpathways mediated by 
miRNAs. The pipeline overview is depicted in Figure 
6. It contains three main components: (i) By converting 
KEGG metabolic pathways into graphs with genes as 
nodes, we build reconstructed KEGG metabolic pathway 
graphs (RMPGs) that integrate miRNA-target interactions 
supported by low-throughput experiments; (ii) It maps 
condition-specific genes and miRNAs into RMPGs and 
identifies miRNA-mediated metabolic subpathways 
based on the “lenient distance” similarity method; (iii) It 
evaluates the significance of candidate subpathways using 
the hypergeometric method. The details of these processes 
are described below.

Reconstructed KEGG metabolic pathway graphs

The reconstructed KEGG metabolic pathway 
graphs contained both genes and miRNAs, replicating 
real biological pathways. We first extracted 152 
KEGG metabolic pathway structures and converted 
them into undirected graphs with genes as nodes and 
compounds as edges using our previously developed R 
package “iSubpathwayMiner” [15]. We next searched 
each miRNA with at least one target gene verified in 
low-throughput experiments, and determined whether 
each converted pathway graph contained its verified 
targets or not. For each pathway, we then embedded 
the miRNA node into the pathway and linked it to 
its verified targets. Finally, we obtained the RMPGs, 
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Figure 6: The pipeline overview of Subpathway-GMir. 
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which incorporated miRNA nodes and miRNA-target 
interaction edges.

Locate metabolic subpathways mediated by 
miRNAs

We located miRNA-mediated metabolic subpathways 
using the “lenient distance” similarity method [16]. We first 
mapped differentially expressed genes and miRNAs into 
RMPGs as signature nodes, then computed the shortest 
path between any two signatures. For each signature pair, 
we placed the two signatures, and the molecules contained 
in the shortest path (the length of which was set to no longer 
than n) between them, into the same candidate node. We 
then located each candidate node set in the pathway graph 
and extracted the corresponding subregion. We finally 
defined the subregion as a subpathway where the number 
of nodes was no less than s. The n and s parameters control 
the intensity of disease signals and the size of candidate 
subpathways, respectively. The default parameters n = 1 
and s = 10 were used here.

Evaluate the statistic significance of located 
subpathways

To evaluate whether located subpathways were 
dysregulated in disease conditions comparing to chance, 
we used the hypergeometric method to test their statistical 
significance. The following formula was used to calculate 
P-value for the enrichment significance of subpathways:

In above formula, mg (mmir ) was the number of genes 
(miRNAs) in entire genome (miRNAome), and ng 
(nmir ) was the number of differentially expressed genes 
(miRNAs), of which rg (rmir ) genes (miRNAs) participated 
in the subpathway containing tg genes (tmir miRNAs).
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