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ABSTRACT:
Glioblastoma (GBM), a highly malignant brain tumor of adults and children, diffusely 
invades within the non-neoplastic brain. Despite aggressive current therapeutic 
interventions, improved therapeutic strategies are greatly needed. Interactions 
between the tumor and constituents of its microenvironment are known to regulate 
malignancy, and heparan sulfate proteoglycans (HSPGs) are important as they bind 
diverse extracellular proteins, including growth factors and cell adhesion molecules, 
regulating the activity of several ligand-mediated signaling pathways. Recent work 
from our group described a mechanism by which GBM regulates PDGFR-alpha 
signaling via enzymatic alteration of heparan sulfate proteoglycans (HSPGs) in 
the extracellular microenvironment. Blocking tumor-induced alterations of HSPGs, 
which can be achieved by pharmacological strategies, would potentially inhibit 
multiple oncogenic signaling pathways in tumor cells and disrupt critical tumor-
microenvironment interactions. Here we examine HSPGs and the enzymes that 
modify them in GBM. We compare their expression across tumor subtypes, their 
potential roles in oncogenesis, and their potential as novel therapeutic targets in GBM.

INTRODUCTION

Primary malignant brain tumors make up one of 
the deadliest forms of cancer in both adults and children. 
Glioblastoma (GBM), the most common primary 
malignant brain tumor in adults, is a highly malignant 
diffuse astrocytoma that can present de novo or develop 
from the progression of a lower grade tumor. Children also 
present with GBM, although less commonly. For any age 
group, GBM share a similar histopathologic appearance 
between tumors, however GBM are highly heterogeneous 
with respect to their biologic and molecular characteristics. 
Using a combination of gene expression, genomic and 
proteomic data to identify patterns between GBMs, 
tumors can be stratified into potentially clinically relevant 
subtypes [1-8]. Future stratification of patients into 
subgroups based upon predicted responsiveness to specific 
therapies will likely lead to improved therapy. Despite 
these exciting advances, the current prognosis for patients 
with GBM is poor and median survival remains less than 
two years [9]. There is great need for improvement in our 
understanding of factors driving tumorigenesis within 

different tumor subtypes. This knowledge will propel the 
development of novel therapeutic strategies and advance 
our ability to target tumors and to predict response. 

Aberrant activation of multiple receptor tyrosine 
kinase (RTK) signaling pathways is a unifying feature 
across GBM, promoting many aspects of tumorigenesis 
including tumor cell proliferation, survival, invasion, 
and induction of angiogenesis. Indeed the most common 
alterations in GBM include amplification of RTK 
receptors, such as EGFR and PDGFRA, and increased 
expression of ligands, such as PDGFB [5, 10-12]. 
Furthermore, overexpression of ligands such as PDGFB 
can drive tumorigenesis in murine brain tumor models 
[13-15]. Despite the role of RTKs in driving oncogenesis, 
small molecule inhibitors targeting single RTK pathways 
have been largely unsuccessful in improving overall 
survival [16]. A potential explanation for the limited 
efficacy of these targeted therapeutics is that GBM is 
driven by the summation of multiple signaling inputs 
[1, 17-19]. Simultaneous targeting of multiple abnormal 
signaling pathways will likely be required for the 
development of more effective therapies.
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During normal development and tissue maintenance 
ligand-mediated signaling is exquisitely regulated, 
including the bioavailability of ligand in the extracellular 
environment. A prototypical example is the extracellular 
regulation of the Wnt family of secreted proteins. 
Once released from the cell Wnt ligands bind and 
are sequestered by proteins such as heparan sulfate 
proteoglycans (HSPGs) in the extracellular environment. 
Only after ligands are released from HSPGs can they bind 
to and activate their Frizzled receptors [20, 21]. While the 
mechanisms regulating ligand availability in the tumor 
microenvironment are just beginning to be elucidated 
in GBM, they likely play a role in driving oncogenic 
signaling pathways. Blocking these mechanisms has the 
potential to inhibit ligand-mediated activation of multiple 
oncogenic pathways in tumors.

Heparan sulfate proteoglycans and extracellular 
sulfatases in GBM.

HSPGs present on the cell surface as well as in 
the extracellular matrix, are a major component of the 
extracellular environment in normal brain and GBM [22, 
23]. They regulate cellular signaling via their ability to 
bind diverse protein ligands including growth factors, 
chemokines, morphogens, matrix proteins, cell adhesion 
molecules, and proteases [24-28]. As illustrated in Figure 
1A, HSPGs can bind and sequester ligands thereby 
preventing engagement with their cognate receptor, as 
discussed above with the Wnts for example. HSPG can 

also act as a co-receptor and promote receptor signaling, 
such as with FGF2 and VEGF [20, 29, 30]. HSPG-
mediated signaling is also critical for normal brain 
development [31].

In GBM, the expression levels of multiple HSPG 
core proteins and HSPG-modifying enzymes are 
significantly altered relative to normal brain (Figure 2). 
HSPGs consist of a protein core and heparan sulfate 
(HS) chains consisting of linear carbohydrate chains of 
repeating disaccharide units. Essential for their function 
in cell signaling, the HS chains undergo extensive post-
translational modifications, including sulfation on the 6-O- 
position of glucosamine [32]. Indeed, 6-O-sulfation of HS 
is a critical determinant of growth factor binding and is 
essential for normal development [33-37]. While a number 
of intracellular enzymes regulate HSPG biosynthesis and 
sulfation, the recently discovered extracellular sulfatases, 
SULF1 and SULF2, reveal a novel mechanism for the 
regulation of HSPG-dependent signaling. By removing 
6-O-sulfates on HS chains and mobilizing protein ligands 
from HSPG sequestration in the extracellular environment, 
the Sulfs can activate multiple key signaling pathways 
(e.g., Wnt, Shh, GDNF, and PDGF) [20, 29, 38-40]. 

Consistent with this ability, SULF transcripts are 
overexpressed in GBM and in many human cancers, 
including non-small cell lung cancer (NSCLC), 
hepatocellular carcinoma, breast cancer, head and neck 
cancer, pancreatic adenocarcinoma, multiple myeloma, 
and gastric carcinoma [40-42]. In GBM, we have found 
that SULF2 protein is expressed in adult and pediatric 
tumors (Figure 3) and, using knockdown and transgenic 

FIGURE 1: Heparan sulfate proteoglycan (HSPG) glycosaminoglycan side chains bind and sequester ligands in the 
extracellular environment. (A) Dependent on the HSPG core protein, HSPGs are found at the cell surface, in the extracellular matrix, 
or in secretory vesicles. HSPG function is critical for normal growth and development and includes regulation of ligand-mediated signaling, 
cell adhesion, and formation of the extracellular matrix for cell migration. (B) Model for SULF2 regulated RTK signaling in glioblastoma. 
SULF2 acts on HSPGs, present in the tumor microenvironment, to decrease 6O-sulfation, release sequestered ligands such as PDGF and 
increase activation of the RTK PDGFR-alpha and downstream signaling pathways in tumor cells. RTK, receptor tyrosine kinase.
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approaches, we have demonstrated ablation of SULF2 
results in decreased activity of several RTKs, including 
PDGFR-alpha, decreased tumor cell proliferation, 
and prolonged survival in vivo[40]. Interestingly, 
SULF2 has also been directly implicated as a driver of 
carcinogenesis in NSCLC [43], pancreatic cancer [44], 
hepatocellular carcinoma [45], and a murine model for 
oligodendroglioma [46], further supporting its importance. 
The SULFs appear to regulate multiple signaling pathways 
important in cancer, likely upstream to the interaction 
of growth factors with RTKs and the activation of 
intracellular kinases (Figure 4). Defining the extent 
and timing of SULF2 function in tumorigenesis will be 
important.

HSPGs are also the targets of heparanase (HPSE), 
an endoglycosidase, which generates biologically active 
fragments of HS chains. Heparanase is upregulated 
in many cancers, including GBM (Figure 2 and [47-
49]). Increased expression of heparanase in tumors 
has been implicated in increased tumorigenesis, tumor 
angiogenesis, and invasiveness [47-49]. Together these 
studies suggest that tumors actively enzymatically modify 
components of the brain tumor microenvironment to help 
drive oncogenic signaling and invasion. Disruption of this 
partnership may be an important therapeutic strategy.

In addition to enzymatic alterations in HSPGs, the 
identity and levels of the HSPG core proteins are also 
important determinants of cell signaling. The core protein 
specifies proteoglycan localization and can influence both 
extracellular and intracellular signaling. For example, 
the syndecans (SDCs), composed of four members, are 

membrane bound HSPGs and contain a cytoplasmic 
domain that binds cytoskeletal proteins and can serve as a 
substrate in cell signaling [50, 51]. SDCs play important 
roles in cell signaling, cell adhesion, and migration. 
Manipulation of syndecan-1 expression has been shown 
to alter HGF-Met signaling [52, 53] and Wnt signaling 
[54] in cancer. In contrast, the glypicans (GPCs) composed 
of six members, are GPI-linked to the cell membrane, 
and these are typically involved in growth factor and 
morphogen responses. Other HSPGs, such as perlecan 
(HSPG2) are found within the extracellular matrix. For 
those HSPGs associated with the cell membrane, the 
extracellular domain can also be shed, resulting in the 
release of biologically active proteoglycans. Indeed, shed 
syndecan-1 has been shown to mediate removal of CXC 
chemokines and facilitate resolution of inflammation 
[55]. In multiple myeloma high levels of shed syndecan-1 
correlate with poor prognosis and have been associated 
with increased tumor growth in animal models [56, 57]. 
In GBM, both total and specific HSPGs core proteins 
are altered (Figure 2), including increased levels of 
syndecan-1 and glypican-1 as previously demonstrated 
[23, 58]. 

Interestingly, alterations in HSPGs vary across tumor 
subtypes suggesting there may be subtype-specific HSPG 
functions in GBM, Figure 4. The proneural GBM subtype, 
characterized by alterations in PDGFR signaling, has high 
SULF2 expression [4]. In contrast, the mesenchymal GBM 
subtype exhibits increased expression of multiple other 
HSPG-related genes. This latter subtype has increased 
expression of genes involved in interactions with the 

FIGURE 2: Altered HSPG-related gene expression in human GBM. The mean expression of a number of HSPG-related 
genes, including HSPG core proteins (GPCs, SDCs, AGRN, SRGN, and HSPG2) and modifying enzymes (HPSE and SULFs) are altered 
in GBM relative to normal controls. Bars represent the mean ratio of log2(Tumor/Normal) +/– SEM gene expression. Upregulated (red) 
and down regulated, log2 (Tumor/Normal) greater than or equal to 0.5 or less than or equal to -0.5, respectively. TCGA Data Portal [71]; 
http://cancergenome.nih.gov. (n=170 human tumors). GPC, glypican; SDC, syndecan; SULF, extracellular sulfatase; AGRN, agrin; SRGN, 
serglycin; HSPG2, perlecan; HSPE, heparanase.
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extracellular environment, cell signaling, and the immune 
response, and, consistent with gene expression data, the 
number of tumor-associated microglia/macrophages is 
significantly greater in the mesenchymal compared to the 
proneural subtype (Mann-Whitney, p=0.042; J. Engler 
and J. Phillips, unpublished observation). While the 
mechanisms driving the increased inflammatory response 
in the mesenchymal subtype are not fully elucidated, 
proteoglycans have the potential to influence the immune 
response in cancer [59]. Indeed, tumor-derived versican 
has been shown to activate macrophages and increase 
metastatic tumor growth in a model for lung carcinoma 

[60]. Furthermore, targeting of HSPGs with a heparan 
sulfate (HS) mimetic normalized myeloid-derived 
suppressor cell levels in a murine mammary carcinoma 
model [61]. Understanding the function of HSPGs and the 
enzymes that modify them in a subtype-specific context 
will be important for the optimization of future therapeutic 
strategies. This has recently been illustrated by the report 
of an immunogenic therapy in which patients with a GBM 
of the mesenchymal subtype had a more robust immune 
response than patients with a tumor of the proneural 
subtype [62].

FIGURE 3: Expression of SULF2 protein in human GBM. Representative images of immunohistochemical staining for SULF2 
in adult (A) and pediatric (B) GBM. Immunohistochemistry was performed as described previously [40]. Magnification 400x.
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FIGURE 4: Subtype-specific alterations in the expression of HSPGs and HSPG modifying enzymes in GBM. The 
mean expression of HSPG-related genes are compared between the Mesenchymal (Mes) and Proneural (Pro) subtype of adult GBM. Bars 
represent the mean ratio of log2(Tumor/Normal) +/– SEM gene expression in each subgroup and a two-sided t-test was used to compare 
expression between the two groups. p<0.05, Mes n=56 and Pro n=53. Expression data from TCGA Data Portal [71]; http://cancergenome.
nih.gov.
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HSPGs and the enzymes that regulate them as 
potential therapeutic targets in GBM.

Accumulating data suggest the extracellular 
HSPGs, and the enzymes that modify them, may regulate 
ligand-mediated signaling pathways in GBM. Given 
their role in disease combined with their accessibility in 
the extracellular environment, they represent clinically 
relevant, druggable therapeutic targets. In malignant 
astrocytoma, we recently determined that knockdown of 
SULF2 resulted in decreased activity of multiple RTK 
signaling pathways including PDGFR-alpha, IGF1R-beta 
and EPHA2 [40], three pathways known to be involved 
in astrocytoma growth and invasion [10, 13, 14, 63-65]. 
Furthermore, ablation of SULF2, in a relevant murine 
model for astrocytoma, resulted in decreased activation 
of PDGFR-alpha, decreased tumor cell proliferation, 
and prolonged survival [40]. These data, combined with 
the high expression of SULF2 in a significant number 
of human GBMs, suggest SULF2 may be considered an 
upstream therapeutic target in the treatment of GBM and 
other cancers in which it is overexpressed. 

Since HSPGs regulate multiple upstream signaling 
pathways, and some of these same pathways are critical 
in malignancy, it is of great interest that a recent class of 
compounds has been developed to inhibit some of these 
oncogenic functions. Heparan sulfate mimetics are highly 
sulfated oligosaccharides that inhibit heparanase, sequester 
HSPG-binding factors, and inhibit SULF2 [66-68]. In 
preclinical studies, HS mimetics have effectively targeted 
multiple HSPG-dependent phenotypes and have resulted 
in decreased in vivo tumor growth, tumor invasion, tumor 
metastasis, and angiogenesis [61, 69]. Furthermore, a 
human Phase II clinical trial demonstrated safety and 
preliminary efficacy for a HS mimetic in recurrent 
hepatocellular carcinoma [70], and a recent preclinical 
study of a new rationally engineered HS mimetic, M402, 
suggests additional potential as a therapeutic agent [61]. 
While HS mimetics have not yet been tested in GBM, they 
are known to inhibit SULF2 activity [67] and represent a 
promising strategy.

Currently the prognosis for patients with GBM is 
challenging. With recent advances in imaging, genomic 
sequencing and proteomics, there is great hope that we 
are entering into a new era for detection and treatment 
of GBM. Stratification of patients into therapeutically 
relevant subgroups will likely be an essential component 
for treatment. Large-scale analyses of bulk tumors 
have revealed significant differences in expression of 
genes involved in tumor-microenvironment interactions 
between tumor subgroups, including proteoglycans and 
immune response-related gene. Targeting HSPGs and 
related components of the tumor microenvironment 
has the potential to simultaneously inhibit multiple 
oncogenic signaling pathways in tumor cells and to disrupt 
critical tumor-microenvironment interactions. Future 

efforts will be aimed at identifying the relevant tumor-
microenvironment interactions that help drive GBM and 
how to effectively target them therapeutically. 
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