
Oncotarget 2012; 3:  596-600596www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, June, Vol.3, No 6

Cyclotherapy: opening a therapeutic window in cancer treatment
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ABSTRACT:
Cyclotherapy is a promising endeavor to improve cancer treatment by tackling the 

dose-limiting side effects of chemotherapy, especially for cancers harboring mutations 
in the TP53 tumor suppressor. In this particular context, pre-treatment with a p53 
activator halts proliferation in healthy tissue, while leaving the p53-deficient tumor 
susceptible to conventional chemotherapy.

Cyclotherapy is a promising endeavor to improve 
cancer treatment by tackling the dose-limiting side effects 
of chemotherapy. The origins of chemotherapy can be 
traced back to WWII, when it was accidentally discovered 
that nitrogen mustard transiently suppressed lymphoma. 
Over the decades that followed, the principle that highly 
toxic compounds can be used to combat cancer led to the 
identification and subsequent clinical approval of a series 
of “classic” chemotherapeutics [1, 2]. Early examples 
include the still widely used vincristine (Oncovin®) and 
dactinomycin (Cosmegen®). The majority of anticancer 
drugs that are on the market today belong to the same 
category as these; that is, they are cytotoxic compounds 
with cancer-nonspecific targets such as tubulin or DNA 
[3, 4]. The most vulnerable tissues are those with a high 
proliferative ratio, independent of whether they are normal 
or cancerous. Due to this lack of selectivity, side effects 
are prevalent and patients suffer from bone marrow 
suppression, neutropenia, anemia, nausea and vomiting, 
amongst other ailments. In addition, they are subjected to 
an increased risk of developing second tumors later in life.

Advances in the understanding of the molecular and 
cellular biology of cancer are making the identification 
of novel therapeutics targeting cancer- or tissue-specific 
traits possible. In-depth knowledge about the genetic 
alterations responsible for chronic myelogenous leukemia, 
for instance, enabled the rational design of imatinib 
mesylate (Gleevec®) [5]. In addition to the development 
of more selective anticancer agents, research efforts are 
also focused on improving the cure rate with existing 
drugs, for example, by optimizing drug combinations 
or refining drug delivery to a tumor. Another promising 
strategy aimed at increasing the therapeutic window of 
chemotherapy involves reducing the sensitivity of healthy 

tissue to anticancer agents. For cytotoxic drugs, which 
indiscriminately target cycling cells, chemoprotection 
can be achieved by selectively inducing a transient cell 
cycle arrest in normal cells. This concept, known as 
cyclotherapy [6, 7], is illustrated in Figure 1 for cancers 
harboring mutations in the TP53 tumor suppressor. In 
this particular context, pre-treatment with a p53 activator 
halts proliferation in healthy tissue, while leaving the p53-
deficient tumor susceptible to conventional chemotherapy 
[8-10].

For cyclotherapy to have the desired effects, i.e., 
shielding normal cells without diminishing the anticancer 
efficacy of the treatment, the protectant−therapeutic 
combination has to be chosen with great care. Cell 
cycle arrest does not guarantee protection from every 
cytotoxic agent. For instance, arresting cells in S-phase 
prior to exposure to the nucleotide analogue gemcitabine 
(Gemzar®) is likely to lead to synergistic cell killing 
rather than protection. Moreover, chemoprotection is 
unlikely to be effective if the anticancer drug outlives 
the cytostatic effect in cells. This is the case with classic 
DNA crosslinkers and intercalators, whose deleterious 
effects become apparent when cells re-enter the cell cycle. 
Preclinical p53-based cyclotherapy studies using cisplatin 
(Platinol®) and doxorubin (Adriamycin®) as second drug 
were indeed unsuccessful. 

In a recent publication [10], we have investigated 
a series of cyclotherapy regimes involving four small-
molecule p53 activators, tenovin-6 [11], leptomycin B 
(LMB) [12], nutlin-3 [13] and low doses of dactinomycin 
(LDactD) [14]. On normal cells in culture, these 
compounds have a reversible cytostatic effect, leading to 
the accumulation of cells in G1 and G2, and efficiently 
shield them from the cytotoxicity and nuclear aberrations 
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caused by clinically approved S and M phase-specific 
poisons [10]. The quality of the protection attained is 
highlighted in Figure 2, which shows normal cells exposed 

to the tubulin poison vinorelbine (Navelbine®) with or 
without tenovin-6 pre-incubation. Generally tenovin-6 
and LMB safeguard normal cells better than nutlin-3 or 

Figure 1: The cyclotherapy concept illustrated for patients with p53-mutant tumors. Pre-incubation with a small-molecule 
p53 activator selectively induces cell arrest in normal cells, thereby protecting them from subsequent exposure to a classic S or M phase-
specific cytotoxic drug without compromising the anticancer efficacy of the treatment.
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LDactD. However, from our systematic analysis [10], 
nutlin-3 emerged as the most promising chemoprotectant 
overall, showing good and highly-selective protection of 
normal cells from each anticancer drug tested, which is in 
agreement with previous data [8, 9, 15, 16]. 

Translating the concept of cyclotherapy into a 
clinical reality will involve a number of major challenges, 
including the following: 

(1) Further research is needed to identify suitable 
compounds to be used as chemoprotectants. Ideal 
candidates ought to elicit a reversible cytostatic response 
in normal cells over a wide range of concentrations. LMB 
is a very attractive compound from this point of view, 
since it is effective between 0.2 and 400 nM in cell culture 
[10]. Also, selectivity is critical and chemoprotectants 
should not induce cell cycle arrest in tumor cells. Our 
observations suggest that LDactD, for example, has a 
relatively narrow therapeutic window. For both normal 
and p53-mutant cancer cells, dactinomycin is cytotoxic at 
doses beyond 4 nM and mildly cytostatic below 2 nM [10, 
17]. 

(2) The cyclotherapy principle needs to be further 
validated in vivo. To date, a sole publication has reported 
that nutlin-3 can efficiently prevent neutropenia in mice 
exposed to an anticancer agent [16]. 

(3) Cell culture studies strongly suggest that 
optimal cyclotherapy regimes will vary between patients. 
Therefore, recent advances in the development of freely 
available databases profiling the drug sensitivity of 
large panels of cancer cell lines and high-throughput 
technologies for screening patient samples are of great 
interest [18-21]. These constitute substantial progress 
towards the ultimate goal of individually tailored 
therapies. 

(4) The clinical approval of potential 
chemoprotectants constitutes a major time-limiting step. 
Tenovin-6 is a novel compound still under preclinical 

investigation [11], while a nutlin-like compound is 
currently undergoing phase 1 clinical trials. LMB’s 
progress as a possible therapeutic is hindered by early 
reports of high toxicity in vivo as well as by this natural 
compound’s lack of a ‘composition of matter’ patent. 
The future does, however, look brighter for novel LMB 
analogues [22]. Finally, an appealing alternative is 
to exploit drugs that are already in the clinic, such as 
dactinomycin, as chemoprotectants. 

Since it is so frequently mutated in human cancers, 
the p53 tumour suppressor constitutes a highly attractive 
target for selective chemoprotection [23-25]. However, 
it is important to note here that other pathways can also 
be potentially exploited to selectively induce cell cycle 
arrest in normal tissue (cyclotherapy) or to lower its 
sensitivity via other chemoprotection strategies [26-31]. 
Apontes et al., [26], for example, explored the use of 
the immunosuppressant rapamycin (inhibitor of mTOR 
signalling) and the anti-diabetic drug metformin (activator 
of AMP kinase) as chemoprotectants. Furthermore, 
Raffaghello et al., [29] reported that short-term serum 
deprivation selectively protects normal cells in culture 
from the cytotoxicity of cyclophosphamide (Endoxan®) 
and improves the survival of mice exposed to high 
doses of etoposide (Eposin®), and preliminary dietary 
intervention studies in patients revealed a decrease in a 
range of side effects with fasting [32]. The differential 
effect of starvation on normal and cancer cells is mediated, 
at least in part, by insulin-like growth factor I (IGF-I) 
[33]. In another recent publication, Pabla et al., [28, 34] 
identified protein kinase C δ (PKCδ) as a key player in 
the nephrotoxicity and kidney damage associated with 
cisplatin-based cancer therapy and effectively exploited 
PKCδ inhibition to reduce cisplatin-induced apoptosis in 
renal proximal tubular cells in mice. 

In summary, cyclotherapy could improve treatment 
outcomes by making it possible to escalate the dose or 

Figure 2: Effective chemoprotection of normal cells from nuclear aberrations caused by a tubulin poison. Human 
normal dermal fibroblasts were (A) left untreated, (B) treated with 40 nM vinorelbine as a sole agent for 48 h or (C) pre-incubated with 3 
μM tenovin-6 prior to exposure to vinorelbine. Cells were then left to recover for several days in fresh medium and stained with Giemsa.

48 h treatment with tubulin poison 
(no pre-incubation)Untreated normal fibroblasts C 24 h pre-incubation with tenovin-6

48 h treatment with tubulin poison BA
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intensity of cancer therapy without aggravating toxicity 
in healthy tissue. Even if an increase in survival cannot be 
achieved in this manner, cyclotherapy could still prove to 
be an invaluable strategy to improve the quality of life of 
cancer patients. That is, together with other advances in 
chemo- and radio-therapy, cyclotherapy has the potential 
to open a therapeutic window for cancer treatment.
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