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ABSTRACT

Clear cell Renal Cell Carcinoma (ccRCC) is due to loss of von Hippel–Lindau (VHL) 
gene and at least one out of three chromatin regulating genes BRCA1-associated 
protein-1 (BAP1), Polybromo-1 (PBRM1) and Set domain-containing 2 (SETD2). 
More than 350, 700 and 500 mutations are known respectively for BAP1, PBRM1 
and SETD2 genes. Each variation damages these genes with different severity 
levels. Unfortunately for most of these mutations the molecular effect is unknown, 
so precluding a severity classification. Moreover, the huge number of these gene 
mutations does not allow to perform experimental assays for each of them. By 
bioinformatic tools, we performed predictions of the molecular effects of all mutations 
lying in BAP1, PBRM1 and SETD2 genes. Our results allow to distinguish whether a 
mutation alters protein function directly or by splicing pattern destruction and how 
much severely. This classification could be useful to reveal correlation with patients’ 
outcome, to guide experiments, to select the variations that are worth to be included 
in translational/association studies, and to direct gene therapies.

INTRODUCTION

Human Renal Cell Carcinoma (RCC), both 
sporadic and hereditary forms, comprises different 
histological subtypes. The first carcinogenic step leading 
to clear cell RCC (ccRCC) is the inactivation of the von 
Hippel–Lindau (VHL) tumour suppressor gene, mapped 
on 3p25. In particular, one VHL allele is usually damaged 
by a point mutation, while the other allele is lost owning 
to a large deletion. This deletion can also remove one 
allele of the near chromatin regulating genes BRCA1-
associated protein-1 (BAP1), Polybromo-1 (PBRM1) 
and Set domain-containing 2 (SETD2). Subsequently, 

a second-hit mutation can destroy one of the three 
remaining alleles, causing loss of heterozygosity and 
leading to different ccRCC grades and aggressiveness 
dependent on the gene lost [1].

BAP1 controls cell cycle, growth, response to 
DNA damage and chromatin architecture by histone H2A 
deubiquitination. In turn, this makes different target genes 
promoters accessible to transcription factors. PBRM1, 
which belongs to PBAF (also SWI/SNF-B) complex, 
binds acetylated H3 histone to remodel chromatin and 
control cell cycle. SETD2 trimethylates H3 histone 
controlling chromatin accessibility of genes regulating cell 
cycle, apoptosis and DNA double strand break signalling. 
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Different studies have reported a mutation frequency 
of about 33% for PBRM1, 10% for BAP1 and 12% for 
SETD2 in ccRCC [2].

Genomic alterations can cause alterations at 
different molecular levels. A variation lying in the 
promoter region could increase or decrease the transcript 
amount by acting on transcription factor (TF) binding 
sites. The prediction of these events is a few reliable 
since the promoter of each gene has an unknown 
extension, the TFs can bind short and degenerate 
motifs, the interactions among transcription factors on 
a promoter are largely unknown. An alteration lying 
in exons or introns can remove a splicing isoform or 
create an ectopic one. Naturally, if the tract appeared 
or disappeared in mRNA is not multiple of 3bp there 
is a frameshift error and there could be a premature 
termination codon that gives rise to a truncated protein. 
A part from the splicing, mutations lying in coding 
exons can also alter the protein function directly, 
by changing one or more aminoacids or introducing 
early stop codons. A variation in 3′UTR can destroy a 
microRNA binding site and lead to the increase of the 
related protein, on the contrary the creation of a site can 
reduce the protein level.

In this study, we predicted, by bioinformatics tools, 
the effects of all known mutations in BAP1, PBRM1 and 
SETD2 genes and we discussed their potential implications 
in guiding the management of RCC patients.

RESULTS

In Table 1 we reported a synthesis of the full 
results (Supplementary Table 1). Regarding splicing 
alterations, we adopted the following criteria to interpret 
prediction results: (i) the weakening of a natural splice 
was judged as severe if its score was decreased of at 
least 0.4 or the final score was lesser than 0.4. These 
events could lead to the skip of the splice site. We 
considered as mild the small score deviations (for 
example, from 0.39 to 0.30). (ii) The strengthening of a 
cryptic splice site was judged as severe if its final score 
was greater than 0.4 since this could activate the splice 
site. If the score did not reach 0.4 the event was judged 
as mild. (iii) The creation of a binding site in an exon 
for the exonic silencer factor hnRNP A1 was judged 
as severe because this protein acts as a strong silencer 
and can cause exon skipping. The creation of binding 
sites for other exonic silencers was judged as mild. (iv) 
The loss of a binding site for an exonic enhancer was 
judged as neutral since pre-mRNAs are rich in these 
sites (known as redundancy) and not frequently these 
events alter the splicing. However, we have to remind 
that there are not yet exact rules to model the splicing 
process. In fact, up till now, given a new pre-mRNA 
sequence it is not possible to predict the position of the 
exon and the alternative splicing isoforms. Therefore 

we dopted general guidelines deduced by mutational 
analysis present in the literature. We considered as 
severe a mutation predicted to be severe according 
to either NNSPLICE or SpliceAid 2. Analogously 
for protein effect, we graded as severe a mutation if 
either PredictSNP or DDIG-in claimed the severity. 
A mutation was considered as mild for splicing if it 
was mild for NNSPLICE or for SpliceAid 2 or for both 
tools and, analogously, for the protein prediction tools. 
Finally, a mutation that was predicted neutral by both 
splicing tools was defined neutral, and analogously for 
the protein tools. If at least one out of the four tools 
indicated a severity it was reported as “Severe” and if at 
least one tool predicted a mild effect but there were not 
severe judgments, it was indicated as “Mild”. Clearly, 
when all tools did not point out alterations, the mutation 
was classified as “Neutral”. According to our experience, 
we made an exception, considering as mild, rather than 
severe, the few in frame insertions or deletions, because 
they generally added or deleted one or more aminoacids 
not changing the reading frame.

We collected 383, 715, 511 mutations respectively 
for BAP1, PBRM1 and SETD2 genes, of which the 
majority were missense and frameshift. All nonsense 
and frameshift mutations were predicted to be severe. 
Generally, the severity of these kinds of variations can 
be proportional to the number of aminoacids altered. 
As a consequence, if a mutation lies in the C-terminal 
region of the protein, no serious damages for protein 
function could be assumed. Instead, for BAP1 (729 AAs) 
also variations involving the last aminoacids provoke 
severe alterations. In fact, the AAs from 717 to 722 
constitute the nuclear localization signal (NLS), whose 
modification leads to protein retention in the cytoplasmic 
compartment [3].

Our prediction that BAP1 c.A277G mutation 
created a 3′ splice site in an exon and so could lead to 
skip part of the exon is in accord with literature data 
(Figure 1) [4]. Analogously, our predicted alterations for 
BAP1 Ser63Cys, Phe81Val, Cys91Trp, Ala95Asp were 
consistent with enzymatic assays [5]. Also prediction on 
protein effect for SETD2 Arg1625His is coherent with 
literature data, which report loss of methyltransferase 
activity [6].

Missense mutation c.2054 A > T (p.Glu685Val) in 
BAP1 exon 16 (−3 position within exon) was assessed to 
affect splicing rather than protein sequence and structure. 
In particular, it created a novel 5′ splice site, completely 
disrupting normal splicing of BAP1, by creating both 
exonic 4nt deletion and retention of neighbouring introns. 
Besides creation of an alternative 5′ splice site (5′ss), a 
novel 3′ splice site (3′ss) was created that caused likewise 
intron retention [7]. These data confirm our predictions for 
this mutation, that is the disruption of the normal 5′ss, the 
creation of an alternative 5′ss at the assessed position and, 
finally, the creation of a 3′ss.
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Table 1: Synthesis of the predictions of the effect of the analyzed mutations. 
Gene Mutation type Severity Effect on Splicing Effect on Protein Summary

BAP1(383) Missense 174 (45%) Severe 22 106 115

Mild 36 0 11

Neutral 106 68 48

Nonsense 42 (11%) Severe 9 42 42

Mild 10 0 0

Neutral 23 0 0

Synonymous 20 (5%) Severe 3 - 3

Mild 5 - 5

Neutral 12 - 12

Frameshift 99 (26%) Severe 8 99 99

Mild 24 0 0

Neutral 67 0 0

In frame indels 10 (3%) Severe 1 0 1

Mild 0 9 8

Neutral 9 1 1

Splicing site 38 (10%) Severe 32 - 32

Mild 5 - 5

Neutral 1 - 1

PBRM1(715) Missense 234 (33%) Severe 26 116 129

Mild 59 0 34

Neutral 147 118 71

Nonsense 119 (17%) Severe 28 119 119

Mild 20 0 0

Neutral 71 0 0

Synonymous 32 (4%) Severe 3 - 3

Mild 6 - 6

Neutral 23 - 23

Frameshift 248 (35%) Severe 24 248 248

Mild 40 0 0

Neutral 184 0 0

In frame indels 21 (3%) Severe 2 0 2

Mild 4 20 18

Neutral 15 1 1

Splicing site 61 (8%) Severe 50 - 50

Mild 7 - 7

Neutral 4 - 4

SETD2(511) Missense 303 (59%) Severe 26 138 156

(Continued )
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BAP1 c.438–1G > A mutation was predicted to 
disrupt a 3′splice site and so to loss or gain nucleotides, 
potentially leading to frameshift. This could trigger the 
nonsense mediated decay (NMD) surveillance mechanism 
that eliminates the potentially dangerous transcript. In this 
case, immunohistochemical (IHC) data are available and 

state the protein absence [1]. Also for PBRM1, the effect of 
some splice site mutations (c.1347+1G > T, c.2683+1G > 
A, c.3773_3779+9del16, c.2472–1G > A, c.3780–18_3780–
2del17) that destroyed splice sites and a missense mutation 
(c.3752T > A Val1251Glu) that creates a 5′ss, the IHC data, 
claiming protein absence, supported previous hypothesis.

Gene Mutation type Severity Effect on Splicing Effect on Protein Summary

Mild 43 0 37

Neutral 234 161 110

Nonsense 95 (19%) Severe 9 92 95

Mild 16 0 0

Neutral 70 0 0

Synonymous 40 (8%) Severe 2 - 2

Mild 6 - 6

Neutral 32 - 32

Frameshift 52 (10%) Severe 6 50 52

Mild 6 0 0

Neutral 40 0 0

In frame indels 4 (1%) Severe 0 0 0

Mild 0 3 3

Neutral 4 1 1

Splicing site 17 (3%) Severe 12 - 12

Mild 2 - 2

Neutral 3 - 3

We reported the number of mutations having severe, mild and neutral effects at splicing and at protein levels. “-“ this kind 
of tool was not applicable at that kind of mutation. In some cases the sum of occurrence of a same group of mutations does 
not correspond to the total count shown in “Mutation type” column because the tools gave back an error message or the 
nucleotides added following an insertion, or their exact position, were not known. For example, protein predictions of SETD2 
result to be 92, 0, 0 but their sum is not 95.

Figure 1: BAP1 A277G is a germline mutation that gives rise to two alternative splicing forms, one carrying the 
missense mutation, the other lacking of part of exon 5 and causing frameshift. 
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Although many other predictions are consistent 
with the few IHC data, there are some discrepancies. 
For example, despite the BAP1 c.128T > G (Val43Gly), 
c.283G > C (Ala95Pro) and c.335T > C (Leu112Prp) 
and PBRM1 c.236G > T (Arg79Ile) and c.3014T > G 
(Val1005Gly) missense mutations could alter the splicing 
and/or change at most only one aminoacid, they even 
abrogate protein expression according to IHC data. This 
could be explained by the predicted creation of binding 
sites for exonic splicing silencer factors, leading to a 
splicing alteration and to a possible frameshift that, in turn, 
can trigger the NMD mechanism.

BAP1 c.21_32del12 (E7_S10delGluLeuGluSer) is 
an in frame deletion of 4 AAs, that DDIG-in predicted 
to disrupt protein function, but surprisingly the IHC data 
show the complete protein absence. As for BAP1 c.2188T 
> G (*730Gly), it eliminates the stop codon leading to 
protein extension instead IHC data was negative. Probably 
this is due to the appearance of an exonic silencer as 
predicted by SpliceAid and the probably following NMD 
priming.

PBRM1 c.2703delT (Ser902fs*80) and c.3292G > T 
(Glu1098*) are a frameshift and a nonsense mutations, 
respectively, that DDIG-in predicted to be deleterious and 
we expected that they prevented the PBRM1 expression. 
However, surprisingly, IHC data are positive for these 
protein variants. We did not find creation or destruction of 
motifs that regulates the RNA nuclear export.

These data are useful to select high-risk mutations 
that are worth to be evaluated in clinical studies. 
Moreover, we suggested which mutations alter molecular 
mechanisms more severely and should be investigated 
first at splicing or protein level. The knowledge of these 
mutations allows to design the targets for recent systems, 
as the CRISPR/Cas9 repairing system, that specifically 
edit DNA loci to add or delete base pairs [8].

DISCUSSION

The Cancer Genome Atlas Research Network 
supports the fundamental role of oxygen-sensing genes 
(VHL) and chromatin remodeling genes (PBRM1, BAP1 
and SETD2) in RCC tumorigenesis [9], highlighting 
their potential as prognostic biomarkers and/or future 
therapeutic targets.

However, several issues still need to be elucidated. 
First, what kind of different mutations damaging these 
chromatin-remodeling genes can occur, and how do they 
contribute to RCC development? How severe is a mutation 
lying in BAP1, PBRM1 and SETD2 genes in terms of 
protein function impairment, being largely unknown the 
molecular effects of all these genes alterations?

Using the COSMIC and MutDB mutation databases, 
we identified roughly 380, 700, 500 mutations for BAP1, 
PBRM1 and SETD2 genes, respectively.

Truncating mutations (base substitutions, insertions 
or deletions) lying in VHL, BAP1, PBRM1 and SETD2 
can result in frameshift and nonsense mutations, directly 
determining loss of the corresponding protein or function. 
In our study, all nonsense and frameshift mutations have 
been predicted to be severe.

Furthermore, both exonic and intronic mutations 
(synonymous and missense) have to be considered as 
potential mechanisms of splicing alterations leading 
to partially or totally exon skipping or intron retention, 
causing potential severe effects. As a consequence, splicing 
alterations could trigger a surveillance mechanism, named 
NMD, which provokes transcript degradation and protein 
loss, and resulting in the immunohistochemical lack of 
protein staining.

Second, can we be confident in a narrow and linear 
correlation between genomic sequencing data and those 
of easier access resulting from immunohistochemistry? 
Although the loss of a protein expression 
(or secondary to splicing alterations) generally 
leads to the corresponding absence of positivity to 
immunohistochemical staining, some discrepancies have 
been highlighted (i.e. PBRM1 c.2703delT (Ser902fs*80) 
frameshift mutation is associated unexpectedly with 
positive IHC staining), which impede to consider the 
latter method (less expensive and of easier access) as 
the standard technique.

Third, are there correlations among BAP1, PBMR1 
and SETD2 mutated genes? And, is it possible to identify 
a link between these genes and patients prognosis and/or 
response to treatments, attributing to them a prognostic or 
predictive value?

Interestingly, mutations in PBRM1 and BAP1 are 
largely mutually exclusive, while PBRM1 and SETD2 
mutations frequently co-occur in tumors, cooperating 
in RCC tumorigenesis [12]. Concerning the prognostic 
significance of BAP1, PBRM1 and SETD2 mutational 
status, BAP1 loss correlates with high Fuhrman nuclear 
grade and mTORC1 activation [1], higher tumor stage, 
and worst overall survival [13], while PBRM1 mutations 
seem to identify a favorable group of ccRCC.

Nevertheless, our study presents several limits. 
The correct intron removal depends on several variables 
such as the competition among many enhancing and 
silencing splicing factors, their proximity to splice sites, 
the RNA secondary structure and the cellular context. 
Since a reliable RNA secondary structure prediction 
lacks and, up till now, the result of a splicing factor 
competition is impossible to predict, we performed our 
splicing judgements adopting the best-accepted criteria 
for bioinformatic analyses. Moreover, protein prediction 
tools and NNSPLICE, since they have been trained 
with datasets collecting a limited number of sequences, 
may suffer of some false negative and false positive 
discovery rate.



Oncotarget32166www.impactjournals.com/oncotarget

Interestingly, the effect of mutations could involve 
also less known molecular levels. For example, we 
assessed that 6, 19 and 47 circular RNAs (circRNAs) 
rise respectively from BAP1, PBRM1 and SETD2 
loci, according to circBase (www.circbase.org). Their 
biogenesis and function, although have to be yet 
elucidated, could be altered by all kind of mutations [14].

In conclusion, we ranked BAP1, PBRM1 and 
SETD2 mutations based on their predicted effect on 
splicing and protein function, allowing to identify the 
damage severity, so as to select high-risk mutations that 
are worth to be evaluated in clinical trials. Our results 
provide the basis for an integrated pathological and 
molecular genetic classification of ccRCC, which takes 
into account disease-specific panels of genes, such as 
VHL, BAP1, PBRM1 and SETD2, thereby paving the 
way for subtype-specific treatments that exploit genetic 
abnormalities.

MATERIALS AND METHODS

Collection of mutations

We extracted mutation data of BAP1, PBRM1 and 
SETD2 from COSMIC (http://cancer.sanger.ac.uk) [15] 
and MutDB (www.mutdb.org) [16] mutation databases. 
COSMIC, the Catalogue Of Somatic Mutations In 
Cancer, is a large collection of human point mutations 
(insertions, deletions, silent, missense and nonsense 
mutations) observed in tumour samples and it is 
manually curated from the scientific literature. MutDB 
collects both nonsynonymous SNPs and mutations 
with protein structural information obtained from 
UniProt.

Predicition of protein alterations

Many computational tools are already widely 
employed for the prediction of the effects of mutations 
on protein function. For the predictions of the missense 
mutation effects we used PredictSNP [17]. In particular, 
this resource is a consensus classifier that processes the 
predictions of MAPP, nsSNPAnalyzer, PANTHER, PhD-
SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP tools to 
reach better prediction performances than the individual 
tools and other consensus tools as CONDEL and Meta-
SNP do. The mutations were categorized as neutral or 
dangerous, with the related confidence level ranging 
from 0 (low) to 1 (high). In order to discriminate disease-
causing from neutral frameshifting insertions or deletions 
(indels) and nonsense variants, that disrupt the protein 
coding sequence downstream of the mutation, we used 
DDIG-in (http://sparks-lab.org/ddig) [18]. It is a machine-
learning tool that can predict the disease probability, 
since it is trained on inherited disease-causing mutations 

from the Human Gene Mutation Database (HGMD) 
and putatively neutral variants from the 1000 Genomes 
Project.

Prediction of splicing alterations

In order to predict if mutations create or destroy 
5′ and 3′ splice sites we used NNSPLICE tool [19] 
that uses an artificial neural network (ANN) algorithm 
to estimate the splice sites strength. Moreover it was 
assessed that this resource has good performances in 
different works [20, 21]. NNSPLICE searches for splice 
sites in submitted sequence and gives back a score to 
the detected splice sites ranging from 0 (weak) to 1 
(strong). We submitted both WT and mutated sequences 
to compare the weakening or strengthening of functional 
splice sites and the creation of new sites. We considered 
mutations with the score differences higher than 0.2 
as splicing altering as adopted by other authors [22]. 
Detailed interpretation of the consequences of the splice 
site alteration events was previously reported [23].

To predict if mutations lie in splicing regulatory 
sequences recognized by splicing factors we used 
SpliceAid2 tool (http://www.introni.it/spliceaid.html) 
[24]. This resource uses only experimentally assessed 
target RNA sequences in humans and therefore reduces 
the false positive results. The complete list of the 
splicing enhancer and silencer factors was previously 
published [25]. SpliceAid2 detects the position of 
enhancer or silencer elements in sequence submitted by 
users. Notably, the creation of exonic silencers is usually 
a severe event that can lead to skip a part or the entire 
exon whereas its loss could alter the inclusion rate of an 
alternative exon. The loss or gain of an exonic enhancer 
is usually tolerated because these motifs are abundant 
in exons.

Prediction of mRNA export alterations

The nucleocytoplasmic export of a transcript can 
be facilitated or obstructed by specific elements, as the 
human eIF4E Sensitive Element (eIF4E-SE), c-Jun gene 
Enhancer (CJE), Cytoplasmic Accumulation Region 
(CAR), Post-Transcriptional Regulatory Element (PRE), 
Constitutive Transport Element (CTE) and Signal 
Sequence Coding Region (SSCR). All these and other 
elements are collected in ExportAid tool [26] that we used 
to detect if a mutation alters, creates or destroys mRNA 
export elements. This resource gives back the results as 
BLAST alignments.
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