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ABSTRACT:
With modern advances in robotics and data processing, high-throughput screening 
(HTS) is playing an increasingly growing role in the drug discovery process. The 
ultimate success of HTS depends upon the development of assays that are robust and 
reproducible in miniaturized formats, have low false-positive rates, and can identify 
drugs that offer improvements over those currently on the market. One example of 
such an assay is the ATAD5-luciferase HTS assay, which identified three antioxidants 
that could kill cancer cells without inducing mutagenesis. Here we discuss the ATAD5-
luciferase assay and expand upon the value of HTS in identifying other potential cancer 
drugs, focusing on cell-based assays that involve DNA damage or repair pathways.

INTRODUCTION

High-throughput screening (HTS) is an automated 
process that allows for the rapid testing of large chemical, 
genetic, or biological libraries. It utilizes 96-, 384-, or 
1536-well microplates, robotics, liquid handling devices, 
sensitive detectors, and data-processing software to 
identify a small number of effectors of a particular 
biological mechanism from collections that can contain 
up to two million drug candidates or leads. HTS has 
increasingly been used by both academic institutions 
and pharmaceutical companies to identify diagnostic 
biomarkers [1], expedite and reduce the costs associated 
with the discovery of new drugs, and screen FDA-
approved compounds for additional uses, purposes, and 
indications.

HTS requires the development of robust assays 
with high signal-to-noise ratios that are adaptable to 
small volumes. These assays can be either biochemical 
(cell-free) or cell-based. Examples of biochemical 
assays include fluorescence resonance energy transfer 
(FRET), fluorescence correlation spectroscopy (FCS), 
fluorescence intensity distribution analysis (FIDA), 
and in vitro transcription assays [2]. Examples of cell-
based assays include RNAi [3], second messenger, cell 
proliferation, and reporter assays [4]. Cell-based assays 
have several advantages over biochemical assays: they 
enable screens to be conducted in a context that more 

closely resembles a natural physiological state; in general, 
they are less costly and time-consuming in that they do not 
require purification of an active target protein; and they 
can immediately select against compounds that cannot 
permeate cellular membranes to reach intracellular targets, 
thereby eliminating additional validation steps. However, 
because they contain more than one target, cell-based 
assays may also require more complex secondary screens 
than HTS assays that use cell-free systems.

In this manuscript, we discuss the various cell-
based HTS assays that have been developed to aid in 
the discovery of chemotherapeutic agents, focusing on 
those that exploit the DNA damage response. Such assays 
include tests for genotoxic agents, assays that utilize 
specific DNA repair mutants, and screens for compounds 
that can overcome chemoresistance. 

Screening for Genotoxic Compounds

Many chemotherapeutic treatments involve the 
administration of genotoxic compounds that damage 
DNA to the point of inducing cancer cell death via 
well-established DNA damage response signaling 
networks. Such genotoxins include alkylating agents 
(chlorambucil, cyclophosphamide), platinum drugs 
(cisplatin, oxalaplatin), antimetabolites (5-fluorouracil, 
methotrexate), anthracyclines (doxorubicin, daunorubicin), 
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and topoisomerase inhibitors (topotecan, etoposide), all of 
which stall DNA replication, collapse replication forks, 
and produce DNA double-strand breaks (DSBs), resulting 
in the apoptosis of rapidly dividing cells [5]. There are 
currently several cell-based HTS assays available to 
identify genotoxic compounds, including GreenScreen 
HC GADD45a-GFP (Gentronix Ltd.), BlueScreen HC 
(Gentronix Ltd.), CellCiphr p53 (Cellumen Inc.), and 
CellSensor p53-bla (Invitrogen Corp.) [6-8]. However, 
cell-based genotoxicity assays are notorious for high 
false-negative rates due to lack of metabolic activation 
and the removal of genotoxic lesions by the DNA repair 
system, and the results generated from the varied screens 
often only partially overlap due to differences in genotoxic 
mechanism [8]. Thus, there remains a need for new 
assays that can be used to discover additional genotoxic 
compounds.

To address this need, our laboratory recently 
developed the ATAD5-luciferase HTS assay [9], which 
exploits the stabilization of the ATAD5 protein following 
DNA damage [10]. This assay is robust and reproducible 
in a 1536-well plate format and exhibits a high specificity 
for genotoxic compounds. Most importantly, in a pilot 
screen of approximately 4,000 small molecules, the 
ATAD5-luciferase assay successfully identified three 
potential chemotherapeutic agents that offer improvements 
over conventional cancer drugs. These compounds, the 
antioxidants resveratrol, genistein, and baicalein, can kill 
rapidly dividing cells without inducing mutagenesis or 
chromosomal alterations, side-effects that may make cells 
more resilient to cell-cycle checkpoints or apoptosis [9]. 
Based on the success of this pilot study, we have since 
used the ATAD5-luciferase assay to screen a collection 
of 300,000 chemical probes from the Molecular Library 
Probe Production Centers Network, generating hundreds 
of hits that may eventually lead to the production of new 
and superior drugs to fight cancer (unpublished data). 

Screening for Compounds that Target Specific 
DNA Repair Mutants

Cancer cells often exhibit deficiencies in one of 
the six major DNA tolerance or repair pathways (base 
excision repair (BER), nucleotide excision repair (NER), 
mismatch repair (MMR), homologous recombination 
(HR), nonhomologous endjoining (NHEJ), and translesion 
DNA synthesis (TLS)) that protect cells against the 
accumulation of mutations and genomic instability. For 
example, 13% of breast cancers [11], 23% of advanced 
ovarian cancers [12], 6% of cervical cancers [13], and 
4% of non–small-cell lung cancers [14] do not express 
BRCA1, a component of the HR machinery; missense 
mutations of the FANCA gene, whose protein product 
plays a key role in inter-strand crosslink repair, have 
been reported in 4-8% of acute myeloid leukemia 

(AML) patients [15, 16]; and inherited mutations in 
the DNA MMR genes are thought to be responsible for 
approximately 5% of the new cases of colorectal cancer 
diagnosed each year [17]. Given that DNA repair genes 
could be sequenced during tumor biopsies, therapies 
that target specific DNA repair mutants may prove to be 
extremely beneficial in the era of personalized medicine.

In 2009, Takeda and colleagues reported the 
development of DNA-repair-deficient chicken DT40 cell 
lines that could be used for high-throughput genotoxicity 
screening [18, 19], and by extension, for cancer drug 
discovery. The advantages of the DT40 experimental 
system are numerous: they have a high efficiency of 
targeted integration that allows for the generation of 
genetic mutations with relative ease [20, 21], they display 
a stable karyotype and short doubling time, they are 
unable to completely repair any damage induced in the 
G1 phase of the cell cycle, they have an unusually long 
S phase, and they grow in suspension [18]. However, 
despite the fact that the DNA pathways are well-conserved 
throughout evolution, it remains to be seen whether the 
results generated from DT40 screens translate to human 
systems.

An ongoing project in our laboratory involves the 
use of the DNA-repair-deficient chicken DT40 cell lines 
in succession with the ATAD5-luciferase HTS described 
above. We test the genotoxic compounds uncovered by 
the ATAD5-luciferase assay in a high-throughput manner 
against a panel of DT40 cells deficient in Polymerase β 
(BER), Rev3 (TLS), XPA (NER), FANCC (inter-strand 
crosslink repair), Ku70/Rad54 (HR/NHEJ), and ATM 
(double-strand break signaling). Because MMR is not 
represented in this panel due to the diminished viability 
of DT40 cells lacking this pathway, we also test the ability 
of the hits from the ATAD5-luciferase assay to selectively 
kill a human tumor cell line impaired in the expression of 
the MMR protein MSH2. Additional human DNA repair-
deficient cell lines are then used in a secondary screen to 
validate the compounds that reduced the viability of the 
DT40 mutants (unpublished data). 

Screening for Compounds that Can Overcome 
Tumor Chemoresistance

The failure of tumor cells to respond to 
chemotherapeutic agents presents the largest obstacle 
in successful cancer treatment. Drug resistance is 
frequently characterized by a cross-resistance to a 
number of structurally and functionally distinct agents, 
even those to which the tumors have never been 
exposed [22]. The primary mechanism by which tumor 
cells develop a multidrug resistant (MDR) phenotype 
involves changes in the expression of transporters that 
regulate intracellular drug concentrations. Most notable 
among these transporters is P-glycoprotein (P-gp), a 
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170 kDa member of the ATP-binding cassette (ABC) 
superfamily of drug efflux pumps that is known to export 
several classes of anti-cancer drugs including vinca 
alkaloids, anthracyclines, taxanes, epipodophyllotoxins, 
camptothecins, and anthracenes [23-26].

The discovery of ABC transporters and the 
establishment of MDR hamster, mouse, and human cell 
lines [27-30] led to enormous efforts beginning in the 
1980s to generate inhibitors that could be used to reverse 
chemoresistance. Unfortunately, many of these first- 
through fourth-generation compounds performed poorly 
in clinical trials due to low bioavailability, unexpected 
secondary physiological effects, and unanticipated drug-
drug interactions [31-33]. To address these shortcomings, 
several groups have designed HTS assays using human 
MDR cell lines to aid in the discovery of novel inhibitors 
of P-gp and other ABC transporters. The screening assays 
range from simple cytotoxicity assays to more complex 
fluorescence-based assays that utilize labeled substrates 
[34] or cell lines [35], and have successfully identified 
several putative reversal agents including mometasone 
furoate [36], NSC23925 [37], NSC77037 [38], pimozide, 
acacetin and loxapine [34]. In addition, the ATAD5-
luciferase assay revealed two compounds, resveratrol and 
genistein, that were ultimately shown to selectively kill 
a P-gp overexpressing KB cell line [9]. Although there 
is one manuscript that reports an interaction between 
genistein and the C-terminal nucleotide-binding domain of 
mouse P-gp [39], no biochemical experiments have ever 
been conducted to directly test the interaction between 
resveratrol and P-gp.

Another mechanism that has been implicated in 
chemoresistance is increased DNA damage tolerance or 
repair [22], which is often seen following treatment with 
the genotoxic drugs discussed above [40]. Consequently, 
several biochemical HTS assays have been carried out to 
search for inhibitors of the many different DNA repair 
factors, including                 PARP-1 [41], Ape1 [42], RecA [43, 
44], and Rad51 [45] . In addition, efforts are currently 
underway in our laboratory to identify inhibitors of the 
TLS polymerase Polη and the DNA damage response 
protein ATAD5 using cell-based HTS assays (unpublished 
data). The assay for Polη inhibitors is based on the 
observation that polη/polζ deficient chicken DT40 cells, 
which can tolerate various genotoxic stresses, become 
sensitive to DNA damaging agents when complemented 
with human Polη [46]. The screen for ATAD5 inhibitors 
utilizes the ATAD5-luciferase cell line [9], and is based on 
the premise that cells with reduced levels of the ATAD5 
protein are hypersensitive to DNA damaging agents [10].

CONCLUSION

Cell-based HTS assays are valuable tools for 
identifying a variety of potential chemotherapeutic agents, 
from general and mutant-specific genotoxins to inhibitors 

of drug efflux pumps and DNA repair factors. Despite the 
incredible number of new therapeutic options that have 
been and will continue to be made available through 
HTS, many impediments to effective cancer treatment 
still remain: the efficacy of genotoxic agents is limited 
by their toxicity to normal tissues, the multifactoral 
nature of chemoresistance negates any benefit obtained 
by overcoming a single resistance mechanism, and 
the functional redundancy of the different DNA repair 
pathways can reduce the effectiveness of repair enzyme 
inhibitors. Thus, the next challenge will be to determine 
how the DNA damaging agents, repair inhibitors, and P-gp 
modulators identified using the assays described above can 
be used in combination with each other to achieve the best 
therapeutic outcome.
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