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ABSTRACT
The programmed death-1 (PD-1), a coinhibitory receptor expressed on activated 

T cells and B cells, is demonstrated to induce an immune-mediated response and play 
a critical role in tumor initiation and development. The cancer patients harboring PD-1 
or PD ligand 1 (PD-L1) protein expression have often a poor prognosis and clinical 
outcome. Currently, targeting PD-1 pathway as a potential new anticancer strategy 
is attracting more and more attention in cancer treatment. Several monoclonal 
antibodies against PD-1 or PD-L1 have been reported to enhance anticancer 
immune responses and induce tumor cell death. Nonetheless, the precise molecular 
mechanisms by which PD-1 affects various cancers remain elusive. Moreover, this 
therapy is not effective for all the cancer patients and only a fraction of patients 
respond to the antibodies targeting PD-1 or PD-L1, indicating these antibodies may 
only works in a subset of certain cancers. Thus, understanding the novel function 
of PD-1 and genetic determinants of response to anti-PD-1 therapy will allow us to 
develop a more effective and individualized immunotherapeutic strategy for cancer.

Based on the concept that cancer cells may employ 
several mechanisms to escape immune recognition 
and elimination of their host, cancer immunotherapy is 
developed [1]. The aim of cancer immunotherapy is to 
activate a patient’s own immune system to kill the tumor 
cells [2]. Over the past several decades, a large number of 
immunotherapeutic approaches to cancer treatment have 
been established, including cancer vaccines, adoptive 
transfer of ex vivo activated T and natural killer cells, 
anticancer monoclonal antibodies and the checkpoint 
inhibitors such as anti-PD-1 [3]. 

PD-1 (also CD279), a coinhibitory receptor 
expressed on the surface of activated T cells and B 
cells, has been linked to immune tolerance and therefore 

provides a possible mechanism of escape immune 
surveillance when tumor cells become capable of 
expressing PD-L1 [4, 5]. PD-1 is mainly activated by 
interacting with its ligands PD-L1 and PD-L2 [6, 7]. PD-
L1 is widely distributed on diverse cell types in lymphoid 
and nonlymphoid tissues, whereas PD-L2 is mainly 
expressed on dendritic cells (DCs) and some macrophages 
[8, 9]. Once activated, PD-1 exerts a negative effect on 
immune responses by dephosphorylating key downstream 
proteins of the antigen receptor [10, 11]. Thus, the 
PD-1 pathway may serve as an important regulator for 
the induction and maintenance of peripheral immune 
tolerance.

PD-1 expression by tumor-infiltrating lymphocytes 
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(TILs) was proved to correlate with impaired immune 
responses and poor outcome in several tumor types [12, 
13]. However, there is a controversial report regarding 
the prognostic implication of PD-1 positive (+) TILs in 
cancer patients. Kim and colleagues found that increased 
numbers of PD-1(+) TILs were significantly associated 
with prolonged disease-free survival of pulmonary 
squamous cell carcinoma (SqCC) patients [14]. So the 
role of PD-1(+) TILs in the prognosis of cancer patients 
remains unresolved. The expression of PD-L1 has been 
shown to be correlated with poor prognosis in patients 
with non-small-cell lung cancer (NSCLC), breast cancer, 
gastric cancer, soft tissue sarcomas and meningioma 
[15-19]. Tumor cells may upregulate PD-L1 expression 
as a way to suppress the host immune response and 
therefore escape immune destruction. These data provide 
a clearer understanding of the PD-1/PD-L1 pathway that 
limits an antitumor immune response and lead to the 
development of several anticancer drugs by blocking the 
distinct checkpoints PD-1 or its major ligand PD-L1. As a 
potential new anticancer strategy, the checkpoint inhibitors 
anti-PD-1 and anti- PD-L1 have attracted an enormous 
amount of interest and generated an encouraging clinical 
outcome in the treatment of patients with solid tumors, 
particularly in NSCLC, renal cell carcinoma and 
melanoma [20, 21]. However, not all the cancer patients 
can gain the benefit from this treatment. For instance, 
anti-PD-1 antibody produced objective responses only 

in approximately one in four to one in five patients with 
NSCLC, melanoma, or renal cell cancer [22], indicating 
that the genetic background of cancer patients might 
determine the clinical responses to anti-PD-1 and anti-
PD-L1 treatments. The answer to this critical issue will 
provide us increased understanding of response to anti-
PD-1 therapy and promote the individualized application 
of these agents in the clinic.

In this review we will summarize the antineoplastic 
properties of PD-1 pathway as a rheostat of immunological 
regulation and discuss the genetic determinants of 
manipulating this strategy for cancer therapy.

THE ROLE OF PD-1/PD-L1 PATHWAY IN 
CELL IMMUNE RESPONSE

PD-1, a member of the immunoglobulin (Ig) 
superfamily, contains an immunoreceptor tyrosine-based 
inhibitory motif (ITIM) as well as an immunoreceptor 
tyrosine switch motif (ITSM) in its cytoplasmic tail 
and delivers inhibitory signals to immune cells upon 
the binding of its ligand, PD-L1 or PD-L2 [23]. PD-1 
is expressed on peripheral T cells, B cells, natural 
killer T (NKT) cells, DCs and some monocytes upon 
their activation [24]. The immediate outcome of PD-1 
engagement via binding with its ligand is inhibition of cell 
growth and cytokine secretion (Figure 1).

Figure 1: The role of PD-1/PD-L1 pathway in cell immune response. PD-1 functions to inhibit T cell activation not only by 
attenuating TCR signaling (SHP-1/2), but also by enhancing the expression of genes that impair T cell function. PI3K-Akt-mTOR, JNK, 
and Ras-MEK-ERK signals are crucial regulators for PD-1-mediated inhibitory effect on T cell immune. PD-L2 is mainly expressed on B 
cells. Oct2 can regulate PD-L2 gene expression in B-1 cells and at low antigen concentrations, PD-L2-PD-1interactions suppressed B cell 
function by inhibiting TCR-B7-CD28 signals.
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PD-1 engagement may directly inhibit T cell antigen 
receptor (TCR)-mediated effector functions within tissues 
via recruiting phosphatases such as SHP-1 and SHP-2 
[25], which is essential for the maintenance of immune 
tolerance. PD-1 negatively regulates innate immune 
cells, the failure of which can cause the activation of 
autoimmunity [26]. Interactions between PD-1 and PD-
L1 promoted tolerance by blocking the TCR-induced 
stop signal in the pancreatic islets, and blockade of 
PD-1 or PD-L1 suppressed T cell motility and abrogated 
peripheral tolerance [27]. In vivo, PD-1 deficiency induced 
autoimmunity in variety of spontaneous autoimmune 
diseases depending on the genetic background of the 
mice. The mice genetically lacking PD-1 developed 
dilated cardiomyopathy through the exhibition of high-
titer circulating IgG autoantibodies to troponin I on the 
BALB/c background [28, 29]. PD-1 deficiency specifically 
accelerated the onset and frequency of type I diabetes in 
nonobese diabetic (NOD) mice [30]. Overexpression of 
PD-1 in DCs inhibited allogeneic lymphocyte activation 
in BALB/c mice [31]. Those observations suggest that 
PD-1 may regulate both innate responses and lymphocyte 
responses to prevent autoimmunity. 

PD-1 functions to limit T cell activation not only 
by attenuating TCR signaling, but also by enhancing the 
expression of genes that impair T cell function. PD-1 
coordinately upregulated the expression of transcription 
factor ATF-like (BATF) which was sufficient to impair T 
cell proliferation and cytokine secretion [32]. Silencing 
BATF in T cells reduced PD-1 inhibition and rescued 
HIV-specific T cell function. PD-1 altered T-cell metabolic 
reprogramming by inhibiting glycolysis and promoting 
lipolysis and fatty acid oxidation, which reveal a metabolic 
mechanism responsible for PD-1-mediated blockade 
of T-cell effector function [33]. Triggering of PD-1 
inhibited T cell expansion and function by upregulating 
IL-10 production [34]. Blockade of PD-1 increased the 
activation of phosphatidylinositol-3-kinase (PI3K) and 
its downstream targets AKT and mammalian target of 
rapamycin (mTOR), which are impaired in antiviral 
cytotoxic T lymphocytes (CTLs). In the further study, 
the transcription factor FoxO1 was demonstrated to be 
responsible for sustaining the expression and function of 
PD-1 in exhausted CTLs [35]. Some other transcription 
factors are also involved in regulation of PD-1 expression. 
Mutation of Nuclear factor of activated T cells c1 
(NFATc1) resulted in a complete loss of PD-1 expression 
in T cells [36]. The interferon (IFN)-sensitive responsive 
element (ISRE) was shown to be essential for IFN-alpha-
induced upregulation of PD-1 in macrophages [37]. NF-
κB regulated PD-1 expression in macrophages through 
binding the site located upstream of the gene in conserved 
region C [38]. In addition, PD-1 can be selectively 
triggered by ligation of Toll-like receptor 9, which 
contributes to peripheral tolerance and autoimmunity [39]. 
PD-1 also affected cell cycle progression and proliferation 

of T lymphocytes by suppressing the ubiquitin ligase SCF 
(Skp2) through inhibiting PI3K-Akt and Ras-mitogen-
activated and extracellular signal-regulated kinase kinase 
(MEK)-extracellular signal-regulated kinase (ERK) 
signaling pathways [40]. 

PD-L1 is induced on various cell types in response 
to certain inflammatory cytokines (primarily IFN-γ), 
which are produced during the immune responses of T and 
natural killer (NK) cells [41]. IFN-γ-stimulated neutrophils 
suppressed lymphocyte proliferation through expression 
of PD-L1 [42]. The common gamma-chain cytokines IL-
2, IL-7, IL-15, and IL-21 induced the expression of PD-
L1, resulting in suppressing certain effector functions of 
cytokine-stimulated cells upon TCR engagement [43]. 
The inflammatory cytokines (such as IL-17 and IFN-γ)-
triggered up-regulation of PD-L1 on RPE played a critical 
factor for inducing infiltrated uveitogenic T cells with 
regulatory activities [44]. Recent studies indicate that the 
Janus kinase (JAK)/STAT and mitogen-activated protein 
kinase (MAPK) signaling pathways were involved in IFN-
induced PD-L1 expression [45, 46]. Signal transducer and 
activator of transcription 3 (STAT3) with binding to the 
CD274 gene promoter was also required for PD-L1 gene 
expression [47], moreover, STAT3-dependent upregulation 
of PD-L1 mediated immune regulatory functions of liver 
plasmacytoid DCs [48]. 

PD-L2, a second ligand for PD-1, is mainly 
expressed on B cells, DCs, macrophages, and cultured 
bone marrow (BM)-derived mast cells. Engagement of 
PD-1 by PD-L2 may dramatically suppress TCR-mediated 
proliferation and cytokine production by CD4+ T cells. 
The expression of PD-L2 also varies depending on the 
antigen concentrations [7]. At low antigen concentrations, 
PD-L2-PD-1interactions suppressed TCR-B7-CD28 
signals. In contrast, at high antigen concentrations, PD-L2-
PD-1 interactions attenuated cytokine production but did 
not inhibit T cell proliferation. There are few reports about 
transcriptional regulation of PD-L2. Octamer binding 
protein 2 (Oct2) was demonstrated to regulate PD-L2 gene 
expression in B-1 cells through lineage-specific activity 
of a unique, intronic promoter [49]. Subsequently, PD-L2 
cross-linking induced NF-κB -dependent protection of 
dendritic cells from cell death [50].

THE ROLE OF PD-1/PD-L1 PATHWAY IN 
CANCER

The PD-1/PD-L1 pathway has a crucial role in 
regulating immunosurveillance for tumors. PD-1 can 
interfere with TCR/CD28 signals to suppress the immune 
responses of T-cell help (Tc1/Th1 skewing) in the tumor 
microenvironment through the PD-1/SHP-2/p-STAT1/T-
bet axis [51]. Tumor cells expressing PD-1 can limit the 
activity of tumor antigens (TA)-specific CD8+ T cells, 
which reinforces their growth and invasiveness [52]. PD-1 
is upregulated by dysfunctional TA-specific CD8+ T cells 
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both in vitro and in vivo [53], and PD-1 blockade enhances 
TA-specific T cell responses and inhibits tumor growth 
or partial tumor regression [54]. PD-1 blockade also 
increases T-cell migration to tumors by elevating IFN-γ 
inducible chemokines, which augments T-cell-mediated 
antitumor responses [55]. In addition, the majority of 
TILs predominantly express high levels of PD-1 and are 
thought to be correlated with an ‘‘exhausted’’ phenotype 
and impaired antitumor immune responses [56]. This 
‘‘exhausted’’ phenotype is marked by decreased T cell 
proliferation, poor cytolytic activity, and low production 
of type I cytokines. 

PD-L1 and PD-L2 expression are up-regulated in 
a variety of human cancer types. PD-L1 is frequently 
expressed in several types of solid tumor cells, whereas 
PD-L2 is highly expressed in certain subsets of B cell 
lymphomas [57-59]. Expression of PD-L1 protein 
significantly correlates with the levels of elevated 
TILs, which is associated with cancer metastasis [60]. 
Transgenic expression of PD-L1 in immunogenic tumor 
cells confers them a potent escaping from host T cell 
immunity and markedly enhances their invasiveness 
in vivo [61]. PD-L1 is also upregulated in tumors by 
activation of key signaling pathways including PI3K, 
STAT3, IFN-γ and so on. Latent membrane protein 1 
(LMP1) and IFN-γ upregulate PD-L1 through STAT3, 
AP-1, and NF-κB pathways, which promotes progression 
of nasopharyngeal carcinoma (NPC) and ovarian cancer 
[41, 62]. The activation of MAPK promotes PD-L1 
expression that is transcriptionally modulated by c-Jun and 
augmented by STAT3 [63]. Similarly, PD-L2 expression is 
observed in a subset of tumor types but its role in cancer 
is far less prevalent than PD-L1. PD-L2 expression in 
pulmonary squamous cell carcinoma is associated with an 
increased number of CD8+ TILs and proto-oncogene MET 
protein overexpression [14]. 

PD-1/PD-L1 BLOCKADE AND ITS 
CLINICAL APPLICATION

Based on the concept that the blockade of PD-1 
or its ligands has immune-potentiating effects on cancer 
cells, many monoclonal antibodies targeting PD-1/PD-L1 
pathway have been developed for the treatment of various 
cancer types (Table 1). Among these anti-PD-1 antibodies, 
nivolumab and pembrolizumab, have been approved by 
the US Food and Drug Administration (FDA) for the 
treatment of patients with metastatic melanoma.

Nivolumab

Nivolumab (also known as ONO-4538, BMS-
936558 or MDX-1106) is a genetically engineered, fully 
human immunoglobulin (Ig) G4 immune checkpoint 
inhibitor specifically targeting for human PD-1. The 

antibody binds to PD-1 with high affinity, thereby 
attenuating inhibitory signals and enhancing the host 
antitumor immune responses. Nivolumab has anticancer 
potential in a variety of tumor types, including melanoma, 
NSCLC, prostate cancer, renal cell carcinoma (RCC), 
Hodgkin’s lymphoma and colorectal cancer (CRC). 
The first report of the safety and antitumor activity of 
nivolumab was a phase I dose escalation trial [64]. In this 
study, nivolumab was showed to have significant antitumor 
activity but a maximum tolerated dose was not confirmed. 
Since then, a large amount of clinic trials investigate the 
association between nivolumab exposure and various 
cancer types. Recently, Nivolumab was approved by the 
US FDA in December 2014 for the treatment of patients 
with unresectable or metastatic melanoma. Nivolumab was 
also approved by the US FDA for the treatment of patients 
with metastatic squamous NSCLC that returns during 
or after treatment with platinum-based chemotherapy in 
March 2015.

Melanoma is considered an “immunogenic” tumor 
and high levels of PD-L1 are frequently expressed 
in melanomas, leading to activation of PD-1 and 
downregulation of anticancer immunity [65]. Thus, 
immune checkpoint antibodies may have antitumor 
potential for patients with melanoma (Table 2). A 
randomized phase I clinical trial showed that nivolumab 
treatment could significantly improve the median 
progression-free survival (PFS), overall survival (OS) 
and objective response rate (ORR) [66]. Importantly, 
the responses were durable and long-term safety was 
acceptable. To date, no authoritative phase II clinical 
trials had been reported. A phase III study evaluated 
nivolumab versus dacarbazine in previously untreated 
melanoma without BRAF mutation [67]. This study 
suggested nivolumab significantly improved the OS 
and PFS in previously untreated patients who had 
metastatic melanoma without a BRAF mutation. Another 
randomised, controlled, open-label, phase III trial assessed 
the efficacy and safety of nivolumab versus investigator’s 
choice of chemotherapy (ICC) as a second-line or later-
line treatment in patients with advanced melanoma [68]. 
As a result, ORR in nivolumab patients was reported to be 
higher than that in ICC patients. Moreover, BRAF wild-
type patients treated with nivolumab showed a better ORR 
than that in BRAFV600 mutation-positive patients. This 
clinical trial indicated that nivolumab represented a new 
treatment option for the patients with advanced melanoma 
that has progressed after ipilimumab or ipilimumab and a 
BRAF inhibitor.

Similar to melanoma, NSCLC displays high 
expression of PD-1 or PD-L1 [69] and blocking PD-1/
PD-L1 pathway as a therapeutical strategy was recently 
evaluated in the patients with NSCLC (Table 2). The phase 
I dose-escalation cohort expansion trial showed nivolumab 
is effective and safe for the patients with previously 
treated advanced NSCLC [70]. A phase II, single-arm trial 
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indicated a positive activity of nivolumab for the patients 
with advanced, refractory, squamous NSCLC [71]. These 
data support that nivolumab has antitumor activity and a 
manageable safety profile in previously treated patients 
with advanced, refractory, squamous NSCLC. On the 
basis of these encouraging results, phase III clinical trials 
are further evaluating the activity of nivolumab in patients 
with NSCLC.

RCC is considered as an immunogenic tumor with 
dysfunctional immune cell infiltrate and PD-L1 expression 
correlates with increased risk of disease progression and 
cancer-specific death of the patients with this cancer type 
[72]. Thus, PD-1 can function as an emerging therapeutic 
target in RCC (Table 2). A phase I study with expansion 
cohorts evaluated clinical activity, survival, and long-
term safety in patients with advanced RCC treated with 
nivolumab [73]. As a result, median OS (22.4 months) is 
encouraging, and toxicities were generally manageable. 
The randomized phase II trial assessed the antitumor 
activity, dose-response relationship, and safety of 
nivolumab in patients with metastatic RCC [74]. This 
report demonstrated nivolumab had antitumor activity 
with a manageable safety profile across the three doses 
studied in metastatic RCC. A number of ongoing phase III 
studies that will further elucidate this evidence.

In addition, nivolumab emerges antitumor potential 
in Hodgkin’s lymphoma (Table 2). To determine whether 
nivolumab could inhibit tumor immune evasion in patients 
with Hodgkin’s lymphoma, 23 patients with relapsed or 
refractory Hodgkin’s lymphoma received the treatment 
with nivolumab. As a result, nivolumab had substantial 
therapeutic activity and an acceptable safety profile 
in patients with previously heavily treated relapsed or 
refractory Hodgkin’s lymphoma [58]. Several results from 
phase II and III clinical trials are awaited yet.

Pembrolizumab

Pembrolizumab (MK-3475), a humanized IgG4 
monoclonal antibody blocking the interaction of PD-1 on 
T cells with its ligands, is believed to reactivate antitumor 
immunity (Table 2). A phase I trial assessed the efficacy 
and safety of pembrolizumab in patients with ipilimumab-
refractory advanced melanoma [75]. This study suggested 
that pembrolizumab could be an effective treatment 

option for patients with ipilimumab-refractory advanced 
melanoma. The randomized, controlled, phase III trial 
compared pembrolizumab with ipilimumab in 834 patients 
with advanced melanoma [76]. The results showed that 
pembrolizumab could prolong PFS and OS and had less 
high-grade toxicity than did ipilimumab in patients with 
advanced melanoma.

In NSCLC, the efficacy and safety of 
pembrolizumab is currently being investigated in a phase 
I trial [77]. It was indicated that pembrolizumab had 
antitumor activity in patients with advanced NSCLC, 
moreover, PD-L1 expression in at least 50% of tumor 
cells was shown to be correlated with improved efficacy of 
pembrolizumab. In addition, pembrolizumab is currently 
being investigated in a phase I/II trial in the patients with 
some other cancer types, including breast cancer, bladder 
cancer, and haematologic malignancies.

Pidilizumab

Pidilizumab (CT-011) is a humanized IgG1 kappa 
recombinant monoclonal antibody against PD-1. In 
preclinical studies, pidilizumab was demonstrated to 
inhibit cancer cells survival (Table 2) [78]. In a phase 
I clinical trial, pidilizumab was shown to be safe and 
well tolerated in patients with advanced hematological 
malignancies, and no single maximum tolerated dose was 
defined in this study [79]. Two phase II trials assessed the 
safety and activity. One evaluated the antitumor activity of 
pidilizumab in diffuse large B-cell lymphoma (DLBCL) 
[80]. The other trial enrolled 32 patients with relapsed 
follicular lymphoma and these patients were received 
the treatment with the combination of pidilizumab and 
rituximab [81]. These two trials suggested pidilizumab 
was worthy of further study in follicular lymphoma. 
Currently, the efficacy and safety of pidilizumab is 
underway in other tumor types.

Other anti-PD-L1 antibodies

MPDL3280A, an engineered human anti-PD-L1 
monoclonal IgG1 antibody, has noteworthy antitumor 
activity in metastatic urothelial bladder cancer (UBC) 
[82]. MPDL3280A is currently being investigated in 

Table 1: Currently used anti-PD-1 and anti-PD-L1 antibodies
Target Name Molecule Manufacturer Phase

anti-PD-1
Nivolumab Fully human IgG4 Bristol-Myers Squibb I-III

Pembrolizumab Humanized IgG4 Merck& Dohme I-III
Pidilizumab Humanized IgG1 CureTech I-II

anti-PD-L1 MPDL3280A Engineered human IgG1 Roche/Genentech I-III
BMS-936559 Humanized IgG4 Bristol-Myers Squibb I
MEDI4736 Engineered human IgG1 MedImmune I-III

MSB0010718C Fully human IgG1 EMD Serono I-II
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combination with dabrafenib, vemurafenib or trametinib in 
advanced melanoma with or without BRAF mutation. The 
phase II/III trials of MPDL3280A in advanced NSCLC, 
metastatic RCC, and breast cancer are also ongoing.

MEDI4736, an engineered fully-human anti-PD-L1 
antibody, has been reported to have an ORR in 13% across 
all the patients with lung cancer, but up to 39% in PD-
L1+ patients and 5% in PD-L1 negative patients [83]. 
Based on these outcomes in lung cancer, several clinical 
trials for MEDI4736, both as monotherapy as well as in 
combination with other agents, is underway across a range 
of tumor types.

THE GENETIC DETERMINANTS OF ANTI-
PD-1/ PD-L1 ANTIBODIES RESPONSE

Although a number of studies have reported 
that anti-PD-1/ PD-L1 antibodies exhibit antitumor 
immune responses in variety of cancer types, significant 
interindividual variability in response attenuates its 
optimal use. This may attribute to the various genetic 
backgrounds of the different tumor types. Thus, it will 

be important to understand why some cancer patients 
are sensitive to these antibodies, what are the genetic 
determinants of response to this therapy.

Although early studies indicated that PD-L1 
expression may be a predictable biomarker for therapeutic 
response to anti-PD-1 antibodies, only a subset of patients 
with NSCLC responded to PD-1 blockade, indicating the 
genetic background of the cancer patients may be a key 
determinant of response to this therapy. PD-L1 expression 
in at least 50% of NSCLC cells correlated with improved 
efficacy of pembrolizumab [77]. Recently, it was shown 
that high PD-L1 expression was associated with the 
presence of epidermal growth factor receptor (EGFR) 
mutation in advanced lung adenocarcinoma and PD-
L1 overexpression was considered as a poor prognostic 
indicator in EGFR wild-type patients but not in EGFR 
mutant patients [84]. Another study demonstrated that 
EGFR mutant tumors display elevated PD-L1 levels and 
the EGFR mutant mouse showed significant response to 
the treatment with anti-PD-1 antibody, indicating EGFR 
mutation may be a promising biomarker of response to 
this treatment [85]. In addition, higher nonsynonymous 
mutation burden, the molecular smoking signature, higher 

Table 2: Efficacy data of anti-PD-1 and anti-PD-L1 antibodies

Antibody Phase Patients
(Number) Dose Tumor ORR%

Median 
OS, months 
(95% CI)

PFS months 
(95% CI) Reference

Nivolumab I 107 0.1-10mg/
kg Advanced melanoma 31 16.8

(12.5-31.6)
3.7

(1.9-9.1) 66

III 418 3 mg/kg Advanced melanoma 40 Unknown 5.1
(0.34-0.56) 67

III 631 3 mg/kg Advanced melanoma 31.7 Unknown 4.7
(2.3-6.5) 68

I 129 1,3,10
mg/kg Advanced  NSCLC 17 9.9

(7.8-12.4)
2.3

(1.8-3.7) 70

II 117 3 mg/kg Squamous NSCLC 14.5 8.2
(6.1-10.9)

1.9
(1.8-3.2) 71

I 34 1 or 10
mg/kg Advanced RCC 29 22.4

(12.5-NE)
7.3

(3.6-10.9) 73

II 168 0.3, 2, 10
mg/kg Advanced RCC

20 for 0.3
22 for 2
20 for 10

20 for 0.3
22 for 2
20 for 10

18.2 for 0.3
25.5 for 2
24.7for 10

74

I 23 3 mg/kg Hodgkin's 
lymphoma 87 Unknown Unknown 58

Pembrolizumab I 173 2 or 10
mg/kg Advanced melanoma 26 Unknown 5.5 for 2

3.5 for 10 75

III 834 10
mg/kg Advanced melanoma

33.7 for 
every 2 

weeks
32.9 every 

3 weeks

Unknown Unknown 76

I 495 2 or 10
mg/kg Advanced  NSCLC 19.4 12 3.7 77

Pidilizumab I 17 0.2 to 6.0 
mg/kg

Hematolog-ical 
malignancies Unknown Unknown Unknown 79

II 66 1.5 mg/kg DLBCL 51 Unknown Unknown 80
II 32 3 mg/kg Lymphoma 66 Unknown Unknown 81
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neoantigen burden, and DNA repair pathway mutations 
were also showed to determine sensitivity to PD-1 
blockade in NSCLC [86]. Moreover, long-term clinical 
benefit from anti-PD-L1 therapy in lung cancer was also 
discovered to be associated with JAK3 activation [87].

PD-L1 expression in advanced melanoma was 
thought to be correlated with response to monoclonal 
antibodies targeting PD-1/PD-L1 pathway, moreover, the 
sensitivity to PD-1/PD-L1 blocking antibodies seemed 
to be more robust in patients whose tumors express PD-
L1 [88, 89]. However, the potential relationship between 
the BRAF mutation and PD-L1 expression has not been 
determined. Several recent reports demonstrated that PD-
L1 expression did not correlate with BRAF mutational 
status in melanoma and lung adenocarcinomas [90, 
91]. Thus, the BRAF mutational status does not play a 
major role in directly determining the efficiency of PD-1 
pathway blockade in melanoma cells. Recently, NRAS 
mutations in advanced melanoma were correlated with 
increased benefit from anti-PD-1/PD-L1 therapy compared 
with other genetic subtypes [92].

PD-L1 mRNA expression was identified to be 
associated with increased tumor-infiltrating immune 
cells and better outcome in breast carcinomas [93]. In 
patients with RCC, the presence of PD-1(+) tumor-
infiltrating immune cells was associated with more 
aggressive tumors and shortened survival [12]. The 
responses of MPDL3280A were observed in patients with 
high expression of PD-L1, especially when PD-L1 was 
expressed by tumor-infiltrating immune cells. In addition, 
T-helper type 1 (TH1) gene expression, CTLA4 expression 
and the absence of fractalkine (CX3CL1) in baseline 
tumor specimens were also related with the response to 
the anti-PD-L1 antibody MPDL3280A in cancer patients 
[94]. The pre-existing CD8+ T cells were shown to be 
associated with expression of the PD-1/PD-L1 immune 
inhibitory axis and may predict response to PD-1 blockade 
[95]. The mismatch repair deficiency is also considered as 
a genomic marker to predict response to PD-1 blockade 
with pembrolizumab in colorectal and other cancers [96].

Taken together, these molecular targets are important 
for design of future clinical trials assessing the antitumor 
potential of anti-PD-1/ PD-L1 antibodies.

CONCLUSION AND THERAPEUTIC 
PERSPECTIVES

Immune checkpoint modulation as a therapeutic 
strategy is attracting more and more attention in cancer 
therapy. Increasing data from pre-clinical studies and 
clinical trials have confirmed that anti-PD-1/PD-L1 
antibodies have antitumor potential and improve cancer 
patients’ survival. Currently, anti-PD-1 or anti-PD-L1 
therapy is under individual study and in combination 
with other therapies such as cytotoxic chemotherapy, 
antiangiogenic agents and small-molecule tyrosine kinase 

inhibitors.
Nevertheless, this treatment raises many issues. 

First, it is not exactly clear how PD-1 mediates their 
effects since the possible molecular mechanisms by which 
anti-PD-1/PD-L1 antibodies enhance the host antitumor 
immune responses remain elusive. Secondly, to maximize 
the potential to be applied for more stringent clinical 
study, the efficacy and safety of PD-1/PD-L1 targeting 
antibodies should be further investigated. Thirdly, the 
determinants of the immune responses of these agents are 
still unknown. Thus, it is urgent to discern more sensitive 
and specific predictors of clinical outcomes in order 
to identify patients who will benefit the most from the 
clinical treatment. However, our increased understanding 
of PD-1 mediated signal pathways will hopefully broaden 
the number of therapeutic targets and perhaps provide a 
prospective strategy for cancer by modulating the immune 
checkpoints.
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