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Vav1: A Dr. Jekyll and Mr. Hyde protein – good for the 
hematopoietic system, bad for cancer
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ABSTRACT

Many deregulated signal transducer proteins are involved in various cancers at 
numerous stages of tumor development. One of these, Vav1, is normally expressed 
exclusively in the hematopoietic system, where it functions as a specific GDP/GTP 
nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. Vav 
was first identified in an NIH3T3 screen for oncogenes. Although the oncogenic form 
of Vav1 identified in the screen has not been detected in clinical human tumors, its 
wild-type form has recently been implicated in mammalian malignancies, including 
neuroblastoma, melanoma, pancreatic, lung and breast cancers, and B-cell chronic 
lymphocytic leukemia. In addition, it was recently identified as a mutated gene in 
human cancers of various origins. However, the activity and contribution to cancer of 
these Vav1 mutants is still unclear. This review addresses the physiological function of 
wild-type Vav1 and its activity as an oncogene in human cancer. It also discusses the 
novel mutations identified in Vav1 in various cancers and their potential contribution 
to cancer development as oncogenes or tumor suppressor genes.

INTRODUCTION

The past few decades have witnessed a major leap 
in understanding of the molecular mechanisms involved 
in tumor pathogenesis and progression [1]. Signaling 
molecules that play critical roles in cancer were identified 
and served as targets for therapeutic drugs. For instance, 
the first drug targeting a cancer gene, Herceptin, is helpful 
for many breast cancer patients with tumors driven by the 
target hormone receptor, HER2 [2]. Another example is 
the drug Gleevec, used for inhibition of protein kinase 
Abl in Chronic Myelogenous Leukemia (CML) patients 
[2]. Gleevec is also effective for treating Gastrointestinal 
Stromal Tumors (GIST) because it blocks the hormone 
receptor Kit, which often causes GIST [2]. Despite these 
significant advances, the pathogenic mechanisms of many 
signal transducer proteins implicated in cancers remain 
unknown.

One interesting signal transducer protein that is 
a potential target for cancer therapeutic drugs is Vav1. 
Vav1 was identified as an oncogene using the nude 
mouse tumorigenicity assay [3]. In this assay, NIH3T3 
cells co- transfected with DNA from several esophageal 

carcinomas and the pSV2neo plasmid (which carries 
the gene that confers resistance to the G418 drug) 
were injected into nude mice [3]. These experiments 
led to the isolation of a novel human oncogene, which 
was designated Vav, the sixth letter of the Hebrew 
alphabet, because it was the sixth oncogene detected 
in Dr. Barbacid’s laboratory [3]. The isolation of the 
Vav oncogene led to the identification of its wild-type 
(wt) form [4, 5] and subsequent identification of two 
additional mammalian members of this protein family, 
Vav2 [6] and Vav3 [7]. Nucleotide sequence analysis 
of the first Vav oncogene isolated, now termed Vav1, 
revealed that it was activated in vitro by replacement 
of 67 residues of its amino-terminus with sequences of 
pSV2neo, co-transfected as a selectable marker [3–5]. 
Although initially identified as an oncogene [3], Vav1 
has been subsequently acknowledged as an important 
signal transducer with a pivotal role in the hematopoietic 
system, where it is exclusively expressed [8–13], as will 
be detailed below.

This review will focus on our recent understanding 
of the involvement of Vav1 in human cancer, the 
mechanism of ectopic Vav1 expression in cancer and its 
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mode of function. The newly identified mutations in Vav1 
in human cancer will be discussed.

Structure

Vav1 contains many characteristic structural 
motifs important for its function as a versatile signal 
transducer (Figure 1) [8–11]. These include: 1) a 
calponin-homology domain (CH; amino acids 3–121) 
which, in other proteins, associates with F-actin [14]. 
The Vav1 CH domain does not associate with F-actin, 
but is critical for Vav1’s involvement in calcium 
mobilization [15]; 2) an acidic motif (AC; amino acids 
133–193) that contains three regulatory tyrosines (Y142; 
Y160 and Y174) [16]; 3) a DBL homology (DH) region 
(amino acids 199–373), which exhibits a guanine 
nucleotide exchange (GEF) activity towards the Rho 
family GTPases [17]; 4) a Pleckstrin homology domain 
(PH) (amino acids 404– 505) that mediates interaction 
with phospholipids [18] resulting in Vav1 localization 
to the plasma membrane and regulation of Vav1 GEF 
activity [19]; 5) an atypical C1 (amino acids 515–564), 
which lacks the features required for lipid binding and 
instead might affect protein–protein interactions [20]; 
6) a proline rich region (amino acids 606–610) that 
mediates binding of Vav proteins to Src homology 
3 (SH3) containing proteins [21]; 7) a Src homology 
2 (SH2) region (amino acids 672–746) that enables the 
binding of Vav1 to tyrosine phosphorylated proteins [22, 
23]; 8)  two SH3 domains (amino acids 615– 659 and 
786–841) that mediate interactions with proline-rich 
domains [22, 23]; and 9) two nuclear localization signals 
(NLS; amino acids 487–494 and 576–589) [24]. Finally, 
Vav1 contains multiple tyrosine residues that affect its 
activity [25, 26].

Biological functions of Vav 1

Vav1 participates in various cellular responses 
including actin cytoskeleton reorganization, gene 
transcription, and development and activation of immune 
cells. The role of Vav1 in the hematopoietic system 
has been extensively studied and reviewed [8–13] and 
therefore it will be only briefly summarized here.

The best-known function of Vav1 is its GEF 
activity for the Rho family of GTPases, an activity strictly 
dependent on tyrosine phosphorylation [7, 25, 27]. There 
have been conflicting reports on the substrate specificity 
of Vav1 [17, 27, 28], yet it is well accepted that Rac1 
is the preferred substrate of Vav1 [17, 25, 27–29]. The 
nucleotide exchange activity of Vav1 on Cdc42, RhoA and 
RhoG is also enhanced, but to a lesser extent compared to 
Vav1’s activity towards Rac [20].

In immune cells, endogenous Vav1 is tyrosine 
phosphorylated following activation of many receptors, 
including the T-cell receptor (TCR) [22, 23], B-cell 
receptor (BCR) [30], FcRI [31], cytokine receptors 
[32], NK receptors [33], chemokine receptors [34] and 
integrins [35]. The activation of Vav1 by these receptors 
leads to different outcomes depending on the specific 
hematopoietic cell type. For instance, Vav1 was shown 
to be associated with the formation of the immunological 
synapse (IS) in T cells [36, 37] and B cells [36] due to 
its activity as a regulator of cytoskeleton organization. 
Mice with Vav1-deficient T cells exhibited impaired 
cytoskeleton reorganization and impaired immune 
response [38, 39]. The GEF activity of Vav1 was also 
shown to be critical for activation of killing by Natural 
Killer (NK) cells [40]. In addition, Vav1−/− mice are 
defective in their ability to eliminate tumors in vivo 
and in natural killing and antibody-dependent cellular 
cytotoxicity in vitro [41, 42]. In macrophages, genetic 

Figure 1: Schematic summary of Vav1 structure and location of various mutations identified in human cancers. Vav1 
encodes the following domains: calponin-homology (CH) domain; acidic (AC) motif, which contains 3 tyrosine residues; a DBL homology 
(DH) domain; a pleckstrin homology (PH) domain; a C1 domain; two SRC-homology 3 (SH3) domains; and a SRC-homology 2 (SH2) 
domain. The function of each region is detailed in the text. The location of missense mutations (light blue triangles) is indicated above the 
protein stricture and the location of truncations (red triangles) are depicted beneath. The information concerning these mutations is adapted 
from the catalogue of Somatic Mutations in Cancer (COSMIC) database.
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deletion of Vav1 shows that it is also required for 
Rac-dependent complement-mediated phagocytosis 
[43], cell migration [44] and macrophage chemotaxis to 
CSF-1 [45].

Vav1 also regulates the activity of multiple 
transcription factors in T cells in response to TCR 
stimulation, including Nuclear Factor of Activated T cells 
(NFAT), Activator Protein-1 (AP-1) and Nuclear Factor 
κB (NF-κB) [15, 46]. Vav1’s ability to trigger release of 
calcium from inner reservoirs in T cells was found to be 
critical for this function [15].

Vav1 activates multiple signaling pathways, 
including the extracellular signal-regulated kinase (ERK) 
and c-Jun N-terminal kinase (JNK) pathways [25, 47, 
48]. Murine Vav1-deficient T-cells exhibit defects in 
TCR-induced activation of ERK [15]. Moreover, Vav1 
transduces TCR signals that lead to recruitment of the 
RasGEF, RasGRP1, Sos1 and Sos2 to LAT, leading to 
activation of ERK [49]. Also, over-expression of Vav1 
and RasGRP1 in Jurkat T cells leads to hyperactivation 
of Ras [48].

Many of Vav1 functions are exerted via its ability to 
associate with other proteins [8–11]. For instance, several 
proteins associate with the CH region including Socs1, a 
downstream component of the Kit receptor tyrosine kinase 
signaling pathway [50]; ENX-1, a putative transcriptional 
regulator of homeobox gene expression [51]; Ly-GDI, a 
regulator of Rho GTPases [52]; and calmodulin [53]. The 
SH2 domain interacts with autophosphorylated tyrosine 
kinases such as ZAP-70 [54] and Syk [55] and with 
the adapter proteins: SLP76 [56] and Blnk [57]. Vav1’s 
N-terminal SH3 domain binds the adapter protein Grb2 
[58] shown to be necessary for translocation of Vav1 to 
the plasma membrane and its interaction with upstream 
tyrosine kinases in lymphoid cells [8]. The C-terminal 
SH3 domain of Vav1 forms complexes with a wide variety 
of proteins including cytoskeletal regulators (Zyxin) [59], 
RNA-binding proteins (hnRNP-K, hnRNP-C and Sam68) 
[60, 61], transcriptional modulators, ubiquitination factors, 
viral proteins, a Kruppel-like protein, and Dynamin 2 [8, 
9, 62]. While the consequences of all these interactions 
are not yet known, Vav1’s ability to interact with many 
proteins likely allows it to function in multiple signaling 
pathways, highlighting its involvement in multiple 
pathways.

Finally, Vav1 has an important role in hematopoietic 
cell development. T cells from Vav1-deficient mice 
demonstrated a partial block at the CD4−CD8− (double 
negative; DN) to CD4+CD8+ (double positive; DP) 
transition and also at the transition from DP to CD4+CD8− or 
CD4−CD8+ single positive (SP) [63]. Experiments performed 
with mice lacking Vav1 and the other members of the Vav 
protein family, i.e., Vav2 and Vav3, led to a 100-fold 
reduction in the number of DP and SP thymocytes 
and peripheral T cells, indicating that Vav2 and Vav3 
proteins partially compensate Vav1 function in thymocyte 
development [64].

In summary, we know that Vav1 is a versatile signal 
transducer, critical for numerous biological activities in 
the hematopietic system, largely through its Rho-GEF 
activity. However, its interaction with numerous and 
diverse effectors suggests it plays additional roles in 
various signaling cascades.

VAV1 REGULATION

Vav1 GEF activity is controlled through auto-
inhibition of the DH region, which is conferred by a 
α-helix in the AC region. Tyr174 lies within this α-helix 
and directly binds the GTPase interaction pocket of the 
DH domain, blocking access to its substrate and inhibiting 
Vav1 GEF activity. Phosphorylation releases Tyr174 from 
the binding pocket, relieving the auto-inhibition [28, 
65]. It has been suggested that the Vav1 CH domain can 
bind to the C1 region, also occluding the DH domain 
and blocking access to Rac/RhoGTPases. The CH-C1 
interaction seemingly stabilizes the inhibitory Tyr174-
DH interaction. Indeed, deletion of this domain results in 
constitutively active GEF activity [66]. In addition, the 
PH domain has been shown to regulate Vav1 catalytic 
activity by interaction with two lipid products of PI3K: 
phosphatidylinositol 4, 5-biphosphosphate (PIP2) and 
phosphatidylinositol 3, 4, 5-triphosphosphate (PIP3) [19, 
67]. Whereas binding of PIP3 moderately enhances the 
in vitro GEF activity of Vav1, binding to PIP2 has an 
inhibitory effect. Recent high resolution X-ray structure 
of DH-PH-C1 domains suggested that PH and C1 domains 
contribute to GEF activity by stabilizing the DH domain 
structure and not through direct contacts with Rac/
RhoGTPases [20].
Vav 1 expression in human cancers

In the past decade numerous studies reported the 
unexpected expression of Vav1, which is usually found 
only in the hematopietic system, in a variety of human 
cancers. Ectopic Vav1 expression was first noted in 
the neuroblastoma SK-N-MC cell line [68]. The Vav1 
protein in SK-N-MC exhibited the same molecular 
weight, phosphorylation state, and ability to bind to EGF 
receptor as wild-type Vav1 and had no mutations [68]. A 
subsequent screen of 42 primary human neuroblastoma 
tumors revealed that the majority (76%) expressed Vav1, 
suggesting for the first time that ectopic expression of wild 
type Vav1 might contribute to human cancer [68].

Vav1 was also identified in more than 50% of 
95 pancreatic ductal adenocarcinoma (PDA) tumor 
specimens examined [69]. Patients with Vav1-positive 
tumors had a worse prognosis for survival compared 
to patients with Vav1-negative tumors [69]. Sequence 
analysis of the Vav1 cDNA from pancreatic cancer cell 
lines and tumors confirmed that they express intact 
wild-type Vav1 [69]. In addition, aberrant expression 
of Vav1 was found in 42% of 78 lung cancer cell lines 
examined, in 46% of 57 human primary lung cancer 
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specimens [70] and in breast [71], ovarian and prostate 
cancers [26]. Grassilli et al., demonstrated that Vav1, 
a cytoplasmic expressed protein, is often found in the 
nucleus of early invasive breast tumors [72]. The high 
amounts of nuclear Vav1 in these tumors are positively 
correlated with low incidence of relapse [72]. Moreover, 
it was demonstrated that when it is expressed in the 
nucleus it can modulate genes that are associated with 
the metastatic process [72]. Several melanoma cell 
lines also express wild-type Vav1, including the highly 
metastatic BLM cells, although the level of protein 
expression was low and it was localized in the cell 
periphery near the plasma membrane [73]. Finally, a 
large screen of medulloblastomas identified widespread 
expression of Vav1 in the majority of specimens 
analyzed and Vav1 was demonstrated to play a critical 
role in medulloblastoma tumor maintenance, with 
Vav1 abrogation markedly reducing medulloblastoma 
growth [74].

Intriguingly, and perhaps counter-intuitively, 
Vav1 does not appear to be significantly involved in 
hematological malignancies [75]; however, from work 
reported thus far, this does not seem to be the case. 
Prieto-Sanchez et al. [76] examined Vav1 protein levels 
and phosphorylation status in 118 unselected cases of 
hematologic neoplasms. They found that Vav1 was 
phosphorylated and overexpressed in 10 of 14 cases 
of B-CLL with 13q deletion, however no change in 
its level of expression was recoreded in any of the 
myeloproliferative neoplasms examined [76]. Bertagnolo 
et al. have demonstrated in a series of studies that Vav1 is 
required for the retinoic ATRA-induced differentiation of 
human promyelocytic leukemia cell lines to neutrophils as 
well as PMA-induced maturation of these same cell lines 
to monocytes/macrophages [77, 78]. However, there is 
no evidence as to whether Vav1 has a role in this specific 
tumor development.

Thus, the accumulating data clearly point to an 
important role of ectopically expressed wild-type Vav1 in 
human cancer [24].

WHY IS VAV1 EXPRESSED IN CANCER?

Neither the physiological nor pathological 
regulation of Vav1 expression is completely understood. 
One mechanism suggested to play a role in ectopic 
expression of Vav1 in cancer of non-hematopoietic 
origin is the methylation status of the Vav1 promoter. 
Bisulfite sequencing revealed that the Vav1 promoter 
was completely unmethylated in human lymphocytes, 
but methylated to various degrees in healthy tissues 
that do not normally express Vav1 [79]. Fernandez-
Zapico, et al., demonstrated that epigenetic changes in 
the Vav1 gene, but not gene amplification, contributed 

to its aberrant expression in pancreatic cancer cell lines 
[69]. These results are further substantiated by a recent 
report indicating that Vav1 was identified by cross-species 
epigenetics to play a critical role in maintenance of Sonic 
Hedgehog (SHH) subgroup medulloblastoma tumors 
(MBSHH) [74]. This study identified widespread hypo-
methylation of Vav1, leading to its elevated expression, as 
a conserved aberrant epigenetic event that characterizes 
the majority of MBSHH tumors and is associated with 
poor outcome in MBSHH patients. These findings 
establish Vav1 as an epigenetically regulated oncogene 
with a key role in MBSHH maintenance [74].

Another mechanism emerged from our studies 
aimed at identifying transcription factors that regulate 
Vav1 expression [79]. We demonstrated that mutations 
in putative transcription factor binding sites at the Vav1 
promoter affect its transcription in cells of different 
histological origin [79]. Among these sites is a consensus 
site for c-Myb, a hematopoietic-specific transcription 
factor also found in Vav1-expressing lung cancer 
cell lines. Depletion of c-Myb using siRNA led to a 
dramatic reduction in Vav1 expression in these cells [79]. 
Consistent with this, co-transfection of c-Myb activated 
transcription of a Vav1 promoter-luciferase reporter gene 
construct in lung cancer cells devoid of Vav1 expression. 
Together, these results indicate that c-Myb is involved 
in Vav1 expression in lung cancer cells. The possibility 
that additional transcription factors play a role in Vav1 
expression in cancer cells remains to be explored.

ROLE OF VAV1 IN HUMAN CANCER

Vav1 functions physiologically in numerous 
pathways, therefore it is somewhat difficult to attribute 
its multiple activities in cancer to a particular pathway. 
Nonetheless, the main role attributed to Vav1 in cancer is 
its activity as a GEF for Rho/RacGTPases [9]. The Rho/
RacGTPases function as molecular switches in a variety 
of signaling pathways following stimulation of cell 
surface receptors. Rho/RacGTPases regulate numerous 
cellular processes that become dysregulated in cancer, 
including cytoskeleton organization, gene transcription, 
cell proliferation, migration, growth and survival [13, 
80]. It therefore seems reasonable that defects in Rho/
RacGTPase pathway regulation may be involved in the 
development of cancer [13, 81]. Consistent with this, 
various GEFs have been implicated recently in cancer 
[13, 26], and activation of Vav1 GEF activity following 
tyrosine phosphorylation has been demonstrated in EGF 
and PDGF stimulated NIH3T3 fibroblasts expressing Vav1 
[22, 23] as well as in cancer cells, including neuroblastoma 
[68], pancreatic cancer [69] and lung cancer [70]. It is also 
activated following stimulation of CSF1R in lung cancer 
cells [82]. The truncated Vav1 oncogene first identified as 
an oncogene exhibited constitutive activity as a GEF [25]. 
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A mutation at tyrosine 174, leading to enhanced GEF 
activity, results in increased transformation [83], further 
highlighting the importance of the GEF activity of 
Vav1 for transformation. Also, Fernandez-Zapico et al., 
demonstrated that, unlike wild-type Vav1, a GEF-defective 
Vav1 mutant cannot restore proliferation of pancreatic 
cancer cells depleted of Vav1 [69]. Interestingly, Vav1 
expression was required for proliferation even in the 
presence of mutant K-Ras in pancreatic and lung 
cancer, demonstrating the critical role of Vav1 in tumor 
development [69, 70]. Razidlo et al. recently reported 
that Vav1 is required for Rac1-mediated formation of 
lamellipodia and subsequent migration of tumor cells [84]. 
In addition, Vav1 is a potent regulator of transendothelial 
migration of leukocytes, and also contributes to CXCL12-
induced MT1-MMP expression and invasion by melanoma 
cells [73]. Additionally, Razidlo et al., demonstrated 
that Vav1 is involved in invasion and migration through 
the formation of invadopodia and matrix degradation 
[85]. This process requires Vav1 activation of Cdc42, 
demonstrating that in pancreatic tumor cells, ectopically 
expressed Vav1 can signal through multiple pathways. 
This is consistent with a previous report that Vav1-induced 
oncogenic transformation requires multiple signaling 
pathways, including Rac1, Cdc42, and RhoA, as well as 
NFκB and JNK [86]. Together, the above findings imply 
that GEF activity is critical for Vav1’s role in cancer 
cell migration and invasion and suggest that ectopically 
expressed Vav1 acts as an upstream activator of Rac1, 
RhoA and possibly Cdc42 signaling pathways in response 
to extracellular stimulation, leading to cytoskeleton 
changes and ultimately to increased cell motility.

Activation of Vav1 also stimulates MAPK 
signaling cascades, which may contribute to cancer by 
enhancing cell mitogenic properties. MAPK function 
is related to multiple biologic processes such as cell 
proliferation, differentiation, death, migration, invasion 
and inflammation [87]. It is well established that once 
MAPK is abnormally activated, cancer may occur [87]. 
Numerous studies have described Vav1’s physiological 
role in ERK signaling in the immune system [8]. Since 
Rho GTPases were reported to control cytoskeleton 
organization and cellular activities, such as the JNK (c-Jun 
N-terminal kinase) and p38 MAPK (mitogen-activated 
protein kinase) cascades [88], it is conceivable that Vav1 
also controls these pathways in cancer. Indeed, we recently 
demonstrated that ERK phosphorylation is dependent on 
Vav1 activation in lung cancer cells [82].

Our recent data suggest that Vav1 may also 
contribute to cancers by regulating growth factor 
expression. We found that lung cancer cells depleted 
of Vav1 exhibit significantly reduced levels of the 
hematopoietic growth factor CSF1, suggesting that 
Vav1 propagates an autocrine feed forward loop 
by upregulating expression of growth factors [82]. 

Transcriptome analysis demonstrated that Vav1 
depletion results in a marked reduction in CSF-1 
expression. The association between Vav1 expression 
and CSF1 was further supported by signal transduction 
experiments, pointing to the involvement of Vav1 in 
regulating the lung cancer secretome [82]. Blocking 
ERK phosphorylation led to a decrease in CSF1 
transcription, suggesting a role for ERK, a downstream 
effector of Vav1, in CSF1 expression [82]. CSF1-
silenced cells exhibited reduced focus formation, 
proliferation abilities, and growth in NOD/SCID mice. 
CSF1-silenced H358 cells resulted in significantly 
smaller tumors, showing increased fibrosis and a 
decrease in tumor infiltrating macrophages. Finally, 
immunohistochemical analysis of primary human 
lung tumors revealed a positive correlation between 
Vav1 and CSF1 expression, which was associated with 
tumor grade [82]. Our results suggest a potential cross-
talk between cancer cells and the microenvironment 
controlled by CSF1/Vav1 signaling pathways. This 
indicates that Vav1 might be involved in additional pro-
tumorigenic pathways in addition to its GEF activity. 
It is noteworthy that lung cancer cells depleted of 
Vav1 also showed a decrease in EGF [82] and TGFα 
[70], further highlighting the association between 
Vav1 expression in cancer cells and the expression of 
autocrine/paracrine growth factors.

The possibility that Vav1 can stimulate secretion 
of autocrine ligands was also suggested for the human 
mammary epithelial cell line MCF-10A, in which 
expression of a constitutively active form of Vav1 
promoted migration and morphological changes [89]. 
This increased migration was dependent on Vav1 GEF 
activity, which stimulated the Rac1–Pak pathway, and 
also on secretion of an autocrine EGF receptor ligand. 
We previously reported that the secretion of osteopontin, 
a CD44 and integrin ligand known to be associated with 
invasion, progression and metastasis, is upregulated by 
oncogenic Vav1 in NIH3T3 cells [90]. These data support 
the existence of feed-forward loops in which Vav1 
regulates secretion of autocrine ligands leading to receptor 
stimulation and subsequent increases in Vav1 activation. 
The expression and function of many other proteins appear 
to be affected by Vav1 [82], yet the exact contribution of 
such proteins for Vav1-dependent tumorigenicity has not 
been explored.

Vav1 might also contribute to transformation by 
influencing cell cycle progression and gene transcription. 
Indeed, as shown in pancreatic cancer cells, EGF 
stimulation leads to tyrosine phosphorylation of Vav1, 
followed by the activation of a Rac1/Pak1/NF-κB 
signaling pathway resulting in an increase in cyclin 
D1 which leads to enhanced pancreatic tumor cell 
proliferation [69]. This recurring theme suggests that Vav1 
might contribute to the progression of cancer by regulating 
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secretion of autocrine ligands critical for tumorigenicity, 
as well as affecting the expression of other proteins critical 
for various cellular functions.

The ability of Vav1 to contribute to cancer 
development was recently also attributed to its expression 
in cells of the microenvironment. Garcia JL et al., 
demonstrated by immunohistochemical survey of 59 
high-grade gliomas that Vav1 is found in non-tumoural 
astrocyte-like cells in peri-tumor or peri-vascular 
locations, but not in the glioblastoma cells [91]. Thus, 
in this case, expression of Vav1 is linked to synergistic 
signaling cross-talk between cancer cells and infiltrating 
cells, a phenomenon that could have a role in the 
neoplastic process in glioblastoma tumors [91].

In summary, several of Vav1’s intracellular 
mechanisms can contribute to tumorigenicity, including 
activation of RhoGTPases, activation of cyclin D1 
and NF-κB, and protein-protein interactions. Further 
research is required to provide more definitive insight into 
mechanisms underlying Vav1’s role in human cancer.

MUTATIONS IN VAV1 IN HUMAN 
CANCER

While evidence over the last decade substantiated 
Vav1 overexpression in human cancer, the question 

remained whether mutations in Vav1 contribute to human 
cancers [68–71, 73, 74, 76]. Based on data recently 
obtained from human genome sequencing coordinated 
by the Wellcome Trust Sanger Institute, Vav1 appears to 
be mutated in ~1% of human cancer of multiple tissue 
origins (Figure 1, http://cancer.sanger.ac.uk/cosmic/gene/
analysis?ln=Vav1&ln1=CBL&start=1&end=907&coord
s=AA%3AAA&sn=&ss=&hn=&sh=&id=5003#). Some 
cancers exhibit a higher occurrence of Vav1 mutations, 
such as those originating in the biliary tract (5.17%), 
endometrium (3.23%), large intestine (4.35%), and skin 
(6.13%), possibly attesting to the importance of the 
molecular lesions in Vav1 in certain tissues (Figure  2). 
Since the isolation of Vav1 numerous studies have 
attempted to decipher its structure/function by introducing 
mutations at different domains. Therefore, it is interesting 
to compare the mutations found in human cancer to those 
experimental mutations. The mutations identified in Vav1 
in human cancer span all its cardinal domains. CH Region: 
Mutations are at residues that are outside the backbone 
of this domain and are conserved in more than 62% of 
the sequences [92]. Several of these mutations (L17V, 
E59K, E84D, L88F, E95K, and W117R) are at isoleucine, 
leucine, valine, phenylalanine and tryptophan residues 
frequently found in this region, suggesting these residues 
may be involved in transformation. DH Region: Human 
cancer-associated mutations occur in highly conserved 

Figure 2: Schematic summary of Vav1 mutations in cancer of various tissue origins. The percentage of Vav1 mutations in 
numerous tissues was calculated according to the information available from the catalogue of Somatic Mutations in Cancer (COSMIC) 
database.
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residues, including E201K, L322M, D324Y, H337Y, 
L339I, T347M, V373F and E378K [93]. An additional 
mutant, Y283F, is not conserved among all the proteins, 
but is shared with Dbl. PH Region: The only conserved 
residue within the PH region that has been shown to be 
mutated in human cancers is E408K [93]. C1 Region: 
Interestingly, several of the residues mutated in human 
cancers (Q542E, R548L, E556K and P562S), were 
previously mutated experimentally by Zugaza et al., [66] 
but with different amino-acid substitutions. Since Zugaza 
et al., substituted with alanine [66], the activity of the 
naturally occurring mutants may differ from Zuzaga’s 
results. SH2 Domain. Several Vav1 mutations in cancer 
occur at highly conserved residues in the SH2 domain, 
including R678Q, E682E, G691R, and R696W.

For a long period it was believed that truncation 
of the amino-terminus was the only molecular lesion 
that converted wild-type Vav1 to a transforming gene in 
NIH3T3 fibroblasts [4, 5]. The importance of the amino-
terminus for Vav1 activity as a transforming gene was 
subsequently attributed to tyrosine 174. Thus, mutation 
at tyrosine 174 greatly enhances the transforming activity 
of Vav1 [83], since it relieves the autoinhibition of 
GEF activity by the acidic region [28]. One additional 
mechanism for Vav1 activation was recently reported 
by Razanadrakoto et al., [94] demonstrating that a 
mutation at D797 (D797N) in the carboxy SH3 region of 
wild-type Vav1 endowed the protein with transforming 
properties [94]. The same mutation introduced in the 
Vav1 oncogene did not change its transforming potential, 
suggesting that they operate in a similar manner [95]. 
Although numerous mutations have been experimentally 
introduced in Vav1 throughout the years, including in the 
DH, PH, C1, both SH3 regions and the SH2, none led to 
increased transformation of Vav1-expressing NIH3T3 
fibroblasts [26, 66, 95, 96], except the ones mentioned 
above. Therefore, it remains to be tested whether the 
cancer-identified Vav1 mutants are transforimg in such 
experimental conditions.

The pattern of mutations in Vav1 is puzzling. Both 
missense mutations and protein-truncating alterations 
are found throughout the Vav1 protein (Figure 1). 
Vogelstein and colleagues concluded that such a pattern 
of mutations is typical for tumor suppressor genes, while 
oncogenes are recurrently mutated at the same amino 
acid positions [97]. However, in view of the extreme 
functional complexity of the Vav1 protein, we cannot 
draw the same conclusion for Vav1 without further 
study. It is possible that aberrant function of each 
of the different domains of Vav1 can have different 
consequences in different cell types, or different 
pathophysiological processes, leading independently to 
transformation.

Several examples support the idea that genes 
can have dual roles as oncogenes and tumor suppressor 
genes depending on the specific mutation and tissue 

distribution. p53, a well-known tumor suppressor gene, 
can also function as an oncogene when it carries a gain-
of-function mutation [98]. Thus, some mutant p53 proteins 
gain oncogenic functions through which they actively 
contribute to establishment, maintenance and spreading 
of cancer cells [98]. Also, some functional studies suggest 
that NOTCH1 is an oncogene, whereas others suggest 
it is a tumor suppressor gene [99]. In hematological 
malignancies such as lymphomas and leukemias, 
NOTCH1 mutations were often recurrent and did not 
truncate the predicted protein [100], while in certain solid 
tumors, the mutations were not recurrent and were usually 
inactivating [101]. Thus different mutations to the same 
protein (NOTCH1) lead to its involvement in different 
tumor types through distinct mechanisms.

We recently demonstrated that Vav1 plays a dual role 
as a pro- or an anti-apoptotic protein in breast cancer cells, 
depending on whether the cells express p53 [71]. p53 is 
required for the pro-apoptotic effect of Vav1 in these breast 
cancer cell lines [71]. Whether these experiments point to 
a possible dual role of Vav1 in cancer, depending on the 
specific mutation and the specific cell-type, remains to be 
carefully studied. In light of the fact that Vav1 is mutated 
in just 1% of 20427 cancer specimen analyzed, and in view 
of its complex biochemical structure and diverse cellular 
functions, it is prudent to await the identification of a larger 
number of mutations before we draw conclusions about the 
true identity of Vav1 mutants (oncogene/tumor suppressor 
gene), as suggested by Lawrence et al., who explored the 
feasibility of creating a comprehensive catalogue of cancer 
genes [102].

ROLE OF VAV2 AND VAV3 IN HUMAN 
CANCER

Whereas the expression of Vav1 appears to be 
predominantly limited to the hematopoietic system, Vav2 
and Vav3 are expressed more ubiquitously [3, 6, 7]. The 
various members of the Vav family of proteins (Vav1, Vav2 
and Vav3) exhibit redundant as well as distinct functions 
in development [64, 103]. Both Vav2 and Vav3 have been 
implicated in cancer. High expression of Vav2 is implicated 
in cancers such as oral squamous cell carcinoma [104], 
squamous carcinomas of the head and neck [105], and 
prostate cancer [106]. Also, high levels of Vav3 have been 
observed in various types of cancers, including glioblastoma 
[107], prostate cancer [108] and colorectal cancer [109]. 
Vav3 was also shown to be significantly upregulated in 
breast cancers compared with benign breast diseases [110, 
111]. Furthermore, Vav3 was identified as a biomarker of 
a poor prognosis in breast and ovarian cancers [112, 113]. 
Like Vav1, Vav2 and Vav3 become oncogenic following 
N-terminal truncation [7, 27], yet there appears to be Vav 
isoform-distinct functions in cancer. For instance, specific 
depletion of only Vav1 in pancreatic cancer cell lines led to 
inhibition of their growth, despite the continuous expression 
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of Vav2 [69]. Moreover, knockdown of Vav2 in these cells 
did not alter their growth [69], suggesting that Vav1 and 
Vav2 play different roles in pancreatic cancer cells. Contrary, 
depletion of Vav2 and Vav3 could result in a dramatic effect 
on tumor growth of a different histological origin. Thus, 
reduction of Vav2 and Vav3 expression in mouse mammary 
tumor cells led to a decline in metastatic growth, similar to 
the effect of Vav1 depletion in pancreatic cancer cells [114]. 
These results further highlight the fact that the various 
members of the Vav family of proteins, Vav1, Vav2 and 
Vav3, may have different roles in human cancer.

CONCLUDING REMARKS

Vav1 is a signal transducer protein that functions 
exclusively in the hematopoietic system under normal 
physiological conditions. It participates in signal 
transduction events through tyrosine phosphorylation-
dependent guanine nucleotide exchange activity. 
While Vav1 was first identified as an oncogene capable 
of inducing transformation in NIH3T3 fibroblasts, 
accumulating results from the past decade clearly 
indicate its participation in human cancer through ectopic 
overexpression. Research on Vav1 in recent years has 
cycled between furthering our understanding of its 
physiological function in the hematopoietic system and 
studying its involvement in human malignancies. While it 
is now clear that Vav1 expression is deregulated in some 
cancers, leading to expression outside the hematopoietic 
system, it also emerges now as a mutated gene in human 
cancers of various origins; however, the activity and 
contribution of the various mutations is still unclear. The 
biological importance of the Vav1 mutants identified 
in human cancer needs further exploration, including 
testing the role of the various mutants in cognate tissues, 
assessing GEF activity of mutants, and testing their ability 
to associate with other proteins. Despite these many open 
questions, the existing data suggest Vav1 as a promising 
target for drug design, especially blocking its GEF 
activity, as was recently implied by Razidlo et al., who 
demonstrated that inhibition of Vav1 by drugs leads to 
inhibition of pancreatic cancer metastasis [115].
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