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AbstrAct
Syndecan-1 (SDC1, CD138) is a key cell surface adhesion molecule essential for 

maintaining cell morphology and interaction with the surrounding microenvironment. 
Deregulation of SDC1 contributes to cancer progression by promoting cell 
proliferation, metastasis, invasion and angiogenesis, and is associated with relapse 
through chemoresistance. SDC1 expression level is also associated with responses 
to chemotherapy and with prognosis in multiple solid and hematological cancers, 
including multiple myeloma and Hodgkin lymphoma. At the tissue level, the expression 
levels of SDC1 and the released extracellular domain of SDC1 correlate with tumor 
malignancy, phenotype, and metastatic potential for both solid and hematological 
tumors in a tissue-specific manner. The SDC1 expression profile varies among cancer 
types, but the differential expression signatures between normal and cancer cells in 
epithelial and stromal compartments are directly associated with aggressiveness of 
tumors and patient’s clinical outcome and survival. Therefore, relevant biomarkers 
of SDC signaling may be useful for selecting patients that would most likely respond 
to a particular therapy at the time of diagnosis or perhaps for predicting relapse. 
In addition, the reciprocal expression signature of SDC between tumor epithelial 
and stromal compartments may have synergistic value for patient selection and the 
prediction of clinical outcome.

IntroductIon

syndecan structure and expression

Syndecans are members of the transmembrane 
heparan sulfate proteoglycan (HSPG) family [1]. 
Mammals have four syndecan family members, designated 
as syndecan-1 (syndecan, SDC1, CD138) [2], syndecan-2 
(fibroglycan, SDC2) [3], syndecan-3 (N-syndecan, SDC3) 
[4], and syndecan-4 (amphiglycan or ryudocan, SDC4) [5]. 
SDC1 is the most studied and best characterized member 
of the syndecan family. The protein structure of syndecan 

consists of extracellular, transmembrane, and cytoplasmic 
domains (Figure 1A). The large extracellular domain of 
syndecan is located on the N-terminus (ectodomain) and is 
comprised of glycosaminoglycan (GAG) chains (heparan 
sulfate and chondroitin sulfate) [6]. All syndecans are 
anchored to the plasma membrane via a 24-25 amino acid 
hydrophobic transmembrane domain, which is highly 
conserved among the four syndecans. The cytoplasmic 
domain of syndecan contains the C-terminus, which is 
relatively short and comprised of 28-34 amino acids 
(Figure 1A). Importantly, the cytoplasmic domain of 
syndecan can be linked to intracellular cytoskeletal 
elements that maintain cell shape and provide support to 
the cytoskeleton (Figure 1A) [6-8]. In mammalian cells, 
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the expression of syndecans is tightly regulated and, in 
turn, may control many downstream signaling events. 
Syndecans show different patterns of expression in 
various tissues. While SDC1 is predominantly expressed 
in epithelial and mesenchymal cells, SDC2 is the most 
abundantly expressed in cells of mesenchymal origin than 
in neuronal and epithelial cells. In hematopoietic tissues, 
SDC1 is predominantly expressed on the cell surface of 
immature B cells and mature plasma cells [9]. SDC3 is 
mainly expressed in neuronal and musculoskeletal tissue, 
whereas SDC4 is ubiquitously expressed [10]. Evidence 
indicates that the expression of SDC1 can be regulated 
by multiple growth factors, such as tumor growth 
factor- β (TGF-β) and basic fibroblast growth factor 
(bFGF or FGF2), in different mammalian cell types [11]. 
Tumor necrosis factor-α (TNF-α) downregulates SDC1 
expression in endothelial cells [12], whereas TGF-β2 
downregulates SDC1 expression in epithelial cells [13]. 
In addition, SDC1 expression is highly increased during 
the wound repair process [14].

syndecan localization and function 

cell surface syndecan

Syndecan (originating from the Greek word syndein, 
meaning “to bind together”) acts as an anchor to stabilize 

the morphology of epithelial sheets by connecting the 
extracellular matrix to the intracellular cytoskeleton [15]. 
Syndecan is expressed on the surface of all adherent cells 
and on many non-adherent cells [15]. It is well-established 
that syndecan serves as coreceptor for various heparin-
binding growth factors, such as bFGF/FGF2, vascular 
endothelial growth factor (VEGF), TGF-β, and platelet-
derived growth factor (PDGF) (Figure 1A, 1B) [16-18]. 
The interaction between syndecan and growth factors is 
facilitated through heparan sulfate (HS) chains (Figure 
1A). In this regard, HS chains serve as templates that 
bridge growth factors and their receptors. In the case of 
FGF, syndecan acts as coreceptor to enhance the binding 
between FGF and the FGF receptor. Such binding lowers 
the concentration of FGF required to initiate downstream 
signaling through its receptor and extends the duration 
of receptor signaling (Figure 1B) [19]. In addition to its 
role as a coreceptor, syndecan itself acts as receptor via 
its HS chains (Figure 1A). Syndecan binds to different 
matrix elements through interactions with heparan-binding 
molecules on adjacent cells to potentiate cell-matrix 
adhesion (Figure 1A) [20-22]. Examples of extracellular 
molecules that commonly bind to syndecan in order to 
mediate cell adhesion to the extracellular matrix include 
collagens, fibronectin, thrombospondin, and tenascin [20-
22]. 

Unlike HS chains, the biological function of 

Figure 1: Model for sdc1 function under normal and cancer conditions. A. SDC1 binds to ECM proteins and/or growth 
factors through its heparan sulfate chains, and it binds to cytoskeletal proteins for cell anchorage b. SDC1 acts as a coreceptor that facilitates 
interaction between growth factors and their receptors and enhances cancer mitogenic signaling c. Shed SDC1 (sSDC1) enhances the 
interaction between growth factors and their receptors in cancer or acts as a decoy receptor d. Nuclear SDC1 controls gene expression in 
cancer.
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table 1: studies evaluating sdc1 as a prognostic biomarker in cancer patients with solid tumors.
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chondroitin sulfate (CS) chains present in syndecan is 
not completely understood. A study by Okamoto and 
colleagues suggested a cooperative role of CS chains with 
HS chains in binding to the extracellular matrix protein 
laminin [23]. Although HS chains are major contributors 
to the function of syndecan, recent studies have revealed 
that the protein core ectodomains are also engaged in 
protein-protein interactions between syndecan and other 
peptide molecules [24, 25]. On the intracellular side, the 
cytoplasmic domain binds to several cytoskeletal proteins, 
such as ezrin, tubulin, and cortactin, which potentiates 
cell anchorage and stabilizes cell morphology [6-8]. 
Thus, syndecan plays an important role in the interplay 
between target cells and the extracellular matrix. Among 
the different syndecans, SDC1 was first to be identified 
and evaluated and is implicated in the maintenance of 
epithelial morphology and anchorage-dependent growth 
[26, 27]. 

shed/soluble syndecan

Syndecan can be proteolytically cleaved at a 
juxtamembrane site, which releases the extracellular 
(ectodomain) core protein bearing both HS and CS chains 
(Figure 1C) [28]. Cells constitutively shed syndecan at 
low levels, but shedding is accelerated in response to 
growth factors, chemokines, heparanase, microbial toxins, 
insulin, and cellular stress [29, 30]. These stimuli trigger 
several signaling pathways that eventually lead to elevated 
protease activity driving syndecan shedding. The syndecan 
molecules that are shed remain biologically active and 
can bind the same ligands as the intact ectodomain. 
Accordingly, shed syndecan may act in a paracrine manner 
[31] . On the other hand, shed ectodomains may compete 
for the same ligand as the surface receptor (acting as 
decoy receptors), thus downregulating signal transduction 
(Figure 1C) [31].
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syndecan in cancer

The expression of SDC1 is dysregulated in 
cancer, and low expression of SDC1 in epithelial cells 
is associated with poor prognosis and high metastatic 
potential [32-34]. Tables 1 and 2 summarize the studies to 
date that have evaluated SDC1 prognostic significance and 
clinical implications in solid and hematological tumors, 
respectively.

Studies have shown that SDC1 is involved in 
multiple cellular processes, including cell proliferation [24, 
39-41], migration [42-44], adhesion, and angiogenesis [30, 
45].In general, the loss of SDC1 expression in carcinoma 
cells reduces cell adhesion to the extracellular matrix and 
enhances cell motility and invasion [15]. Alternatively, 
increased stromal SDC1 expression alters fibronectin 
production and extracellular matrix organization [35]. 
In addition, increased expression of SDC1 in stromal 
fibroblasts is associated with angiogenesis and cancer 
progression [15, 36]. Various signaling molecules function 
upstream or downstream from SDC1 in cancer (examples 
are listed in Table 3). SDC1 acts as a scaffold that brings 
ligands, such as hepatocyte growth factor (HGF), bFGF/
FGF2, and VEGF, in close proximity to their cognate 
receptors. This localization activates downstream signal 
transduction pathways, such as the “PI3K to Akt” and “Ras 
to MAPK” pathways, which enhances the proliferation 
of endothelial cells, cancer cells, and fibroblasts (Figure 
1B) [15, 37]. For example, the binding of HGF with 
SDC1 enhances downstream signaling in myeloma cells, 
osteoblasts, and stromal cells [15, 38]. SDC activates 

integrin αvβ [46] and Wnt5a [47] signaling in breast 
cancer and multiple myeloma, respectively (Table 3). SDC 
increases cell adhesion via activation of focal adhesion 
kinase (FAK) signaling in lung and colorectal cancers [48, 
49]. Mulitple molecules such as ADAM-10, ADAM-17, 
MMP-7, MMP-9, MMP-14, and bFGF/FGF2 increase 
SDC1 shedding in multiple myeloma as well as breast and 
colon cancers [50-54] (Table 3). 

Alterations in the levels of soluble SDC1 have been 
reported in various cancer types. The levels of soluble 
SDC1 in the sera of healthy persons are relatively low 
compared to levels in cancer patients. Heparanase induces 
SDC1 shedding, and soluble SDC1 is an independent 
negative prognostic factor in multiple myeloma [32, 55, 
56]. High levels of heparanase have also been reported 
in the plasma of Hodgkin’s lymphoma (HL) patients 
and it can be used to evaluate treatment response [57]. 
Soluble SDC1 is biologically active and can intensify the 
binding between growth factors with their receptors in 
tumor stroma [30, 58]. Soluble SDC1 ectodomains bind 
to pro-angiogenic factors, which promotes endothelial cell 
invasion (Figure 1C) [30]. Soluble SDC1 also increases 
fibroblast proliferation and the release of TGF-β [58]. In 
addition, soluble SDC1 can act as decoy receptor, and 
thus it may promote cancer progression by sequestering 
inhibitory molecules (Figure 1C) [59]. 

Many reports indicate that Heparan Sulfate 
Proteoglycans (HSPGs) may localize to the nucleus [60, 
61]. A recent study showed that SDC1 is present in the 
nucleus of myeloma tumor cells where it activates gene 
transcription (Figure 1D) [62]. In addition, shed SDC1 

table 2: studies evaluating sdc1 as a prognostic biomarker in cancer patients with hematological tumors.
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can localize to the nucleus in areas involved in gene 
transcription [63].

syndecan as a prognostic biomarker in solid 
tumors

bladder cancer

High SDC1 expression was observed in over 60% 
of specimens from patients diagnosed with primary 
non-muscle-invasive bladder cancer, and SDC1 was a 
significant predictor for recurrence-free survival [64]. In 
addition, SDC1 was found to be expressed on the cell 
membrane of normal bladder epithelium and non-muscle-
invasive bladder cancer cells, but was almost completely 
absent in muscle-invasive carcinomas [65]. In contrast, 
stromal SDC1 as well as serum SDC1 levels were higher in 
muscle-invasive compared to non-muscle-invasive bladder 
cancer cells. Lymph node-positive cases had the highest 
SDC1 serum concentrations, and SDC1 expression in 
stromal cells was independently associated with survival. 
Loss of SDC1 in tumor cells and the simultaneous increase 
of serum SDC1 levels in high-stage, high-grade bladder 
cancer cells suggest that SDC1 shedding is associated with 
bladder cancer cell aggressiveness [65]. Thus, circulating 
levels of SDC1 may ultimately be a useful prognostic tool 
for identifying patients with lymph node metastases [65].

Assessing urinary SDC1 levels and tumor SDC1 
expression revealed no significant difference in urinary 
SDC1 levels between cancer and healthy subjects [67]. 
However, urinary levels of SDC1 were reduced in high-
grade disease compared to low-grade disease states 
[66]. Interestingly, SDC1 predominantly localized to the 
cell membrane in normal tissue and low-grade tumors, 
while high-grade tumors exhibited distinct cytoplasmic 
localization. In these reports, the tumor stage and grade 
can change the value of urinary and serum levels of 
SDC1 as prognostic tools in urinary bladder cancers. 

However, localization of SDC1 in the membranous or 
cytoplasmic compartments may correlate with the stage 
and aggressiveness of urinary bladder cancers.
breast cancer

SDC1 has been shown to be expressed at high levels 
in breast cancer specimens and was associated with high 
histologic grade, large tumor size, high mitotic count, 
and poor prognosis [67]. High SDC1 levels were also 
associated with a higher risk of death in patients treated 
with the cyclophosphamide-methotrexate-fluorouracil 
chemotherapeutic regimen [67]. High SDC1 expression 
was reported in triple-negative invasive ductal breast 
carcinomas compared to normal breast tissue [68]. SDC1 
expression was also strongly correlated with patient 
overall survival [68]. Evaluation of SDC1 expression 
in invasive ductal carcinoma indicated that cytoplasmic 
expression of SDC1 was positively correlated with 
WNT1 (a proto-oncogene) and membranous expression 
of SDC1 was positively correlated with p16 (a tumor-
suppressor protein) [69]. Another study found that SDC1 
expression was significantly increased in invasive breast 
cancer cases, suggesting that it may serve as a useful 
prognostic biomarker for aggressive breast cancer [33]. 
A tissue microarray of invasive ductal breast carcinoma 
specimens indicated high expression of SDC1 in the breast 
epithelium of more than half of the patients, whereas 
stromal expression was observed in only one third of the 
patients. Moreover, a significant correlation was found 
between the loss of epithelial SDC1 expression in high-
grade tumors. These findings suggest that lack of SDC1 
epithelial expression is a strong prognostic marker in 
breast carcinomas [70]. Tiemann and colleagues studied 
the role of SDC1 in ductal carcinoma in situ of the breast 
(DCIS) [71]. Tumor grade was found to be related to 
the proportion of SDC1-positive cells, rather than to the 
intensity of SDC1 staining. In the same study, estrogen 
receptor (ER) expression did not affect the staining 
intensity of SDC1, but negatively correlated with the 

table 3: Examples of proteins associated with the sdc pathway in cancer.
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percentage of SDC1-positive cells. Further findings 
showed that expression of progesterone receptor (PR) 
was positively influenced by both the intensity of staining 
and the percentage of SDC1-positive cells. These results 
suggest a potential role of SDC1 in the pathogenesis of 
DCIS [71]. Additional studies compared expression of 
SDC1 in breast cancer cases with and without distant 
organ metastasis. SDC1 expression was significantly 
correlated with a higher histological grade. In addition, 
HER2 subtype and triple-negative carcinomas showed 
significantly higher SDC1 levels than those of control 
cases. Importantly, high SDC1 expression had a negative 
impact on both overall and disease-free survival rates [72]. 

In another study, SDC1 expression was detected 
in approximately 70% of breast cancer cases and found 
to correlate with tumor grade. The presence of SDC1 in 
high-grade tumors was associated with the absence of 
SDC4 [73]. Further evidence indicated strong staining 
of SDC1 in DCIS tumor samples, which was associated 
with E-cadherin and c-Met expression [46]. In addition, 
expression of SDC1 and SDC4 was correlated with 
the Ki-67 mitosis index, suggesting a role in breast 
cancer cell proliferation. In addition, SDC1 and SDC4 
expression was correlated with negative ER status and 
aggressive phenotypes [74]. Strong SDC1 staining was 
observed in more than 80% of neoplastic cells and was 
associated with increased mortality risk. In addition, 
there was a strong negative correlation between SDC1 
expression and extracellular matrix proteins, suggesting 
that SDC1 promotes tumor progression by interacting 
with extracellular matrix components and impacting 
breast cancer tissue remodeling [75]. In another study, the 
expression of SDC1 was equivalent in the epithelium and 
stroma of breast tumors, but epithelial SDC1 expression 
was associated with negative ER status while stromal 
SDC1 expression was associated with positive ER status 
[76]. Moreover, loss of epithelial or stromal SDC1 
expression was associated with a more favorable 10-year 
overall survival rate [76]. These findings indicate that 
SDC1 is expressed at high levels in breast cancer and its 
expression is associated with aggressive phenotypes and 
poor clinical outcomes.
cervical cancer

Most cervical cancer tissues assessed to date have 
been shown to be SDC1-positive, and localization of 
SDC1 in the cytoplasm was associated with better patient 
survival. In addition, the change of SDC1 expression 
in cervical cancers was not caused by copy number 
alteration of the gene [77]. The progression of cervical 
intraepithelial neoplasm to early invasive cancer was 
found to correlate with reduced levels of SDC1 [78]. In 
another study, biopsies obtained from patients treated for 
primary invasive cervical carcinoma showed that SDC1 
expression is associated with histological differentiation 
grade and squamous histology, but the expression does not 

predict clinical outcome [79]. 
colorectal cancer

Recent reports have indicated that colorectal 
patients have higher serum levels of soluble SDC1 
compared to healthy adults, which correlates with poor 
survival [80]. Patients with high SDC1 serum levels 
were also less responsive to 5-fluorouracil, oxaliplatin, 
irinotecan, cisplatin, or paclitaxel chemotherapy 
treatments [80]. Further studies revealed that SDC1 is 
expressed at the basolateral borders of normal colonic 
epithelial cells; however, in adenocarcinoma cells, 
SDC1 was found to be present around epithelial cell 
membranes and in the cytoplasm [81]. In approximately 
90% of adenocarcinomas examined, SDC1 expression was 
absent, and this correlated with lymph node metastasis. 
Stromal SDC1 was expressed in a small fraction of 
tumors. These findings emphasize that the loss of tumor 
SDC1 may be a potential prognostic biomarker for 
human colon adenocarcinomas [81]. In another study, the 
expression of epithelial SDC1 was observed in over 90% 
of colorectal cancer specimens and was associated with 
lower histological grade and a less advanced clinical stage 
[82]. Expression of stromal SDC1 was observed in 58% 
of specimens, but expression did not significantly correlate 
with clinical outcome [82]. Taken together, these studies 
indicate that SDC1 expression may be a useful biomarker 
for evaluating the stage and grade of colorectal tumors. 
The lack of consistency between studies may be related 
to patient selection or methodological differences, and 
therefore larger studies are needed to further evaluate the 
prognostic impact of SDC1 in patients with colorectal 
tumors.
Endometrial cancer

In endometrial cancer, epithelial SDC1 expression 
was significantly lower in advanced stage, high grade, and 
lymph node metastatic disease [83]. In contrast, stromal 
SDC1 expression was significantly higher in high-grade 
tumors [83]. Moreover, SDC1 expression was totally 
absent in poorly differentiated endometrial cancer tissues, 
while it was abundant in normal endometrial and highly 
differentiated malignant tissues [84].
Gallbladder cancer

Epithelial SDC1 was observed in approximately half 
of gallbladder cancer cases evaluated, and its expression 
was associated with lymph node metastasis. This study 
also found that patients with positive SDC1 expression 
had a significantly shorter survival time than patients with 
undetectable expression [85].
Gastric cancer

Loss of epithelial SDC1 expression as well as 
high stromal SDC1 expression was associated with 
unfavorable prognosis in gastric cancer [86]. Additional 
studies showed that loss of epithelial SDC1 expression 



Oncotarget28700www.impactjournals.com/oncotarget

was associated with high stromal SDC1 expression, higher 
tumor grade, poor overall survival, and nodal metastases 
[87]. Therefore, stromal and epithelial SDC1 expression 
might have some prognostic impact in gastric cancer. 
However, these findings are not consistent and require 
further investigation.
Glioma

Higher gene and protein levels of SDC1 were 
detected in glioma tissues compared to controls. Moreover, 
SDC1 expression was increased in high-grade tumors, and 
the overall survival rate of SDC1 positive patients was 
significantly lower than that of SDC1 negative patients 
[88].
Laryngeal cancer

SDC1 expression was detected in all laryngeal 
cancer specimens examined by Klatka and colleagues, and 
expression was significantly correlated with histological 
grade and patient survival rate [89]. Additional 
investigation indicated that tumors with intermediate or 
strong staining for SDC1 were associated with higher 
overall survival than tumors with no or low SDC1 
expression [90].
Liver cancer

In patients with advanced hepatocellular carcinoma 
(HCC), serum levels of SDC1 were increased compared to 
those without HCC or with early HCC [91]. High serum 
SDC1 levels were significantly associated with greater 
risk of tumor recurrence and decreased overall survival 
in patients with early HCC and with advanced HCC, 
respectively [91]. Additional studies showed reduced 
expression of the SDC1 gene and protein in metastatic 
HCC patients compared to those with non-metastatic 
disease [92]. Thus, the loss of SDC1 expression could 
be a characteristic feature of HCC with high metastatic 
potential [92].

SDC1 protein and gene expression levels were 
also assessed in intrahepatic cholangiocarcinomas 
and normal bile duct epithelial cells [34]. Intrahepatic 
cholangiocarcinoma cells showed membranous and 
cytoplasmic expression of SDC1, while normal epithelial 
cells showed restricted basolateral membranous 
expression. In cancerous tissues, the distribution of SDC1 
mRNA was similar to that of the protein, suggesting that 
SDC1 expression in intrahepatic cholangiocarcinoma is 
regulated at the transcriptional level. Moreover, loss of 
SDC1 expression in carcinoma was associated with poor 
differentiation and lymph node metastases [34].
Lung cancer

In lung cancer patients, high serum SDC1 and bFGF 
levels were associated with poor outcomes at the time 
of diagnosis [93]. In another study, evaluation of SDC1 
expression in squamous cell lung carcinoma patients 
showed higher expression of SDC1 in well-differentiated 

cancers than in moderately or poorly differentiated tumors 
[94]. Cancers with high SDC1 expression were associated 
with more favorable overall survival, suggesting that loss 
of SDC1 expression occurs as a result of histological 
dedifferentiation and that low SDC1 expression is 
associated with unfavorable outcomes in squamous cell 
carcinoma of the lung [94].
Mesothelioma

Studies of the expression of SDC1 protein in 
mesothelioma tumors and cell lines revealed strong SDC1 
expression in epithelial mesotheliomas and in epithelial 
components of biphasic mesotheliomas, while expression 
was reduced during sarcomatoid differentiation [95]. 
Moreover, SDC1 expression was associated with longer 
overall survival in patients with mesotheliomas compared 
to patients with no or low SDC1 expression [95]. In 
another study, SDC1 was detected in pleural effusions, but 
not in sera of patients with pleural metastatic disease and 
malignant mesothelioma [67]. These findings distinguish 
malignant and benign diseases and suggest that SDC1 
expression levels may be a prognostic factor that can 
predict differences in survival [67]. 
nasopharyngeal carcinoma and oral cancer

An analysis of SDC1 and c-Met in samples 
from nasopharyngeal carcinoma patients by 
immunohistochemical staining indicated that high 
coexpression of c-Met and SDC1 was adversely correlated 
with patient survival [96]. Normal oral mucosa has been 
shown to express moderate-to-high levels of SDC1, which 
is reduced or abolished in carcinomas [97]. In another 
study, SDC1 was found to be mainly expressed in the 
stromal cells, and this pattern was associated with poor 
prognosis of ameloblastomas, keratocystic odontogenic 
tumors [98]. SDC1 expression was significantly higher 
in normal controls than in specimens from patients with 
mild, moderate, or severe dysplasia as well as invasive 
squamous cell carcinoma; however, no significant 
difference was found between different tumor grades [99]. 
In another study, approximately 90% of oral squamous 
cell carcinoma cases showed negative or weak SDC1 
staining. Patients with intermediate or strong staining 
intensity for SDC1 had a significantly better prognosis 
than patients with negative or weak staining intensity 
[100]. SDC1 expression was decreased in more than 80% 
of oral carcinoma cases examined, but positive stromal 
SDC1 staining proved to be a significant risk factor of 
recurrence and tumor-specific death within a 24-month 
period after surgery, suggesting stromal expression of 
SDC1 is a reliable indicator of an adverse prognosis in 
oral carcinomas [101]. In another study, SDC1 levels 
were increased in response to cytostatic treatment, which 
proved to be an important predictive factor and a clear 
forecast of a good prognosis [102]. Taken together, these 
results suggest that reduced cellular SDC1 or increased 
stromal SDC1 expression can be useful prognostic factors 
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in oral cancers. However, a full understanding of the 
contrasting characteristics between epithelial and stromal 
components requires further studies.

ovarian cancer

Patients with advanced ovarian cancer exhibit 
significantly lower epithelial SDC1 expression and 
significantly higher stromal SDC1 expression in reciprocal 
pattern compared to normal controls [103]. Additional 
studies have evaluated the expression of syndecans in 
benign and malignant ovarian tumors and found that 
SDC2, -3, and -4 are expressed in normal, benign, and 
malignant ovarian tissues [104]. In contrast, SDC1 was 
absent in normal ovarian tissues, but present in epithelial 
and stromal cells of benign and borderline tumors. In 
addition, the expression of stromal SDC1 was a poor 
prognostic factor of overall survival in patients with 
ovarian cancer [104].
Pancreatic cancer

Epithelial SDC1 has been observed in most human 
pancreatic carcinoma samples evaluated to date, and 
expression is predictive of a more favorable prognosis in 
patients undergoing curative surgery. In addition, stromal 
SDC1 expression was weak or negative in over 60% of the 
tumors evaluated, and lack of stromal expression predicted 
a better prognosis in these patients [105].
Prostate cancer

Early studies have shown that syndecans are 
expressed in the epithelial cells of prostate cancer patients 
[106]. SDC1 showed basolateral membrane localization, 
whereas SDC2 was preferentially expressed in basal 
cells. Another study found that the expression patterns 
of SDC1 and SDC2 changed to a granular-cytoplasmic 
localization in prostate cancer samples [106]. Moreover, 
SDC1 was detected by immunostaining of a tissue 
microarray in approximately one third of patients with 
localized prostatic adenocarcinoma who had been treated 
with radical prostatectomy and bilateral lymphadenectomy 
[107]. SDC1 expression was also associated with lymph 
node metastases and aggressive progression after surgery. 
Further studies showed altered expression of SDC1 protein 
in specimens obtained from normal, benign, and malignant 
prostate tissues [108]. SDC1 overexpression in human 
prostate cancer was also predictive of early recurrence and 
was associated with tumor-specific survival, high Gleason 
grade, the Ki-67 mitosis marker, and Bcl-2 overexpression 
[109]. Together, these findings suggest that expression of 
SDC1 can be used as a prognostic marker for patients with 
localized and advanced prostate cancer.

squamous cell carcinoma of the head and neck and 
thyroid cancer

Analysis of primary squamous cell carcinoma 
of the head and neck in patients treated with surgery 
and post-operative radiotherapy has shown low SDC1 
expression [110], which was associated with low grade 
of differentiation, large tumor size, increased nodal 
metastases, high clinical stage, and unfavorable overall 
survival [110]. SDC1 expression in these tumors was 
also associated with higher overall and recurrence-free 
survival compared to no or low SDC1 expression [111]. A 
tissue microarray analysis of SDC1 expression in papillary 
carcinomas of the thyroid indicated that SDC1 was mainly 
expressed in the cytoplasm of epithelial cells and stroma 
of papillary carcinomas of the thyroid [113].

sdc1 as a prognostic biomarker in hematological 
tumors

chronic lymphocytic leukemia

Studies assessing the correlation between soluble 
SDC1 in plasma and clinical outcome in patients with 
chronic lymphocytic leukemia have shown that soluble 
SDC1 levels were significantly higher in these patients 
compared to healthy control subjects. In addition, high 
levels of soluble SDC1 were also associated with shorter 
overall survival [112].
diffuse large b-cell lymphoma

Multiple studies have detected SDC1 in diffuse 
large B-cell lymphoma [113, 114]. Tumor biopsies of 
diffuse large B-cell lymphoma patients were examined 
for SDC1 expression and results tested positive in 30% of 
poor overall survival [113, 114], indicating aberrant SDC1 
expression correlates with poor clinical outcome.
Multiple myeloma

Several studies have shown higher levels of soluble 
SDC1 in multiple myeloma patients compared to healthy 
controls [115-117]. Baseline levels of soluble SDC1 
at the time of diagnosis in patients who responded to 
chemotherapy were lower than non-responders; however, 
baseline levels of SDC1 did not predict therapeutic 
response in those patients [115]. High levels of soluble 
SDC1 and lower expression of cellular SDC1 at the time 
of diagnosis are negative prognostic factors for multiple 
myeloma [116]. In a cohort of Korean patients diagnosed 
with multiple myeloma, soluble SDC1 levels correlated 
with disease stage and characteristics [118]. In addition, 
high soluble SDC1 levels detected in Korean subjects 
were associated with poor survival [118]. Further studies 
showed that soluble SDC1 levels were elevated in the 
sera of multiple myeloma patients treated with high-dose 
chemotherapy and subsequent autologous transplantation 
[119]. In another study, the extent to which soluble 
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SDC1 levels fell from presentation to the plateau phase 
represented a prognostic predictor in multiple myeloma 
patients [56]. In a comparative study of blood dyscrasias, 
multiple myeloma patients showed higher serum SDC1 
levels than patients with plasmocytoma or monoclonal 
gammopathy [120]. In addition, serum SDC1 levels 
were diminished in patients who responded well to 
chemotherapy, whereas no change was observed in non-
responders [120]. When SDC1 expression was analyzed 
in normal bone marrow or bone marrow from multiple 
myeloma and B-cell lymphoma patients, SDC1 was found 
to be expressed predominantly in normal and neoplastic 
plasma cells. Moreover, high SDC1 expression was 
detected in all multiple myeloma cases examined, whereas 
all B-cell lymphomas were completely negative.

Evaluation of SDC1 levels in the bone marrow of 
multiple myeloma patients showed much higher levels 
than circulating SDC1 levels in peripheral blood [121]. 
Nevertheless, SDC1 blood and bone marrow levels were 
positively correlated with microvessel density, HGF 
levels, and reduced survival [121]. Serum SDC1 and 
bFGF/FGF2 levels were elevated in multiple myeloma 
patients before treatment compared to the control group 
[122]. Baseline assessment of SDC1 and bFGF/FGF2 
serum levels showed higher levels of both markers, which 
was associated with shorter survival than patients with 
normal levels [122]. In the same study, myeloma patients 
responding to chemotherapy treatment showed reduced 
SDC1 levels [122]. Bone marrow levels of soluble SDC1 
and HGF were elevated in multiple myeloma patients 
compared to control subjects [117]. In addition, HGF 
existed in a complex form with soluble SDC1 in pleural 
effusions, suggesting an important role of soluble SDC1 
as a carrier for HGF in the pathology of myeloma [117]. 
Taken together, various studies have demonstrated SDC1 
as a potential biomarker for multiple myeloma. Findings 
from these studies indicate that soluble SDC1 levels may 
be a prognostic tool in multiple myeloma patients for 
diagnosis, prognosis, and treatment response.

Putative roles of sdc1 in Hodgkin’s lymphoma

Hodgkin’s Lymphoma (HL) is characterized by 
the presence of cancerous Hodgkin-Reed-Sternberg 
(HRS) cells embedded in a background of immune, 
inflammatory and stromal cells [123]. These cells 
secrete a plethora of cytokines and growth factors 
in the tumor microenvironment that lead to tumor 
growth and dissemination. SDC1 acts to potentiate the 
signaling of cancerous and stromal cells in the tumor 
microenvironment. Serum levels of SDC1 were higher 
in HL specimens compared to a control group [124]. In 
another study, B-cell markers, including SDC1, were 
expressed in 38% of classical HL cases [125]. The 
following sections highlight three potential pathways 
involving SDC1 in HL pathogenesis.

sdc1 and HGF

It has been reported that HL patients have increased 
serum levels of HGF, which correlates with advanced 
stages of the disease [126]. SDC1 binds to HGF, which 
potentiates c-Met downstream signaling by activating the 
PI3K and ERK pathways (Figure 2) [127]. Moreover, it 
has been reported that c-Met is expressed by subsets of 
Hodgkin Reed Sternberg (HRS) cells, and HGF is secreted 
in the tumor milieu, suggesting an autocrine effect in HL 
pathogenesis [128]. In another study, changes in plasma 
heparanase levels correlated with the response to treatment 
in pediatric patients diagnosed with HL [57]. Heparanase 
induced HGF expression and shedding of SDC1 through 
the upregulation of matrix metaloprotease-9 (MMP-9) and 
urokinase-type plasminogen activator (uPA) [129]. These 
findings suggest that SDC1 or soluble SDC1 binds to HGF 
to facilitate binding and activation of its receptor (Figure 
2). 
sdc1 and VEGF

Angiogenesis is a crucial process during the 
progression of hematological malignancies, including HL 
[126]. High serum levels of VEGF were detected in the 
sera of HL patients [126]. Moreover, the levels of VEGF 
and VEGF receptor in HL patients were significantly 
higher than the levels in non-Hodgkin’s lymphoma (NHL) 
patients [130]. In another study, the overexpression of 
VEGF was approximately 70% of cases of classical HL 
and 30% of nodular lymphocyte predominance HL, and all 
neoplastic HRS cells [131]. In a separate study, VEGF-A, 
VEGF receptor-1, and VEGF receptor-2 were expressed 
in HRS cells from patients with classical HL [132]. When 
heparanase expression was high in the tumor, soluble 
SDC1 formed a complex with VEGF, which activated 
VEGF receptors on adjacent endothelial cells (Figure 
2) [30]. These findings suggest that SDC1 or soluble 
SDC1 enhance VEGF binding to the VEGF receptor, thus 
promoting angiogenesis (Figure 2). 
sdc1 and bFGF/FGF2

Unlike other growth factors, FGFs act with HSPGs 
(such as SDC1) to activate FGF receptors and induce 
downstream signaling responses [133, 134]. As described 
above, the binding of bFGF/FGF2 and an HSPG to 
the extracellular domain of the FGF receptor induces 
receptor autophosphorylation. This process leads to the 
phosphorylation of docking molecules, such as Shc, 
phospholipase-Cγ, STAT1, Gab1, and FRS2α, which are 
regulators of the Ras/MAPK and PI-3K/Akt signaling 
pathways (Figure 2) [133]. It has been reported that serum 
levels of bFGF were elevated and correlated with the 
stage of different hematological malignancies [135]. In 
addition, the event-free survival rate was higher in NHL 
patients who had lower bFGF levels [136]. Another study 
showed that high serum levels of bFGF are associated 
with a poor outcome in NHL patients [137]. It has been 
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reported that HRS cells and stromal cells secrete bFGF, 
which stimulates fibrosis in the nodular sclerosis (NS) 
subtype of HL [123]. In addition, serum bFGF levels 
were significantly higher in HL patients than in healthy 
individuals and correlated with the clinical outcome of 
HL [126]. Expression levels of FGFs and their receptors 
were high in HL patient samples, while their expression 
in HL cell line cultures was stimulated in response to 
paracrine factors [133]. The expression of bFGF and 
SDC1 in HL suggests that they play a role in maintaining 
the growth of HL cells [138]. The association of high 
serum levels of both SDC1 and bFGF with poor outcome 
in lung cancer has been reported [93]. Furthermore, 
Kyrtsonis and colleagues demonstrated that patients who 
had high serum levels of both SDC1 and bFGF had a 
shorter overall survival than patients with normal levels, 
and responders to treatment regimens showed reduced 
SDC1 levels [122]. In addition, a bioinformatics analysis 
showed overexpression of bFGF and SDC1 in HL cell 
lines that were originally derived from primary HRS cells 
isolated from extranodal sites of refractory or relapsing 
HL patients [138]. The expression levels of bFGF and 
SDC1 protein were significantly elevated in HL patient 
samples compared to NHL sections and normal lymph 
node controls [138]. Furthermore, all HL tissue samples 
overexpressed FGF2 and SDC1 genes, and the group 
with a poor outcome had a 24-fold higher expression of 
FGF2 and 56-fold higher expression of SDC1 than the 

group with a favorable outcome. Strong immunostaining 
of bFGF and SDC1 was also reported in the poor outcome 
HL group [138]. Taken together, these findings suggest 
that simultaneous high levels of bFGF and SDC1 correlate 
with a poor prognosis in HL patients.

syndecan as a therapeutic target in clinical 
settings

Based on the numerous roles in cancer pathology, 
SDC1 is an attractive molecular target for therapeutic 
strategies. Quantification of SDC1 is necessary in basic 
discovery research as well as in clinical practice. In vitro 
diagnostics and technologies that allow for the specific 
detection and precise quantification of SDC1 continue to 
evolve. Today, selected clones that produce monoclonal 
antibodies can be cultured to produce SDC1-specific 
antibodies. This part of the review sheds light on recent 
advances in in vitro diagnostics as well as research-use 
only diagnostics (Table 4). It also summarizes SDC-
targeting therapeutic modalities (Figure 3; Table 5) and 
the progress in clinical trials related to the SDC pathway 
(Table 6).

Synstatin is a short peptide that mimics the 
sequence of the SDC1 extracellular domain [139, 140]. 
This peptide antagonizes the SDC1 extracellular domain, 
which is responsible for capturing and activating αvβ3 

Figure 2: Model for putative roles of sdc1 in Hodgkin’s lymphoma. A. SDC1 facilitates autocrine interaction between growth 
factors and their cognate receptors and enhances mitogenic signaling in Hodgkin-Reed-Sternberg (HRS) cancer cells b. Shed SDC1 
(sSDC1) binds to growth factor VEGF and bFGF complexes with VEGFR and FGFRs in endothelial cells and promotes angiogenesis c. 
Shed SDC1 (sSDC1) binds to growth factors to interact with cognate receptors on another HRS cell (paracrine effect).
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or αvβ5 integrins and the insulin-like growth factor-I 
(IGF-I) receptor (Figure 3). Synstatin competitively 
displaces the integrin and IGF-I receptor kinase from 
SDC1 and inactivates the complex, which makes it a 
promising anti-angiogenic agent [139, 140]. BT062 
(Indatuximab Ravtansine) is an antibody-drug conjugate 
that is comprised of the anti-SDC1 chimerized monoclonal 
antibody and the cytotoxic agent DM4. Once bound 
to SDC1 on the cell, the conjugate is internalized and 
releases DM4, which consequently leads to cell death. 

A study was conducted to evaluate the effect of BT062 
on multiple myeloma patients heavily pretreated with 
revelimid, thalidomide, velcade, or carlfilzomid [141, 
142]. BT062 was well-tolerated in patients and 4% 
achieved partial response, 8% had a minor response, 
while 38% showed stable disease [141]. B-B4 is a 
monoclonal IgG1 antibody conjugated to cytotoxic drugs 
or radioactive isotopes. A phase I/II radioimmunotherapy 
study using B-B4 conjugated to iodine-131 was conducted 
in refractory multiple myeloma patients [143] and 

table 4: In vitro diagnostics (IVd) and research use only (ruo) detection methods for sdc1.

table 5: Agents targeting sdc1 in cancer.
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table 6: clinical trials related to the sdc1 pathway.

Figure 3: General mechanisms of action of sdc1 pathway inhibitors are depicted. 
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significantly improved clinical outcome than the control 
group, suggesting that targeted radioimmunotherapy is 
feasible using an anti-SDC1 monoclonal antibody [143].

OC-46F2 is a fully human recombinant that 
specifically recognizes the SDC1 ectodomain (Figure 3) 
[144]. OC-46F2 was found to inhibit SDC1 distribution 
in the tumor milieu, thus preventing vascular maturation 
and tumor growth in experimental human melanoma and 
ovarian carcinoma models [144]. GLVGLIFAV is an 
SDC1-specific peptide that is recognized by cytotoxic 
T lymphocytes generated ex vivo using an HLA-A2-
specific SDC1 epitope against multiple myeloma cells 
[145]. The GLVGLIFAV peptide induces antigen-specific 
cytotoxic T lymphocytes, which might be useful for the 
treatment of multiple myeloma patients with peptide-
based vaccines or cellular immunotherapy strategies 
[145]. Membrane type 1 metalloprotease (MT1-MMP) 
is a transmembrane metalloprotease that stimulates 
the shedding of several proteoglycans, such as SDC1. 
NSC 405020 is a small molecule inhibitor that inhibits 
MT1-MMP homodimerization, thus blocking its pro-
tumorigenic activity in vivo [146]. BB-94 (Batimastat) 
is a potent, broad spectrum small molecule inhibitor of 
MMP [147]. Treatment of cells with BB-94 suppressed 
SDC1 shedding and induced accumulation of SDC1 on the 
cell surface [148]. On patients with cytologically positive 
malignant pleural effusions in Phase I study of intrapleural 
BB-94, BB-94 peaked after 4 h, and remained in plasma 
for up to 12 weeks, indicating that the intrapleural BB-94 
was well tolerated, with evidence of local efficacy [149]. 

PI-88 is a polysaccharide compound with anti-
heparanase activity (Figure 3) [52]. In a phase II study in 
hepatocellular carcinoma (HCC) patients, PI-88 treatment 
was administered over nine, 4-week treatment cycles, 
followed by a 12-week treatment-free period. PI-88 at 160 
mg/day was tolerable and effective as an adjunct therapy 
for post-surgery HCC [150]. In another phase I study 
in patients with advanced solid tumors, the compound 
was found to be well-tolerated when administered for 4 
consecutive days bimonthly or weekly at the recommended 
dose of 250 mg/day [151]. One melanoma patient had 
a partial response, and nine patients maintained a stable 
disease state for more than six months [151]. M402 is 
another modified heparin compound similar to SST0001, 
a chemically modified heparin to inhibit myeloma growth 
[152]. PG545 is a fully sulfated, synthetic tetrasaccharide 
that exerts anti-heparanase activity and has shown 
promising results against many cancer cells[152]. In 
ovarian cancer cells, PG545 showed synergistic inhibition 
of growth and migration in combination with paclitaxel 
and cisplatin [152]. M402 is smaller than SST0001 and 
has broader activity in binding to growth factors. M402 
was found to be an effective anticancer agent in different 
cancer models [152]. M402 inhibits stromal activation and 
reduces tumor size in nude mice with human pancreatic 
cancer cells [153] . An ongoing Phase I/II study evaluating 

the safety and tolerability of M402 is currently being 
conducted in patients with metastatic pancreatic cancer 
[153]. SST0001 is a modified heparin with anti-heparanase 
activity that inhibits cancer cell growth and metastasis 
[154]. Results of in vivo studies showed that SST0001 
effectively inhibited myeloma growth and diminished 
heparanase-induced shedding of SDC1 [154]. 

All-trans retinoic acid, an active metabolite of 
retinal, has been shown to exert anticancer activity against 
different cancer cells. It has been reported that benzo(α)
pyrene induces accumulation of shed SDC1 in lung cancer 
[155]. One study examined the level of SDC1 expression 
and the chemopreventive effect of all-trans retinoic acid in 
a benzo(α)pyrene-induced lung cancer model in BALB/c 
mice. The results indicated that all-trans retinoic acid 
inhibited lung tumor development and reduced SDC1 
expression in cancer cells [155]. It has been reported that 
bFGF/FGF2 induces shedding of SDC1 in cancer cells 
[156]. Pentraxin-3 is a bFGF antagonist that binds to bFGF 
with high affinity and prevents the binding of bFGF to its 
receptor [157]. Therefore, pentraxin-3 may be of value to 
inhibit SDC1 shedding induced by bFGF (Figure 3) [156]. 

Nimesulide is a cyclooxygenase-2 selective, 
non-steroidal anti-inflammatory drug [158]. Paul and 
colleagues reported that nimesulide treatment caused cell 
cycle arrest in primary effusion lymphoma cell lines, and 
this effect was accompanied by downregulation of SDC1 
[159]. Zoledronic acid (Zometa®) is a third-generation 
bisphosphonate that inhibits SDC1 expression in cancer 
cells in a dose-dependent manner [160]. Moreover, 
zoledronic acid effectively inhibited growth, migration, 
and adhesion of human breast cancer cells, which was 
accompanied by downregulation of SDC1 and -2 [161]. 
Moreover, imatinib (Gleevec®) is a tyrosine kinase 
inhibitor of PDGF receptor, c-Kit, and Bcr-Abl. It exerts a 
significant inhibitory effect on the expression of SDC2 and 
SDC4 in cancer cells, which leads to suppression of cell 
growth ability, migration, and invasion (Figure 3) [162]. 
More recently, a clinical trial was conducted to evaluate 
the safety and efficacy of autologous T cells expressing 
an anti-CD138 chimeric antigen receptor (CART138) in 
patients with relapsed or refractory multiple myeloma 
[163] and results showed that CART-138 immunotherapy 
was well-tolerated with significant clinical benefits in 
multiple myeloma patients [163]. 

concLusIons

SDC1 is a cell surface adhesion molecule that is 
essential for maintaining cell morphology and interactions 
with the microenvironment. SDC1 exerts specific 
functional roles by acting as a coreceptor, thus potentiating 
binding between growth factors and their membrane 
receptors. Proteolytic activity releases the extracellular 
ectodomain of SDC1, which harbors both the HS and 
CS chains, thus resulting in soluble/shed SDC1. Soluble 
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SDC1 facilitates binding between growth factors and 
their receptors, or functions as a decoy receptor in other 
circumstances. SDC1 can be found in the cytoplasmic 
compartment as well as the nuclear compartment of cells. 
Nuclear SDC1 can activate gene transcription and result in 
distinct physiologic activities. In cancer, growing evidence 
indicates that deregulation of SDC1 contributes to the 
development and progression of different tumor types. 
The value of SDC1 as a prognostic marker for specific 
cancer types has been extensively evaluated in solid and 
hematological cancers. In addition, multiple reports have 
examined the prognostic impact of the cellular localization 
of SDC1. However, based on the data to date, it is difficult 
to directly correlate the levels of SDC1 expression with 
tumor characteristics and prognostic significance for all 
cancers in general and formulate personalized clinical 
treatment approaches. However, the concept of precision 
medicine can be implicated for specific cancer types, since 
higher or lower SDC1 expression is directly associated 
with more aggressive tumors and decreased patient 
survival in some cases. Such profiling may be useful 
for patient selection at the time of diagnosis or perhaps 
for relapsing patients. In addition, SDC1 expression is 
associated with a weaker response to chemotherapy for 
numerous solid tumors, including breast, colorectal, 
and prostate cancers. Therefore, appropriately targeting 
SDC1 in selected cancers may guide precision therapeutic 
options. The reciprocal expression signature of SDC1 
whereby expression is reduced in tumor epithelium and 
increased in tumor stroma has been evaluated in multiple 
studies, and recent reports suggest that SDC1 plays a 
functional role in cancer-activated stromal components 
as well as in tumor progression in selected cancer types. 
Interestingly, most studies have shown distinct cellular 
expression patterns for SDC1, in which membranous and 
cytoplasmic expression profiles were different in tumor 
samples compared to control samples from different 
types of cancers. Therefore, it can be concluded that 
total expression levels as well as the cellular distribution 
of SDC1 should be evaluated together for the most 
informative prognostic tools. Evaluation of urinary 
levels of SDC1 in urinary bladder tumors may also be 
considered during the assessment of tumor severity. The 
value of circulating levels of SDC1 was not consistently 
associated with tumor grade or characteristics, but the 
combination of SDC1 and bFGF/FGF2 in patient serum 
has a strong association with tumor progression and 
prognosis in selected cancer types. In multiple myeloma, 
soluble SDC1 levels were found to be directly associated 
with the progression of disease, and therefore this 
association should be evaluated in other cancers as well. 
Multiple clinical trials are currently evaluating the safety 
and efficacy of pharmacologically targeting SDC1 in 
different types of cancer. Collectively, SDC1 represents 
an attractive molecular target for further evaluation 
in personalized cancer treatment. The identification 

and clinical validation of SDC1 as a new diagnostic 
and predictive biomarker will enable individualized 
therapeutic management for poor outcome cancer patients 
who are refractory to therapy or under high risk of relapse. 
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