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ABSTRACT

Cisplatin-DNA adducts act as strong decoys for the Upstream Binding Factor 
UBF (UBTF) and have been shown to inhibit transcription of the ribosomal RNA 
genes by RNA polymerase I. However, it is unclear if this plays a significant role in 
the chemotherapeutic activity of cis- or carboplatin. We find that cisplatin in fact 
induces a very rapid displacement of UBF from the ribosomal RNA genes and strong 
inhibition of ribosomal RNA synthesis, consistent with this being an important factor 
in its cytotoxicity. Using conditional gene deletion, we recently showed that UBF is 
an essential factor for transcription of the ribosomal RNA genes and for ribosome 
biogenesis. We now show that loss of UBF arrests cell proliferation and induces fully 
penetrant, rapid and synchronous apoptosis, as well as nuclear disruption and cell 
death, specifically in cells subjected to oncogenic stress. Apoptosis is not affected by 
homozygous deletion of the p53 gene and occurs equally in cells transformed by SV40 
T antigens, by Myc or by a combination of Ras & Myc oncogenes. The data strongly 
argue that inhibition of UBF function is a major factor in the cytotoxicity of cisplatin. 
Hence, drug targeting of UBF may be a preferable approach to the use of the highly 
toxic platins in cancer therapy.

INTRODUCTION

The commonly used chemotherapeutic drugs 
cisplatin and carboplatin are generally considered to 
exert their cytotoxicity by inducing DNA damage. 
These drugs interact with DNA to form intra- and inter-
strand crosslinks, which must be repaired for the cell 
to proliferate [1]. Hence, cells that grow more rapidly 
or are limited in their capacity to repair DNA should 
disproportionately suffer cell death, which often occurs 
by apoptosis. Consequently, growth factor driven tumour 
growth and deficits in the ability to rapidly repair DNA 
both enhance the ability of cisplatin to induce cell death 
[1–5]. DNA-platin adducts are also aberrantly bound by 

a range of nuclear proteins, and this in general enhances 
cell death by delaying their repair [6, 7]. Important 
among these nuclear proteins are members of the High 
Mobility A and B families (HMGA and HMGB), which 
display elevated affinities for the bent DNA structure of 
the platin adducts via their HMGA-box and HMGB-box 
DNA binding domains [8–10]. Upstream Binding Factor 
(UBF) is an abundant multi-HMGB-box transcription 
factor that defines the active state of ribosomal RNA 
(rRNA) gene chromatin by replacing the core histones and 
is essential for transcription of these genes [11–13]. It has 
long been known that UBF has a particularly high affinity 
for cisplatin-DNA adducts, which may act as molecular 
decoys to attract this factor away from the rRNA genes 
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and in so doing suppress their transcription [14–19]. Since 
transcription of the rRNA genes is the central event in the 
assembly of ribosomes, the protein factories of the cell, 
their activity is essential for cell growth and proliferation. 
The ability of cisplatin adducts to act as decoys for UBF 
binding could, therefore, enhance the drugs cytotoxicity 
either by inhibiting DNA repair, by inhibiting ribosome 
assembly, or both.

The rRNA genes are transcribed by RNA polymerase 
I (RPI/PolI), which is dedicated to this task. UBF is an 
HMGB-box DNA binding protein and one of the two 
essential RPI basal transcription factors [11, 20–23]. 
UBF is generally thought to mediate binding of the pre-
initiation factor SL1/TIF1B and pre-initiation complex 
(PIC) assembly at the rRNA gene promoter. But UBF also 
forms a nucleosome-like structure that replaces histone 
chromatin throughout the transcribed regions of the rRNA 
genes and is able to regulate RPI transcription elongation 
in response to growth factor signalling [11, 24–28].

Ribosomal biogenesis is the process by which 
ribosomal RNA (rRNA) is transcribed, processed and 
assembled with the ribosomal proteins to create ribosomes 
[21, 29]. This energy consuming process is accomplished 
in the nucleolus and requires the action of the three RNA 
polymerases along with more than 200 different proteins 
and several hundred snoRNP complexes. Regulation of 
ribosome synthesis constitutes a major determinant of the 
increased protein synthesis needed for cell proliferation 
and, as such, its up-regulation occurs in many cancers 
[30, 31]. An increased nucleolar volume reflects this 
increased ribosome synthesis, and is therefore a biomarker 
of cancer that was recognized already 80 years ago 
[32–34]. In fact, rRNA transcription is a common and 
probably an essential target of many oncogenes (Myc 
[35, 36], SV40-T antigen [37, 38] and the Ras and mTOR 
signalling pathways [39–43]), and tumour suppressors 
(p53 [44], ARF [45–47], Rb [48, 49] and PTEN [50]).

Ribosomal biogenesis is such a central process in 
cell growth that it is also under the direct surveillance of 
the p53 pathway [51]. Defects in rRNA gene transcription 
[52], rRNA processing [53] or ribosome assembly [54] 
all cause p53 stabilization and arrest of cell proliferation. 
These findings have led to the investigation of small 
molecule inhibitors of ribosomal transcription as potential 
chemotherapeutic agents. Inhibition of the RPI pre-
initiation factor SL1/TIF1B [55] or induced proteasome 
degradation of the RPI large subunit [56] both lead to 
arrest of rRNA synthesis and mediate cell death dependent 
on p53 function. However, the key to successful cancer 
therapy remains the selective targeting of cancer cells, 
and since p53 is often inactivated in human cancers, 
therapies that depend on functional p53 have limited 
application. Our data now suggest that inhibition the RPI 
basal transcription factor UBF (Upstream Binding Factor) 
represents a particularly valuable p53-independent target 
for cancer therapy.

Here we show that displacement of UBF and 
ablation of rRNA synthesis are very early effects of 
cisplatin treatment, and that in the absence of cisplatin, 
elimination of UBF protein is sufficient to induce fully 
penetrant apoptotic cell death. Using cell cultures 
conditional for UBF expression, we find that complete 
loss of ribosome biogenesis induces synchronous and 
fully penetrant, p53-independent cell death by apoptosis 
specifically in cells transformed by known oncogenes. 
The data argue that a major factor in the cytotoxicity of 
cisplatin and similar drugs is their ability to inhibit the 
function of UBF. This suggests that UBF itself represents 
a preferred target for anticancer drug development.

RESULTS

Previous data has clearly indicated that cisplatin 
treatment of human cells leads to a partial or full 
displacement of human UBF and inhibition of rRNA 
synthesis [14, 15, 17, 18]. However, to what extent this 
plays a role in the selective cytotoxicity of cisplatin is not 
known. When the Mouse Embryonic Fibroblast (MEF) 
derived cell line NIH3T3 was treated for 4 h with 30 μM 
cisplatin, a concentration calculated to be equivalent to 
the dose commonly used in therapy (e.g see [57, 58]), 
a large proportion of endogenous UBF was displaced 
from nucleoli and scattered throughout the nucleus at a 
large number of foci (Figure S1). These foci were devoid 
of the other nucleolar proteins fibrillarin and RPI (data 
not shown), which remained together in dense nuclear 
bodies somewhat similar to the nucleolar precursor bodies 
forming on conditional deletion of the Ubf gene [11].

Cisplatin displaces UBF from the mouse rRNA 
genes and arrests their transcription

To better understand the effect of cisplatin, 
we repeated and extended these studies using the 
independently isolated, iMEF cell line (Ubf wt/wt/Er-cre+/+/
SvT) previously characterized by Hamdane et al. [11]. 
Already after 4 h exposure of these cells to 30 uM cisplatin, 
UBF was seen to coalesce from its normal specular 
distribution within nucleoli into more intense foci, while 
fibrillarin showed some degree of coalescence but was less 
affected (Figure 1). When these cells were cultured for 
a further ~18 h in the absence of cisplatin, the UBF foci 
became more intense and UBF, but not fibrillarin, formed 
foci throughout the nucleus. The timing of the changes in 
UBF delocalization corresponded closely with changes 
in the interaction of UBF with the rRNA genes and with 
the transcription of these genes (Figure 2). After 4 h of 
cisplatin treatment a mean reduction in UBF binding of 
80% was observed across the 47S precursor rRNA coding 
region, and this corresponded with an 80% reduction in 
rRNA synthesis (Figure 2B and 2C). (Due to its 5′ position 
in the 47S precursor, 18S rRNA synthesis was slightly less 
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affected at 4 h than the 28S rRNA, but nevertheless was 
reduced by over 60% after 4 h cisplatin exposure, data 
not shown). 22 h after cisplatin exposure rRNA synthesis 
was no longer detectable. The effects of cisplatin on the 
activity of the rRNA genes also corresponded to an arrest 
of cell proliferation, no increase in the viable cells count 
being detected after the 4 h cisplatin treatment, and to a 
subsequent loss of viability (Figure 2D). These data suggest 
that the timeline of cisplatin cytotoxicity is consistent with 
its effects being mediated at least in part by disruption of 
UBF function, and the arrest of rRNA gene transcription 
and, hence, of ribosome biogenesis. Since cisplatin is a key 
chemotherapeutic agent that acts by inducing apoptotic cell 
death somewhat selectively in transformed cells (e.g. [3]), 
we sought to determine whether or not this activity could 
also be explained by the inhibition of UBF function.

UBF loss disrupts nucleolar functions in both 
primary and transformed MEFs

We previously generated mice conditional for the 
Ubf gene and demonstrated that loss of this gene arrested 
mouse development at the morula stage [11]. SV40Tt 
immortalized Mouse Embryonic Fibroblasts or iMEFs 
(Ubf fl/fl/Er-cre+/+/SvT) generated from these mice allowed 
us to show that UBF was essential for transcription of 
the rRNA genes and for the existence of a functional 
nucleolus [11]. Not surprisingly, despite their limited 
proliferation potential, primary MEFs derived from these 
mice also require UBF for rRNA synthesis and for the 
maintenance of nucleoli (Figure S2). Thus, UBF loss in 
primary MEFs recapitulated the effects observed in the 
transformed iMEFs.

Figure 1: Cisplatin treatment of Ubfwt/wt/Er-cre+/+/SvT iMEFs induces displacement of UBF from the nucleolus. 
iMEFs were treated with 30 μM cisplatin for 4 h in full medium or left untreated (0), then either fixed immediately or cultured in fresh 
medium lacking cisplatin overnight (22 h) as indicated in the timeline before fixing. The fixed samples were then subjected to indirect 
immunofluorescence analysis of UBF (green), fibrillarin (red) and DNA stained with DAPI (blue).
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Figure 2: Cisplatin coordinately displaces UBF from the rRNA genes and arrests their transcription. A. Timeline of 
cisplatin treatment and culture of Ubf wt/wt/Er-cre+/+/SvT iMEFs. B. ChIP analyses of UBF occupancy across the rRNA gene 47S transcribed 
region. The positions of amplicons is indicated above the histogram showing the UBF occupancy normalized to that in the mock treated 
cells. C. Synthesis rate of rRNA determined by [3H]-uridine metabolic labelling of mock treated cells and at the indicated times post 
cisplatin treatment. The upper panel displays a fluorogram of [3H]-rRNA, the central panel the corresponding EtBr stained total 18S 
rRNA, and the lower panel quantitation of [3H] incorporation into 47S rRNA performed in triplicate. D. Live cell counts at indicated times 
following cisplatin treatment performed in triplicate. 
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Transformed iMEFs, but not primary MEFs, 
undergo synchronous apoptosis following Ubf 
inactivation

Despite the apparently identical responses of the 
primary MEFs and the iMEFs to UBF loss, it became 
obvious from observing these cultures that the two 
cell types behaved very differently macroscopically. 
Inactivation of rRNA gene transcription in the Ubf f l/f l/
Er-cre+/+/SvT iMEFs induced changes in cell morphology 
soon after complete UBF depletion and the shutdown 
of rRNA synthesis. iMEFs became highly elongated 
and this presaged cell death as determined by plasma 
membrane failure (trypan blue), mitochondrial membrane 
depolarization (MitoTracker) and loss of clonal viability 
(Figure S3A to S3D). Control Ubf wt/wt/Er-cre+/+/SvT iMEFs 
suffered none of these effects, clearly demonstrating 
that cell death was exclusively the result of inactivation 
of the Ubf gene. Interestingly, we detected no selective 
reduction of total cellular RNA in the Ubf f l/f l/Er-cre+/+/SvT 
iMEFs relative to their wild type counterparts during UBF 
depletion that might suggest a role of ribosome depletion 
in the selective induction of apoptosis (data not shown). In 
contrast to the behavior of the Ubf f l/f l/Er-cre+/+/SvT iMEFs, 
the primary Ubf f l/f l/Er-cre+/+ MEFs showed no evidence 
of major morphological changes and survived in culture 
for many days following complete UBF loss, maintaining 
plasma membrane integrity and mitochondrial function 
(Figure S3A to S3C).

To better understand the different responses of the 
transformed iMEFs and primary MEFs to UBF loss, we 
analyzed them for typical markers of cell death. TUNEL 
(terminal deoxynucleotidyl transferase-mediated dUTP 
nick end-labeling) analysis detects the single strand 
DNA cleavage that is characteristic of the early stages of 
apoptotic cell death. Ubf f l/f l/Er-cre+/+/SvT iMEFs became 
TUNEL positive at 96 h pHT, just 24 h after complete 
shutdown of rRNA synthesis, while the control Ubf wt/wt/ 
Er-cre+/+/SvT iMEFs remained TUNEL-negative throughout 
(Figure 3A). The TUNEL signal was fully penetrant and 
occurred synchronously, Ubf f l/f l/Er-cre+/+/SvT iMEFs  
being TUNEL-negative at 72 h pHT but all becoming 
TUNEL-positive at 96 h pHT. In contrast, the Ubf f l/f l/ 
Er-cre+/+ primary MEFs remained TUNEL-negative at least 
until 144 h pHT, (Figure 3B and data not shown).

Concomitant with the onset of TUNEL-positive 
apoptosis, the Ubf f l/f l/Er-cre+/+/SvT iMEFs were also found 
to activate Caspase 3 from 96 h pHT, as determined by 
the release of the 17kD peptide (p17) cleavage product 
(Figure 4A). In contrast, the control Ubf wt1wt/Er-cre+/+/SvT 
iMEFs displayed no significant cleavage of Caspase 3, 
consistent with the lack of a TUNEL signal. Further, 
Caspase 3 was not significantly activated in the primary 
MEFs (Figure 4B). Though a certain level of cleavage was 
detected in both Ubf f l/f l and Ubf wt/wt MEFs, this was much 
weaker than observed in the Ubf f l/f l/Er-cre+/+/SvT iMEFs 

as can be seen by comparison with Staurosporin-treated 
iMEFs.

Interestingly, unlike the deletion of UBF, deletion 
of the essential RPI initiation factor TIF1A/Rrn3 did not 
induce apoptosis in SV40Tt transformed MEFs. 4-HT 
treatment of TIF1Afl/fl/Er-cre+/+/SvT:MEFs resulted in 
complete depletion of TIF1A by 48 h pHT, as observed for 
UBF, but did not lead to activation of Caspase 3, nor to a 
TUNEL signal (Figure S4A and S4B). Thus, the induction 
of apoptosis in the SV40Tt transformed cells was not a 
general property of the arrest of rRNA gene transcription, 
suggesting it is specific to UBF depletion.

Given that the iMEFs were initially immortalized 
by the SV40 Tt oncogene (Sv-T), known to inactivate 
p53 [59, 60], it was not surprising to find the p53 levels 
in these cells were constitutively elevated and were not 
further induced by inactivation of the Ubf gene or by 
treatment with Staurosporin (Figure 4A). Thus, it was 
unclear whether or not p53 played a role in the apoptotic 
response in these cells. This question is directly addressed 
below using homozygous inactivation of the p53 gene. 
However, it should be noted that inactivation of the Ubf 
gene in the primary MEFs did not enhance the levels of 
p53 protein, which remained extremely low throughout 
(Figure 4B).

Apoptosis is accompanied by the generation of a 
“nucleosomal ladder” of DNA cleavage

Apoptosis is often accompanied by inter-
nucleosomal cleavage of genomic DNA to generate 
a “nucleosomal ladder” [61, 62], due to the result of 
the release of the nuclease EndoG from mitochondria 
[63, 64]. Beginning at or before 120 h pHT we observed 
this characteristic nucleosomal fragmentation of genomic 
DNA in the apoptotic Ubf f l/f l/Er-cre+/+/SvT but not in the 
control Ubf wt/wt/Er-cre+/+/SvT iMEFs (Figure 4C), nor 
in the corresponding primary MEFs (data not shown). 
Thus, three distinct markers; TUNEL signal, Caspase 3 
cleavage and a nucleosomal ladder, indicated that on UBF 
loss MEFs underwent classic apoptotic cell death after 
oncogenic transformation with SV40-T, while UBF loss 
in untransformed MEFs induced none of these markers.

UBF loss blocks proliferation and DNA 
replication, causing cell cycle arrest

To better understand the mechanisms leading to 
apoptosis in the transformed iMEFs, we determined the 
effects of Ubf inactivation on cell cycle progression and 
cell division. Before tamoxifen treatment, the Ubf f l/f l/
Er-cre+/+/SvT iMEFs displayed a large (~50%) actively 
replicating S-phase population (Figure 5A). Their 
proliferation was near completely arrested by 48 pHT, 
corresponding with the elimination of UBF protein and 
with the near complete shutdown of rRNA synthesis 
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Figure 3: UBF loss induces synchronous apoptotic cell death selectively in oncogenically transformed iMEFs.  
A. Ubf f l/f l/Er-cre+/+/Sv-T and Ubf wt/wt/Er-cre+/+/Sv-T iMEFs and B. Ubf f l/f l/Er-cre+/+ and Ubf wt/wt/Er-cre+/+ primary MEFs were subjected to a 
TUNEL reaction immediately before, and at several time points after, treatment with 4-HT. In both cases, recombination and UBF protein 
levels were assayed in parallel and closely followed those shown in Figure S2B and S2C.
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(e.g. see Figure S2C to S2E and [11]). By 72 h pHT, 
iMEFs had also stopped active DNA replication and 
the G2 population abruptly increased at the expense of 
S-phase cells, while the fraction of G1/G0 cells remained 
constant (Figure 5A and S5A). Concomitantly, the mitotic 
index fell to zero as determined by the fraction of cells 
phosphorylated on serine 28 of histone H3 (H3-S28P) 
(Figure 5C and 5D and Figure S5B). Together these data 
suggested that many apparently G2 iMEFs were unable to 
complete their passage through mitosis. Parallel analysis 
of Ubfwt/wt/Er-cre+/+/SvT iMEFs post tamoxifen treatment 
revealed none of these effects, DNA replication and cell 
proliferation continuing essentially unabated (Figure 5A, 
5C & 5D and S5B).

The situation was somewhat different in the 
primary Ubf f l/f l/Er-cre+/+ and control Ubf wtlwt/Er-cre+/+ 
MEFs (Figure 5B). These cells proliferated more slowly 
than iMEFs, and only a small fraction (~20%) was ever 
actively engaged in DNA synthesis. Further, regardless of 
UBF status these cells gradually arrested DNA replication 
between 24 h and 48 h pHT and displayed a corresponding 
increase in G2 cells, that is up to 24 h earlier than for the 
UBF-null iMEFs. Thus, the primary MEFs underwent 
a natural slowing or arrest of proliferation regardless of 
UBF status, while proliferation arrest in the iMEFs was a 
direct result of the loss of UBF protein. This suggested that 
the catastrophic cell death observed in the iMEF cultures 
was related to their inability to assume a quiescent state. In 

Figure 4: UBF loss induces selective Caspase 3 cleavage in transformed iMEFs cells. A. Ubf f l/f l/Er-cre+/+/Sv-T and Ubf wt/wt/
Er-cre+/+/Sv-T iMEFs and B. Ubf f l/f l/Er-cre+/+ and Ubf wt/wt/Er-cre+/+ MEFs were assayed for activation (proteolytic cleavage) of Caspase 
3 immediately before and at time points after treatment with 4-HT. In B) “iMEF+Staurosporin” refers to the extract from iMEFs cells 
treated with 1 μM Staurosporin used in A, and allows a direct comparison of p17 and p53 levels in iMEFs with those in primary MEFs. 
C. Electrophoretic fractionation on 1.5% agarose of genomic DNA recovered from Ubf f l/f l/Er-cre+/+/Sv-T and Ubfwt/wt/Er-cre+/+/Sv-T iMEFs 
at different times post tamoxifen treatment (pHT). In A) to C), recombination and UBF protein levels were assayed in parallel with each 
analysis and closely followed those shown in Figure S2B and S2C.
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Figure 5: UBF loss arrests cell proliferation and leads to a cell cycle arrest. A. Ubf f l/f l/Er-cre+/+/Sv-T and Ubf wt/wt/Er-cre+/+/Sv-T 
iMEFs and B. the corresponding primary MEFs were analyzed for proliferation and cell cycle distribution at the indicated times post 4-HT 
treatment. The left-most graphics give cell counts relative to day 0 and include those for Ubf wt/wt/Er-cre+/+ MEFs cultured in the absence of 
4-HT (Mock), while to the right of these are shown the cell cycle distributions obtained from FACS analyses for active DNA replication 
(Click-iT® EdU) and G1 and G2 DNA content (propidium iodide, PI). C. shows examples of mitotic staining, and D. a derived graphic of the 
mitotic index for the Ubf f l/f l/Er-cre+/+/Sv-T and Ubf wt/wt/Er-cre+/+/Sv-T iMEFs as determined by the fraction of H3-S28phospho positive cells. 
In A to D, Ubf recombination and UBF protein levels were assayed in parallel and closely followed those shown in Figure S2B and S2C.
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contrast, MEFs naturally arrested proliferation and became 
quiescent regardless of UBF status or 4-HT treatment 
(Figure 5B), and hence this may have protected them from 
cell death on inactivation of the Ubf gene. Essentially then, 
UBF loss specifically targeted the SV40-Tt transformed 
cells for apoptotic cell death, and what is more the effect 
was fully penetrant. This suggests that inhibition of UBF 
or of ribosome biogenesis might represent an ideal target 
for the development of cancer specific cytotoxic drugs.

Apoptosis induced by UBF loss is p53 
independent

P53 is often required for the induction of apoptosis, 
hence its inactivation in many cancers represents a serious 
limitation to the efficacy of chemo- and radiation therapies 
[65–67]. The SV40 Tt oncogene is known to inactivate p53 
[59, 60], suggesting that apoptosis induced by UBF loss 
did not depend on functional p53. To directly evaluate the 
role of p53, we generated p53-null MEFs either wild type 
or conditional for UBF (Ubf f l/f l/Er-cre+/+/p53−/−) (Figures 
6 and S6A) and found that they were immortalized and 
hence could be passaged indefinitely. Despite this, they 
did not undergo apoptotic cell death on inactivation of 
the Ubf gene, and displayed neither a TUNEL signal nor 
Caspase 3 cleavage (Figure 6A and 6B). In contrast, after 
transformation with the SV40 Tt-antigens (SV40-T), the 
resulting p53-null (Ubf f l/f l/Er-cre+/+/p53−/−/Sv-T) iMEFs 
underwent synchronous and homogeneous TUNEL 
positive apoptosis two days after loss of UBF, exactly as 
observed for the p53 positive iMEFs (Figure 6C). Thus, 
even in the complete absence of p53 the loss of UBF was 
sufficient to induce apoptosis in the SV40-Tt transformed 
iMEFs. However, in this case no cleavage/activation of 
Caspase 3 was detected (Figure 6D).

p53-independent apoptosis is a general response 
to UBF loss in oncogene stressed cells

It was striking that UBF loss induced fully penetrant 
apoptosis in SV40-Tt transformed MEFs even in the 
complete absence p53. To determine if this effect was 
specific to the SV40-Tt oncogene or occurred under other 
oncogenic stresses, we investigated UBF-loss in MEFs 
transformed by the Ras and Myc oncogenes, commonly 
correlated with human cancers [68]. Ubf f l/f l/Er-cre+/+/
p53−/− MEFs were transformed by introduction of the Ras 
oncogene or a combination of the Ras and Myc oncogenes 
and the effects of inactivation of the Ubf gene were 
followed. In each case UBF was essentially eliminated by 
48 h pHT (Figure S6B) and we observed a synchronous 
and homogeneous onset of TUNEL-positive apoptosis 
48 h later, exactly as for SV40-Tt transformation (compare 
Figure 7A with 7B and 7C). Colony forming assays also 
showed that in each case cell death approached 100% 
(Figure S6D). In the case of SV40-Tt and combined Ras/
Myc transformation we also observed a “nucleosomal 

ladder” of apoptotic DNA cleavage starting at 96 h pHT, 
that is at or just after the appearance of the TUNEL signal 
(Figure S6C), though this cleavage was not detected in the 
cells transformed with Ras alone.

Oncogenic stress may induce apoptosis by 
aberrantly driving cells into S-phase

When the untransformed p53-null cells (Ubf f l/f l/ 
Er-cre+/+/p53−/−) were analyzed by FACS, we were 
surprised to find that, quite unlike the SV40-Tt transformed 
(Ubf f l/fl/Er-cre+/+/p53+/+/ Sv-T) iMEFs (Figure 5A), UBF 
depletion caused a significant accumulation of cells in G1 
at the expense of the actively replicating S-phase cells 
(Figure 8A). The G2 cell population displayed only a small 
increase and this anyhow closely resembled that observed 
for the control Ubf wt/wt/Er-cre+/+/p53−/− cells. In contrast, 
the Sv-T , Ras and Ras/Myc transformed Ubf f l/f l/Er-cre+/+/
p53−/− cells displayed the same G2 phase accumulation as 
seen for the p53-positive iMEFs (compare Figure 8B with 
5A). This suggested that transformation drives cells into 
and through S-phase regardless of their ability to generate 
a full complement of ribosomes. Such a situation would be 
likely to lead to gross replicative errors and hence could 
explain the highly penetrant apoptosis occurring in both 
the p53-positive and p53-null transformed MEFs, but not 
in the untransformed p53-null MEFs.

DISCUSSION

Our data suggest that the ability of cisplatin to 
cause the displacement of UBF from the nucleolus is a 
key mechanism by which this drug induces selective cell 
death, since the simple loss of UBF induces a rapid and 
highly penetrant apoptosis in oncogenically stressed cells. 
We have shown that conditional deletion of the Ubf gene 
induces apoptosis specifically in cells transformed by 
viral and cellular oncogenes. Apoptosis following UBF 
loss was observed not only in cells expressing SV40Tt, 
but also in cells expressing the oncogenes Ras and Myc. 
What is more, in each case apoptosis was found to be fully 
penetrant, all cells without exception underwent apoptotic 
cell death. Strikingly, the onset of apoptosis occurred 
synchronously in all cells two days following complete 
loss of UBF. Significantly, the induction of TUNEL-
positive cell death was completely independent of p53, 
since it occurred with the same timing and penetrance 
even after homozygous deletion of the p53 gene. In 
contrast, before oncogenic transformation primary cell 
cultures survived complete loss of UBF for many days 
after the transformed cells entered apoptosis and never 
underwent apoptosis.

These data strongly suggest that the commonly 
used chemotherapeutic drug Cisplatin, and by analogy, 
Carboplatin exert their cytotoxicity in large part by 
hijacking UBF, displacing it from the nucleolus and 
inhibiting ribosome biogenesis. In fact, inhibition of 
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Figure 6: Apoptosis of oncogenically transformed cells after Ubf gene inactivation is p53 independent. A. Ubf f l/f l/Er-cre+/+/
p53−/− and Ubfwt/wt/Er-cre+/+/p53−/− MEFs and C. Ubf f l/f l/Er-cre+/+/Sv-T/p53−/− and Ubf wt/wt/Er-cre+/+/Sv-T/p53−/− iMEFs were subjected to 
a TUNEL reaction and B. and D. assayed for activation (proteolytic cleavage) of Caspase 3 immediately before and at several time points 
after treatment with 4-HT. P53-null iMEFs (Ubf f l/f l/Er-cre+/+/Sv-T/p53−/−) displayed the same TUNEL positive cell death, but Caspase 3  
cleavage was not detected in these cells. In B) and D) “Ctrl” refers to an extract from iMEFs cells treated with 1 μM Staurosporin. 
Recombination of the Ubf gene and UBF protein levels were assayed in parallel and closely followed those shown in Figure S2B and S2C.
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ribosome biogenesis may be a more general property of 
the cytotoxic drugs used in chemotherapy than previously 
realized, including rapamycin analogs, 5-fluorouracyl 
and camptothecin [52, 69]. Azacytidine (Azacitidine, 
Vidaza) and deoxyazacytidine (Decitabine) are DNA 
methyltransferase inhibitors that have been shown to be 
active in treating myelodysplastic syndromes and acute 
myeloid leukemia (AML) [70–72]. The initial studies 

of azacytidine already showed that it strongly inhibits 
ribosome biogenesis, and almost certainly does so by 
preventing rRNA methylation [73, 74]. More recently, 
deoxyazacitidine was also shown to inhibit ribosome 
biogenesis by inhibiting rRNA processing, though the 
underlying mechanism of action is quite different and 
involves loss of rRNA gene silencing and aberrant RNA 
polymerase II transcription of these genes [13, 75]. 

Figure 7: p53 independent apoptosis is a general response to UBF loss in an oncogenic stress context. A. Ubf f l/f l/Er-cre+/+/
Sv-T/p53−/− and their counterpart B. Ubf f l/f l/Er-cre+/+/Ras/p53−/− and C. Ubf f l/f l/Er-cre+/+/Ras/Myc/p53−/− iMEFs cells were subjected to a 
TUNEL reaction immediately before and at several time points after treatment with 4-HT. All cells synchronously became TUNEL positive 
at 96 h post 4-HT, while neither effect was observed 24 h previously. Recombination of the Ubf gene and UBF protein levels were assayed 
in parallel and closely followed those shown in Figure S2B and S2C.
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Recent studies of small molecule inhibitors that target 
ribosome biogenesis have further shown this may be a very 
valid clinical approach to treating a range of cancers [55, 
56, 76, 77]. However, while cell death was independent 
of p53 in the case of the GC-rich DNA interacting drug 
BMH-21 [56], it was found to be dependent on a functional 
p53 in the case of CX-5461, which is believed to target the 
pre-initiation complex factor SL1 [55]. Our data showing 
TIF1A/Rrn3-loss does not induce apoptosis even in the 

presence of p53 clearly excludes the explanation that the 
cytotoxicity of these drugs is simply a function of their 
ability to suppress rRNA synthesis. Why then inhibition of 
UBF can induce apoptotic cell death with such penetrance 
and in the complete absence of p53 is for the still a matter 
of conjecture. However, it is amost certainly related to the 
role of UBF in forming a specialized chromatin structure 
on the active rRNA genes [11]. Loss of this structure 
would yield the rRNA gene arrays highly susceptible to 

Figure 8: Cell cycle distribution of p53-null cells during UBF depletion. A. Untransformed Ubffl/fl/Er-cre+/+/p53−/− and  
Ubfwt/wt/Er-cre+/+/p53−/− MEFs. B. The same p53-null MEFs after transformation with SV40Tt, Ras or Ras plus Myc oncogenes. The 
graphics show the cell cycle distributions obtained from FACS analyses for active DNA replication (Click-iT® EdU) and G1 and G2 DNA 
content (propidium iodide, PI).
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damage, and given the GC-richness of the rRNA genes 
the same could be argued for both cisplatin and BMH-21 
drugs.

The Nucleolar Organizer Regions (NORs) each 
encompass around 40 rRNA gene units on the short 
arms of the five human acrocentric chromosomes 
[78]. These loci are particularly susceptible to DNA 
breakage and are subject to high levels of inter- and 
intra-chromosomal recombination [79–81]. Indeed, 
Robertsonian translocations have long been known to 
predominantly involve exchanges between the short 
arms of human acrocentric chromatids that often create 
fusions with chromatids of a metacentric chromosome 
[82]. Recent data strongly suggests that these and similar 
chromosome translocations result from disruption of the 
active chromatin structure of the rRNA genes, which 
in turn affects chromosome pairing causing aberrant 
resolution of mitotic chiasmata and fusion between non-
homologous chromatids [83]. Loss of UBF clearly disrupts 
the chromatin structure of the rRNA genes, leaving them 
at least transiently as naked DNA, and would necessarily 
leave these genes highly susceptible to DNA damage and 
breakage. Since transformed iMEFs continue replication 
during UBF depletion, the disruption of rRNA gene 
chromatin would exacerbate the effects of DNA breakage, 
probably inhibit homologous repair processes and hence 
destabilize the genome. Indeed such destabilization has 
recently been observed as a result of siRNA knockdown 
of UBF [84].

MATERIALS AND METHODS

Isolation and cultures of MEFs and iMEFs

The generation of conditional Ubf f l/f lEr-cre+/+ 
and control mouse lines was previously described [11]. 
The p53-null allele was introduced by crossing to strain 
129-Trp53tm1Tyj/J (Jackson Laboratory Stock # 002080). 
Primary mouse embryonic fibroblasts (MEFs) from 
E14.5 Ubf f l/f l/Er-cre+/+ and isogenetic Ubf wt/wtEr-cre+/+ 
MEFs and corresponding p53−/− MEFs were prepared 
as previously described [11, 85]. Cells were cultured 
in Dulbecco’s modified Eagle medium (DMEM)-high 
glucose (Life Technologies), supplemented with 10% 
fetal bovine serum (Wisent) and Antibiotic/Antimycotic 
(Wisent). Where indicated, Cisplatin (Sandoz) was added 
to the cell culture medium from a 100 mM solution in 
DMSO to give a final concentration of 30 μM and cells 
incubated for 4 hr at 37°C. The culture medium was 
then replaced with medium without cisplatin and cells 
incubated for a further 16 h at 37°C, before processing 
for immunofluorescence as described below. MEFs were 
immortalized by the introduction of the SV40 Tt antigens 
by transfection with the pBSV0.3T/t, a modification of 
the pBSV-early vector [86] kindly provided by E. W. 

Khandjian. The Ras and Ras/Myc transformed MEFs 
were generated by transfection or co-transfection with the 
plasmids pWZL-Ras-hygro and pBabe-c-myc-puro (kind 
gifts from Gerardo Ferbeyre) into Ubf f l/f l/ Er-cre+/+/p53−/− 
MEFs and subsequent hygromycin or double hygromycin/
puromycin selection.

Inactivation of Ubf or Tif1a in cell culture, and 
analysis of genotype, RNA and proteins

As previously described [11], cells were initially 
plated in 6 cm petri dishes (0.8 × 106 cells each) and 
cultured for 18 hours in DMEM, high glucose, 10% fetal 
bovine serum. To activate ER-Cre, 4-hydroxytamoxifen 
(4-HT) was added to a final concentration of 50 nM, and 
after 4 hr incubation the medium replaced with fresh 
medium without 4-HT and cells harvested for analysis at 
various time points. In the case of Tif1a, cells were treated 
with 50 nM 4-HT, 0 h, then this treatment was repeated 
at 9 h, 24 h and 33 h later to ensure complete gene 
excision. Analyses of RNA, protein and genotype were 
systematically carried out on parallel cell cultures. Cells 
were genotyped by PCR before and after 4-HT treatment 
using the primers: A; 5′TGATCCCTCCCTTTCTGATG, 
B; 5′TGGGGATAGGCCTTAGAGAGA, C; 
5′CACGGGAAAACAAGGTCACT, (Figure S2B). 
Metabolic labelling of RNA was carried out just before 
cell harvesting by addition of 10 μCi [3H]-uridine 
(PerkinElmer) to the culture medium and incubation 
for a further 3 h. RNA was extracted with Trizol (Life 
Technologies) according to the manufacturer’s protocol 
and analyzed by gel electrophoresis, fluoroimaging 
(ENHance, PerkinElmer) and RNA species quantitated 
by scintillation counting as previously described [39, 40]. 
For total protein, cells were washed with cold PBS, 
scraped into PBS, centrifuged 30 s at 14 000 r.p.m., then 
resuspended in sodium dodecyl sulphate (SDS) loading 
buffer. After fractionation on 8%, 12% or 5–15% gradient 
SDS–polyacrylamide gel electrophoresis (SDS-PAGE 
[87]), cell extracts were analysed by standard Western 
blotting procedures.

Chromatin immunoprecipitations (ChIP)

ChIP was performed as previously described  
[11, 88]. The amplicon coordinates relative to the 47S 
rRNA initiation site (BK000964) were as follows: 47SPr,  
45133–40; ETS, 3078–3221; ITS1, 6258–6432; 28S, 
10215–10411; T1–3, 13412–13607.

Antibodies for western blot, immunofluorescence 
and ChIP

Rabbit antibodies against UBF, RPI large 
subunit (A194), TTF-1 and TIF1A were generated 
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in the laboratory. All other antibodies were obtained 
commercially; Anti-Caspase-3, -p53 and -H3S-28phospho 
(Cell Signalling), anti-Tubulin (Sigma) and anti-Fibrillarin 
(Covance).

Immunofluorescence

Cells were washed with PBS, fixed in 4% 
paraformaldehyde /PBS for 15 minutes and permeabilized 
with 0.5% Triton/PBS for 5 minutes. Incubation with 
primary antibody was performed for 1 h in PBS-5% BSA 
or 5% goat serum and cells were stained with AlexaFluor 
488/568 conjugated anti-rabbit or -mouse IgG (Molecular 
Probes) and counterstained with DAPI. After mounting 
in 50% glycerol/50% 0.2 M Na-glycine, 0.3 M NaCl, 
3D epifluorescent image stacks were generated on a 
Leica DMI6000B microscope equipped with a 63x or 
100x objective and an Orca C4742–80-12AG camera 
(Hamamatsu). Image stacks were then deconvoluted 
and analyzed using Volocity software (Perkin-Elmer 
Improvision). Alternatively, image stacks were generated 
on a Leica SP5-II confocal microscope equipped with a 
63x objective and running in standard scanning mode, 
and analyzed using Volocity software (Perkin-Elmer 
Improvision).

FACs analysis and determination of Mitotic 
Index

Cells were stained for ongoing DNA synthesis 
using the Click-iT® EdU Alexa Fluor® 647 Flow 
Cytometry Assay Kit (Life Technologies) following the 
manufacturer’s protocol and subsequently with propidium 
iodide (PI) immediately before analysis by the cytometry 
service of the CHU de Québec Research Centre using 
a FACSCanto II flow cytometer and FACSDiva 6.1.2 
software (Becton Dickinson). Parallel cultures were 
stained with anti-H3S-28phospho antibody and DAPI 
and imaged by epifluorescence on the Leica DMI6000B 
microscope using 20 and 40x objectives. The Mitotic 
Index was calculated as the ratio of H3S-28phospho-
positive to DAPI positive nuclei.

Tunnel assays

Tunnel assays were performed with a Click-It 
Tunnel assay kit, Alexa 488 Imaging System, (Life 
Technologies). Cells were seeded in 35 mM petri dishes, 
fixed and processed according to the manufacturer’s 
protocol and visualized by epifluorescence on the Leica 
DMI6000 B microscope using a 20x objective.

Colony formation assays

The SV40-T, Ras and Ras/Myc transformed Ubf f l/f l/
Er-cre+/+/p53−/− and the isogenic wild-type MEF cells 
cultured in 100 mm petri dishes were treated with 50 nM 

4-HT (Sigma) on day 0. The medium was changed after 
four hours to remove 4-HT, and on day 2 each culture 
was replated in duplicate at dilutions of 10 000, 50 000, 
100 000, and 200 000 cells per 60 mm petri. On day 6 
and day 12 petri dishes were fixed for 5 mins with 4% 
paraformaldehyde/PBS and stained with 0.05% crystal 
violet in distilled water (filtered) for 30 mins. Petri dishes 
were then washed 3 times with water and left inverted to 
dry before being photographed.

MitoTracker assays

Cells were plated in Ibidi 35 mm thin bottom petri 
dishes for subsequent live cell microscopy and treated 
for 4 h with 50 nM 4-HT (Sigma) and further cultured 
as standard for 96 h to induce UBF loss. Cells were 
then treated with 25 nM MitoTracker DeepRedTM (Life 
Technologies) for 20 mins at 37°C in DMEM minus 
serum. Petri dishes were washed once with DMEM 
minus serum and then incubated in FluoroBrite DMEM 
(Life Technologies). Finally, live image stacks were 
generated on the Leica SP5-II confocal microscope 
and analyzed using Volocity software (Perkin-Elmer 
Improvision).
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