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ABSTRACT

Metabolic reprogramming is a hallmark of cancer. Epithelial-mesenchymal 
transition (EMT) induces cancer stem cell (CSC) characteristics and promotes tumor 
invasiveness; however relatively little is known about the metabolic reprogramming 
in EMT. Here we show that breast epithelial cells undergo metabolic reprogramming 
following EMT. Relative to control, cell lines expressing EMT transcription 
factors show ≥1.5-fold accumulation of glutamine, glutamate, beta-alanine and 
glycylleucine as well as ≥1.5-fold reduction of phosphoenolpyruvate, urate, and 
deoxycarnitine. Moreover, these metabolic alterations were found to be predictive 
of overall survival (hazard ratio = 2.3 (95% confidence interval: 1.31–4.2), logrank 
p-value = 0.03) and define breast cancer molecular subtypes. EMT-associated 
metabolites are primarily composed of anapleurotic precursors, suggesting that 
cells undergoing EMT have a shift in energy production. In summary, we describe 
a unique panel of metabolites associated with EMT and demonstrate that these 
metabolites have the potential for predicting clinical and biological characteristics 
associated with patient survival.

INTRODUCTION

Metastasis is the leading cause of breast cancer 
related mortality. However, not all breast cancers have 
equal metastatic potential. One factor which contributes 
to metastatic potential is tumor invasiveness, which is 
promoted by the epithelial-mesenchymal transition (EMT). 
Normally, during processes such as embryo development 
and wound healing, EMT is activated to imbue epithelial 
cells with motile and invasive capabilities as well as loss of 
apico-basal polarity and intercellular adhesions [1]. In the 

context of cancer, EMT is considered a fundamental step 
in the initiation of the metastatic cascade. Additionally, 
this phenotypic switch of carcinoma cells has been 
associated with the acquisition of increased therapeutic 
resistance and cancer stem cell (CSC) properties [2–4]. 
Recent work has shown that EMT markers serve as an 
indicator of poor metastasis-free survival in some cancers 
[3], however recent evidence suggests EMT marker 
transcript levels may not be a good predictor of survival in 
breast cancer [5]. While considerable effort has focused on 
the initiating stimuli and transcriptional regulators driving 
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EMT, the precise physiological changes induced by EMT 
remain poorly understood [6, 7].

It is increasingly appreciated that metabolic 
reprogramming is a hallmark of cancer [8–10]. Rapidly 
dividing cells must adapt to support their increasing 
energetic and anabolic demands; an improved insight 
into these adaptations holds great promise for identifying 
new therapeutic targets for anti-cancer therapies. 
Numerous studies have demonstrated that oncogenes, 
tumor suppressors and signaling pathways are significant 
regulators of cellular metabolism [11]. Notable examples 
include the increase in glutaminolysis regulated by 
Myc, KRAS-mediated reprogramming of the pentose 
phosphate pathway, or VHL and hypoxic regulation of 
reductive carboxylation of glutamine [12–14]. Although 
EMT promotes a radical change in cellular phenotype, 
relatively little is known about how EMT affects cellular 
metabolism. Much of the research that has been done 
thus far has relied on genetic approaches to identify 
important metabolic determinants for promoting or 
maintaining the mesenchymal phenotype. This has 
led to fascinating discoveries on the requirement of 
reprogrammed gluconeogenic and nucleotide pathways to 
support the mesenchymal phenotype [15, 16]. However 
these approaches offer only a limited view of the systemic 
physiological changes taking place within tumors.

For more than a decade, gene expression profiling 
methods such as microarrays and RNA-seq have been used 
to generate clinically relevant gene signatures capable of 
predicting clinical outcomes in breast cancer patients. This 
has led to new insights into breast cancer heterogeneity 
and the underlying molecular differences between the 
breast cancer intrinsic molecular subtypes. However, while 
this technology has produced clinically-actionable tests 
to assess potential risk factors for disease progression, 
there is great potential to improve disease diagnostics 
with the integration of metabolomics alongside genomics 
and proteomics. Metabolomics has two major advantages 
over traditional gene expression profiling. First, gene 
expression profiling assesses mRNA abundance which is 
indicative of changes in transcription, which however may 
not be functionally relevant. In contrast, metabolomics 
measures metabolites which—as intermediates of a large 
network of metabolic reactions—can provide a direct 
readout of biochemical activity and phenotype. Thus there 
is significant interest in developing metabolite-based 
screening assays for clinical risk assessment in breast 
cancer.

Metabolism serves as a direct readout of cellular 
phenotype, and therefore the study of the altered 
metabolic pathways and metabolites associated with 
EMT will enhance our understanding of the global 
phenotypic changes underpinning this important 
physiological program [17]. In particular, alterations 
in certain metabolic networks may predispose 
carcinoma cells to the acquisition of EMT properties 

and aberrant stemness. Given the many advantages of a 
metabolomics-based approach, in this study, we sought 
to define a metabolic signature associated with the EMT 
phenotype and assess its prognostic value for predicting 
patient outcome.

RESULTS

To study the metabolic alterations associated with 
EMT, we utilized previously published cell line models 
in which ER-negative, immortalized human mammary 
epithelial cells (HMLE) ectopically express either the EMT-
inducing transcription factors Snail, Twist or Goosecoid 
(HMLESNAIL, HMLETWIST, HMLEGOOSECOID, respectively), 
or vector control (HMLEGFP) (Supplementary Figure 1) 
[2, 18, 19]. Annotative analysis of previously published 
gene expression data [20] comparing all three EMT-
induced lines (HMLESNAIL, HMLETWIST, HMLEGOOSECOID) to 
HMLEGFP revealed that 13% of the common differentially 
expressed transcripts (adjusted p-value < 0.001) consisted 
of metabolic enzymes and transporters (Figure 1A), 
which prompted us to investigate the metabolomic 
alterations associated with EMT. Targeted single reaction 
monitoring (SRM)-based mass spectrometry was used 
to measure the differential levels of metabolites between 
each EMT-induced cell line (HMLESNAIL, HMLETWIST, 
HMLEGOOSECOID) relative to HMLEGFP, with each group 
analyzed in biological triplicate. Extraction and analysis 
of metabolites from experimental cell lines included 
simultaneous measurement of process variation using 
defined pools of control samples and spiked internal 
standards. Mass spectral data were used to calculate 
differential metabolites in cells that have undergone 
EMT relative to epithelial controls. Subsequently, 
these differential metabolites — here referred to as the 
EMT metabolic signature (EMS) — were evaluated for 
prognostic potential with regards to overall survival, cancer 
aggression, and lymph node invasion using metabolomics 
data derived from a clinically annotated breast cancer 
patient cohort [21]. This method allowed us to define key 
metabolites and biochemical pathways associated with 
EMT and cancer progression (Supplementary Figure 2).

Metabolic alterations associated with EMT

To determine metabolic alterations associated with 
EMT, we performed LC-MS based targeted metabolomic 
analysis using lysates from control cells and cells that 
have undergone EMT. Prior to the analysis of the cell 
lines, matrix-free internal standards and liver pools were 
evaluated for their variability. The range of coefficient of 
variation (% CV) for log-transformed data of the internal 
standards in the liver pool was within 2% (Supplementary 
Figure 3). In total, 97 named metabolites (Supplementary 
Table 1, Supplementary Table 2) were measured across 
all cell lines using SRM (Supplementary Figure 4).  
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Although there were some common metabolic changes, 
mentioned in detail below, in general each EMT 
transcription factor generated a distinct metabolic signature 
(Figure 1B, 1C, 1D, and Supplementary Figures 5, 6, 7).

HMLESNAIL cells possessed a nearly 15-fold 
increase in the metabolite N-acetylaspartylglutamate, a 
metabolite typically associated with neuronal activity 
(Figure 1B). HMLESNAIL cells also showed a greater than 
3.5-fold increase in lactate, a product of the increased 
glycolytic flux typically associated with the Warburg 
Effect [8]. HMLESNAIL cells also showed distinct 
decreases in the levels of several metabolites including: 
a 3-fold decrease in pyroglutamate, a poorly studied 
product of glutamate metabolism; a 3.8-fold reduction 
in hippurate, an acylated glycine product; a 4.1-fold 
decrease in methylnicotinamide, a product of nicotinamide 
metabolism; a 9.4-fold reduction in N-acetylmethionine, 
the acetylated form of methionine; a 10-fold reduction in 
ornithine, a critical component of the urea cycle; and a 
140-fold decrease in xanthine, a purine base formed by the 
degradation of adenosine monophosphate.

HMLETWIST cells showed an interesting and unique 
pattern in the increased accumulation of metabolites 
associated with the nucleotide sugar pathway, including 
a 4.2-fold increase in the isomer glucose-6-phosphate/
fructose-6-phosphate, a 3-fold increase in UDP-glucose, 
and a 5.2-fold increase in UDP-glucuronate (Figure 1C). 
HMLETWIST cells also exhibited an 11.2-fold increase 
in cystathionine, a precursor to homocysteine, as 
well as a 5.2-fold increase in S-adenosylmethionine, 
a key metabolite in transmethylation reactions, and 
a 3.7-fold increase in citrate, a critical intermediate in 
the tricarboxylic acid cycle (TCA). HMLETWIST cells 
showed no uniquely decreased metabolites compared to 
the other cells that had undergone EMT or their epithelial 
counterparts.

HMLEGOOSECOID cells exhibited the most 
significantly elevated metabolites out of the three 
mesenchymal cell lines examined (Figure 1D). The 
distinctive HMLEGOOSECOID metabolites include: a 36-fold 
increase in 2-aminoadipate, a product of lysine degradation 
involved in cell signaling pathways, a 6.32-fold increase in 
lysine, an essential amino acid, a 4.1-fold increase 
in spermidine, an intermediate polyamine, a 3.6-fold 
increase in glucosamine-6-phosphate, an intermediate in 
de novo glucosamine synthesis, a 3.6-fold increase 
in glycylproline, the dipeptide product of collagen 
degradation, a 3.6-fold increase in methionine sulfoxide, 
a marker of oxidative stress, and a 3.2-fold increase in 
the glucose/fructose isomer, which feeds into glycolysis. 
HMLEGOOSECOID cells possessed few uniquely decreased 
metabolites; among them: a 3.4-fold decrease in reduced 
glutathione, an important antioxidant, a 4.2-fold loss of 
S-adenosylhomocysteine, the product of methylation 
reactions involving S-adenosylmethionine; and a 4.4-fold 

loss of cysteine, an amino acid able to undergo redox 
reactions.

Several metabolites were overlapping in at 
least two EMT-induced cell lines, but not all three 
(Figures 1E and 1F). HMLEGOOSECOID and HMLESNAIL 
cells both possessed elevated levels of the essential amino 
acids tyrosine and isoleucine as well as decreased levels 
of the metabolite N-acetylglucosamine-6-phosphate, an 
intermediate in the aminosugar pathway. HMLEGOOSECOID 
and HMLETWIST cells shared similar increases in the TCA 
intermediate malate as well as decreases in the purine 
guanosine monophosphate and the tryptophan degradation 
product kynurenine. HMLESNAIL and HMLETWIST cells 
showed similar trends in the TCA metabolite succinate 
and similar trends in the mitochondrial intermediates 
isobutyrylcarnitine and isovalerylcarnitine.

Among all three EMT-induced cells there were seven 
common metabolites which changed similarly relative to 
the control epithelial cells. These include a significant 
accumulation of glutamine and glutamate which comprise 
the substrate and product of glutaminolysis respectively, 
the pyrimidine degradation product beta-alanine and the 
dipeptide glycylleucine, as well as significant decreases 
in the glycolytic intermediate phosphoenolpyruvate, 
the purine degradation product urate, and the carnitine 
precursor deoxycarnitine. For the purpose of testing an 
EMT prognostic signature, attention was focused on the 
common metabolites which became significantly elevated 
following EMT induction (Figure 1E and 1F): beta-
alanine, glutamine, glutamate, and glycylleucine, referred 
to here as the EMS.

Integrative reactome analysis

To gain systemic insight into the metabolic 
pathways which are altered in the EMT-induced cell 
lines, we integrated our metabolomics data with 
previously published gene expression profiles for these 
same models [20]. In doing so, we gained the ability 
to visualize whole reactomes and put metabolomic 
alterations into context of changing metabolic genes 
(Supplementary Figure 8). While several interesting 
reactomes are visible, one notable reactome which caught 
our attention is the xanthine oxidation pathway. As stated 
previously, urate is one of the commonly decreased 
metabolites across all induced-EMT models relative to 
control. From the network analysis, it is also apparent 
that xanthine dehydrogenase (XDH), the enzyme which 
produces urate from xanthine, also has significantly 
decreased expression (adjusted p-value = 7.6E-6, log fold 
change = -2.1) in induced-EMT cells relative to control, 
thus suggesting this pathway is significantly less active in 
the induced-EMT phenotype. We anticipate this data will 
be useful for several future functional studies which go 
beyond the scope of this current study.
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Figure 1: A. Analysis of previously published gene expression data reveals 13% of all differentially expressed genes 
(FDR-adjusted p-value < 0.001) between all EMT-induced cell lines (HMLESnail, HMLETwist, HMLEGoosecoid) relative 
to control (HMLEGFP) map to metabolic enzymes and transporters and suggests EMT induces significant metabolic 
reprogramming. B–D. Individual heatmaps of significantly differential metabolites (p < 0.001) between control (HMLEGFP) and 
HMLESnail, HMLETwist, HMLEGoosecoid, respectively. (Here 4-HBA: 4-Hydroxybutanoic acid; SAM: S-Adenosyl methionine; GlcNAc-
6P: N-acetylglucosamine 6-phosphate; PEP: Phosphoenolpyruvate; GlcUA: Glucuronic acid; UDP-GlcUA: UDP glucuronic acid; 
NAAG: N-Acetylaspartylglutamate; GMP: Guanosine monophosphate; GlcN-6P: D-Glucosamine 6-phosphate; 5-CMP: 5(′)-cytidine 
monophosphate; SAH: S-Adenosyl-L-homocysteine; GlcNAc-6P: N-acetylglucosamine 6-phosphate; G6P/F6P: Glucose 6-phosphate/ 
Fructose 6-phosphate and MetO: Methionine sulfoxide.). E. Venn diagram of overlapping significantly elevated metabolites 
(fold change >1.5) in EMT models compared to control. F. Table of significantly elevated metabolites visualized in D).
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Stratification of breast tumors based on the EMS

To determine the prognostic value of the EMS, 
as well as each of the individual EMT-TF-associated 
metabolic profiles, we employed Principal Component 
Analysis (PCA) to first stratify tumor samples on the 
basis of signature metabolite abundances. Briefly, PCA 
is a multivariate statistical procedure which constructs 
linear (weighted) combinations of the variables, so that 
the resulting new variables capture a large percentage of 
the variance in the data set. In our application, PCA is 
applied to determine which EMS metabolites are highly 
variable among patient tumor samples. Multiplying the 
resultant PCs to the initial metabolite values for each 
sample derives component scores for each sample which 
can be plotted in two-dimensional space (Figure 2A) and, 
more importantly, be used to stratify tumors on the basis 
of the most varying metabolites. Using this methodology, 
patients were divided into Group 1 and Group 2, with 
Group 1 being defined as samples with PC scores ≥ 0 
(Figure 2A). Examination of the PCA loadings suggests 
that this stratification of these tumors is heavily driven by 
the levels of glutamate and beta-alanine (Figure 2A), while 
glutamine and glycylleucine do not appear to significantly 
contribute to the stratification.

We next examined differences in clinical 
parameters (e.g. survival, subtype, etc.) between the 
self-defined groups (see Methods). With respect to 
clinicopathological features, there is a strong correlation 
between tumor stratification according to the EMS and 
estrogen-receptor (ER) status (p = 0.002), with 82% of 
Group 1 consisting of ER-negative tumors (Figure 2B) 
and only 44% of Group 2 consisting of ER-negative 
tumors. Similarly, we found a significant difference in 
the distribution of PAM50 subtypes (p = 0.001), with 
82% of Group 1 categorized as either basal-like of 
HER2-overexpressing subtypes (Figure 2C), whereas 
those subtypes only make up 22% of Group 2.

Tumor stratification on the basis of the EMS 
was associated with significant differences in survival 
(Figure 2D), with the associated statistical analyses 
yielding a hazard ratio (HR) = 2.3, 95% confidence 
interval (CI) :1.31 - 4.20, logrank p = 0.03. Interestingly, 
using a similar method, the HMLEGOOSECOID metabolic 
profile also provided a significant stratification 
(HR = 5.43, CI: 2.29–12.88, logrank p = 0.00002), 
whereas the metabolic profiles of HMLETWIST and 
HMLESNAIL cells, on their own, were not prognostic with 
HR = 0.93, CI:0.49–1.76 and HR = 1.52, CI:0.85–2.73, 
respectively (Supplementary Figures 9A-9C).

Notably, we found no significant association 
between lymph node status and EMS tumor stratification 
(Supplementary Figure 10A). Furthermore, as gene 
expression data was available for this patient cohort, 
we tested the differential expression of EMT markers 
amongst the EMS-stratified tumors, but were unable to 

find any significant differences in known EMT markers 
(Supplementary Figure 10B).

Our findings demonstrate that many of the metabolic 
changes accompanying EMT induction in vitro are linked 
with attributes of cancer malignancy, including serving 
as an indicator of aggressive breast cancer subtypes 
and poor overall patient survival. Taken together, our 
findings suggest that while each EMT-TF may promote 
distinct metabolic alterations, there is a common set 
of metabolic pathways which become reprogrammed 
during EMT (Figure 1E; Supplementary Figure 5, 6, 7) 
and may represent an attractive node for development 
of metabolite-based prognostic markers identifying 
particularly aggressive breast cancers.

DISCUSSION

To identify the biochemical processes altered 
in breast cancer cells that have undergone EMT, we 
conducted targeted metabolomic profiling of cells that 
have undergone EMT in response to three different 
EMT-TFs compared to their epithelial counterparts. 
To our knowledge this is the first time the metabolic 
differences between cells that have undergone EMT and 
their epithelial counterparts have been profiled using 
a mass spectrometry approach and applied to disease 
prognostication. Furthermore, we demonstrate that data 
generated in this manner can be used to delineate patients 
with poor outcome retrospectively and nominate pathways 
important to cancer progression (Figures 1 and 2).

Using LC-MS metabolomics, we observed that the 
EMT-generated metabolome shows unique and potentially 
interesting metabolomic profiles (Figure 1). Between all 
three EMT programs under investigation, there exists a 
common set of metabolites which increase in abundance 
relative to the control. These metabolites are the amino 
acids glutamine, glutamate, beta-alanine, and the dipeptide 
glycylleucine. With the exception of glycylleucine, these 
metabolites represent a closely connected metabolic 
network (Supplementary Figure 5, 6, 7) which lies at the 
center of several pathways previously identified to be 
important in cancer, including glutaminolysis, TCA and 
pyrimidine metabolism.

Among the EMS-stratified tumors, glutamate was 
significantly differential with Group 1 showing a nearly 
4.5-fold increase in abundance over Group 2, suggesting 
that the accumulation of glutamate may represent a 
promising prognostic metabolic marker in breast cancer. 
This finding reinforces recent reports that aggressive 
breast cancer subtypes are associated with elevated levels 
of glutamate [22, 23]. Our findings are novel in that we 
arrived at this finding via an independent route; that is, by 
first determining the metabolic signature associated with 
EMT induction in vitro, and then testing this signature 
for prognostic value in patient samples. Interestingly,  
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Figure 2: A. PCA of EMS metabolites on patient metabolomic profiles. Patients groups were created on the basis of PC1 and 
PC2, which accounts for 94% of the variation in the data. Group 1 is all samples with PC1 and PC2 scores >1. B. ER status distribution 
between group 1 and group 2. C. EMS is associated with aggressive breast cancer molecular subtypes. Patients in group 1 show increased 
frequency of basal-like and HER2-overexpressing molecular subtypes. Patient tumors in group 2 are predominately of luminal subtype.  
D. Core EMS metabolites predict worse overall survival in patient metabolic profiles.



Oncotarget42657www.impactjournals.com/oncotarget

it remains to be shown whether elevated levels of 
glutamate in tumors are indicative of increased sensitivity 
to targeted glutaminase therapy.

The other strongly prognostic EMS metabolite 
is beta-alanine. Beta-alanine is a non-essential amino 
acid and one of the primary end products of pyrimidine 
degradation, a process recently shown to be involved in 
EMT-associated metabolic reprogramming [16]. However, 
as beta-alanine is involved in several metabolic pathways, 
additional studies will be needed to determine the cause 
of its accumulation. Interestingly, beta-alanine has been 
shown to play a vital role in cancer progression by serving 
as an intracellular buffer. Administered ectopically, 
beta-alanine has been reported to significantly suppress 
glycolytic metabolism eliciting a simultaneous reduction 
in cellular acidity [24], curtailing the aggressivenes of 
breast cancer cells. It is plausible that beta-alanine is 
elevated in EMT-generated cells and aggressive tumors, 
in general, as a defensive mechanism to buffer against 
intracellular acidity; however we have not tested this 
hypothesis yet.

It is unclear what role glycylleucine may play in 
EMT and metabolism as no biological function has been 
ascribed to it thus far. However, it has been previously 
reported that the expression of dipeptide transporters are 
essential to breast cancer cell viability [25]. Therefore we 
anticipate that this dipeptide may serve an important as yet 
unknown function.

Interestingly, in addition to the EMS which was 
comprised of elevated metabolites common to three 
EMT programs relative to the control, there were also 
several metabolites which were commonly decreased 
relative to the control (Figures 1B–1D and Supplementary 
Figures 5,6,7). These metabolites include the carnitine 
precursor deoxycarnitine, the glycolytic intermediate 
phosphoenolpyruvate (PEP), and the purine degradation 
product urate. Although we did not focus on these 
metabolites in this study, we anticipate that their reduction 
across all our EMT models reflects important metabolic 
alterations associated with invasion and metastasis. 
Additionally, it was unexpected that HMLEGOOSECOID 
showed the strongest metabolomic changes. Given that 
Goosecoid is the first gene activated in embryonic EMT 
and has been shown to play an important role as the 
Spemann organizer in promoting metastasis [26], this 
finding further highlights the importance of Goosecoid 
as a promoter of EMT and suggests that it may have an 
important role in regulating cellular metabolism.

One major limitation to steady-state metabolomics, 
which we have employed here, is that we are unable to 
discern whether the observed changes in metabolites 
are associated with changes in production or utilization. 
To address this, metabolic flux experiments utilizing 
13C-labeled carbon tracers could elucidate changes within 
pathway fluxes and something which needs to be done 
going forward.

Taken together, we have shown for the first time, 
a novel metabolomics approach to identify changes 
in metabolic reprogramming accompanying EMT. 
Furthermore, we have shown that some of these markers 
of EMT reprogramming, glutamate and beta-alanine, 
possess prognostic value. Lastly, the EMS illuminates 
several potential biochemical mechanisms underlying 
EMT-associated metabolic reprogramming, which warrant 
further investigation.

MATERIALS AND METHODS

Cell culture conditions

Immortalized human mammary epithelial cells 
(HMLE) and cells expressing empty vector (pWZL), 
Snail, Twist, Goosecoid (Gsc), and active TGFβ were 
cultured at 37°C with 5% CO2 in MEGM:DME F12 (1:1) 
supplemented with insulin, hEGF, hydrocortisone, and 
BPE as described previously [2, 18, 19]. For metabolomic 
profiling, five million cells in triplicate per cell line were 
collected using trypsin.

Reagents and internal standards

High-performance liquid chromatography (HPLC) 
grade acetonitrile, methanol and water were purchased 
from Burdick & Jackson, NJ. Mass spectrometry grade 
formic acid was purchased from Sigma- Aldrich, (St Louis, 
MO). Internal standards namely, [15N]2-Tryptophan, 
Glutamic acid –d5, Gibberellic acid, Jasmonic acid, 
Thymine-d4, and Zeatine, were purchased from 
Sigma- Aldrich, (St Louis, MO). Another internal standard, 
[15N] Anthranilic acid was purchased from Cambridge 
Isotope, (Tewksbury, MA). The calibration solution 
containing multiple calibrants in acetonitrile/trifluroacetic 
acid/water was purchased from Agilent Technologies, 
(Santa Clara, CA). The metabolomic analyses of all 
samples were executed using the protocol described 
previously [21, 27–31]. The raw data (LC-MS output) was 
normalized using internal standards.

Sample preparation for mass spectrometry and 
metabolomic analyses

All cell pellets were stored at -80°C until analysis. 
Metabolites were extracted following the extraction 
procedure described previously [27–32] for cell lines and 
pooled liver controls. Briefly, cell pellets were thawed at 
4°C and subjected to freeze-thaw cycles in liquid nitrogen 
and over ice three times to rupture the cell membrane. 
Following this, 750 μL of ice cold methanol:water (4:1) 
containing 20 μL of spiked internal standards were added 
to each cell extract.

This was followed by sequential addition of ice 
cold chloroform and water in a 3:1 ratio to make the 
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final proportion of water, methanol and chloroform into 
a 1:4:3:1 (water:methanol:chloroform:water) ratio. Both 
organic (methanol and chloroform) and aqueous layers 
were separated individually and combined to remove 
cell debris. The extract was de-proteinized using a 
3 KDa molecular filter (Amicon Ultracel -3K Membrane, 
Millipore Corporation, Billerica, MA) and the filtrate 
containing metabolites was dried under vacuum (Genevac 
EZ-2plus, Gardiner, NY). Prior to mass spectrometry, 
the dried extracts were resuspended in identical volumes 
of injection solvent composed of water: methanol 
(50:50) with 0.1% formic acid and subjected to liquid 
chromatography (LC) mass spectrometry.

Liquid chromatography/mass spectrometry 
(LC/MS)

Targeted metabolomics profiling was carried 
out with an Agilent 1290 Series LC and 6430 Triple 
Quadrupole (QQQ) Mass Spectrometer (Agilent 
Technologies, Santa Clara CA) described in detail in 
Supplementary Methods (Liquid Chromatography/Mass 
Spectrometry). Reverse phase (RP) and aqueous normal 
phase (ANP) chromatographic separations of metabolites 
were performed using liquid chromatography and 
acquisition of metabolites was performed with QQQ mass 
spectrometers. The RP (Reverse Phase) chromatographic 
separation was performed using a Zorbax Eclipse 
XDB-C18 column (50 × 4.6 mm i.d.; 1.8 μm, Agilent 
Technologies, CA) at both positive and negative polarity. 
The RP separation was also performed with Synergi™ 
4 μm Max-RP 80 Å (100 × 4.6 mm, Phenomenex, 
Torrance, CA) employed with mass spectrometric negative 
polarity. Aqueous normal phase (ANP) chromatographic 
separation was conducted with a Diamond Hydride 
column (4um, 100A 2.1 × 150 mm, MicroSolv 
Technology, Eatontown, NJ) and a Luna 3 μ NH2 column 
(4 um, 100A 2.00 × 150 mm, Phenomenex, Torrance, CA) 
at positive and negative polarity, respectively.

The mixture of 7 internal standard compounds 
(described earlier) was used as controls to monitor the 
profiling process. Additionally, a characterized pool 
of mouse liver tissue was extracted and analyzed in 
tandem with the clinical samples. These controls were 
incorporated multiple times into the randomization scheme 
such that sample preparation and analytical variability 
could be constantly monitored. Furthermore, one blank 
run was performed following the analysis of each clinical 
sample to prevent any carryover of metabolites.

Single Reaction Monitoring (SRM) experiments 
were performed using a Triple Quadrupole (QQQ) 
Mass Spectrometer (Supplementary Table 1 for SRM 
transitions). The optimized mass spectrometric operational 
parameters included the following source conditions: 
capillary voltage of 3000 V, source temperature of 350°C, 
with drying gas maintained at 10 ml/min, nebulizer 

pressure set at 35 psi and fragmentor voltage set at 70 V. 
The collision energies used for fragmentation were set 
at 5–60 eV unless otherwise stated. Agilent MassHunter 
Workstation Data Acquisition software was used for 
the data acquisition. Then mass spectrometric data was 
analyzed using QQQ Qualitative Analysis B.05and QQQ 
Quantitative Analysis B 0.5 (Agilent MassHunter Qual 
and Qaunt).

Statistical analysis

Gene expression analysis was performed on 
previously published data [20]. Analysis was performed 
using the ‘limma’ and “affy” packages in R [32–34], 
all p-values were adjusted for multiple testing using 
the Benjamini Hochberg method [35], significance was 
set at adjusted p-value < 0.001. Metabolic enzymes and 
transporters were identified using a previously published 
comprehensive geneset [25]. The EMT metabolic 
signature was determined by testing log-transformed 
metabolomics data via linear modeling, with matrices 
specified for each group (HMLESNAIL, HMLETWIST, 
HMLEGOOSECOID and HMLEGFP) and comparisons for each 
EMT groups against control. Analysis was performed 
using the ‘limma’ package in R [32, 33]. The EMS is 
composed of only those metabolites which possessed 
>1.5 log fold change and adjusted p-value < 0.0001 in 
each EMT model relative to control. To test whether 
the EMS had potential prognostic value, we applied 
PCA to previously published metabolomics datasets 
utilizing either the EMS metabolites or metabolic profiles 
associated HMLESNAIL, HMLETWIST, or HMLEGOOSECOID 
independently [21]. Patient samples were stratified 
into two groups on the basis of PC1 and PC2, which 
accounted for nearly 90% of the variation in all tests. 
Group 1 was composed of all samples with PC1 and 
PC2 scores ≥ 1 (Figure 2A). PCA was visualized using 
the ‘pca3d’ package in R [36]. These groups were then 
compared for clinical and biological parameters relevant 
to EMT and metastasis including breast cancer subtype, 
lymph node invasion, EMT gene expression and overall 
survival. Survival analysis was performed using an 
age-adjusted multivariate cox proportional hazards 
model which included EMS stratification group, grade, 
stage, and ER status. The model and Kaplan-Meier plot 
were generated using the ‘survival’ package in R [37]. 
Frequency of lymph node invasion and ER status by 
EMS subgroup was determined by testing variables by 
EMS groups using Fisher’s exact test. PAM50 subtype 
distribution was tested for significance using chi-square 
test. For gene expression analysis, the ‘affy’ and ‘limma’ 
packages were utilized to perform differential gene 
expression analysis between Group 1 and Group 2 
samples for which gene expression data was available 
[21, 34], and a list of known EMT markers were selected 
for observation with significance set at p < 0.05.
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Integrative reactome analysis

Integrative analysis was carried out using MetScape 
3 [38]. Gene expression data for these models was 
previously published [20], and was analyzed using 
“limma” and “affy” packages in R [32–34]. For MetScape 
3 input, both metabolomic and gene expression fold 
changes and p-values were entered as all induced-EMT 
groups vs control. Gene expression concepts were 
generated using LRPath [39], and significant upregulated 
or downregulated concepts were selected at an FDR < 0.1, 
which were then used to generate integrative reactome 
networks.
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