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ABSTRACT

Myeloid-derived suppressor cells (MDSCs) differentiate from bone marrow 
precursors, expand in cancer-bearing hosts and accelerate tumor progression. 
MDSCs have become attractive therapeutic targets, as their elimination strongly 
enhances anti-neoplastic treatments. Here, immature myeloid dendritic cells (DCs), 
MDSCs modeling tumor-infiltrating subsets or modeling non-cancerous (NC)-MDSCs 
were compared by in-depth quantitative proteomics. We found that neoplastic 
MDSCs differentially expressed a core of kinases which controlled lineage-specific 
(PI3K-AKT and SRC kinases) and cancer-induced (ERK and PKC kinases) protein 
interaction networks (interactomes). These kinases contributed to some extent 
to myeloid differentiation. However, only AKT and ERK specifically drove MDSC 
differentiation from myeloid precursors. Interfering with AKT and ERK with selective 
small molecule inhibitors or shRNAs selectively hampered MDSC differentiation and 
viability. Thus, we provide compelling evidence that MDSCs constitute a distinct 
myeloid lineage distinguished by a “kinase signature” and well-defined interactomes. 
Our results define new opportunities for the development of anti-cancer treatments 
targeting these tumor-promoting immune cells.

INTRODUCTION

Anti-cancer treatments are primarily aimed at 
causing arrest of tumor cell growth or tumor cell death. 
In recent years, immunotherapy has resurfaced as an 

attractive therapeutic alternative [1]. However, the 
expansion of immunosuppressive cell types in cancer 
patients strongly interferes with anti-tumor immune 
responses. These immunosuppressive cells enhance tumor 
progression/metastasis and counteract classical anti-
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neoplastic treatments. Amongst these, myeloid-derived 
suppressor cells (MDSCs) are major contributors to tumor 
progression. MDSCs differentiate from precursors within 
the bone marrow (BM) in tumor-bearing hosts. MDSCs 
distribute systemically and infiltrate tumors, where they 
contribute to tumor progression through a variety of 
mechanisms [2, 3]. However, MDSC differentiation and 
functions are still poorly understood. This is due to the 
difficulty of isolating them from tumor-bearing subjects, 
or differentiating them in vitro so that they faithfully 
model in vivo cell subsets [4]. Nonetheless, counteracting 
their activities strongly enhances anti-cancer treatments 
[5]. Thus, finding treatments that would specifically 
eliminate MDSCs could improve the efficacy of anti-
cancer therapies.

While the most valuable source of MDSCs for 
research is the tumor itself, their isolation is still a 
challenge [4, 6]. Therefore, other sources such as spleen 
or blood are widely used. However, these MDSCs are 
phenotypically and functionally different from tumor-
infiltrating subsets [6–9]. To overcome these difficulties, 
we developed an ex vivo differentiation system that 
produces MDSCs modeling tumor-infiltrating subsets 
(B16-MDSCs) and non-cancerous (NC) MDSCs 
(293T-MDSCs) [8]. These ex vivo MDSCs have been 
phenotypically and functionally validated in B16 
melanoma and CT26 colorectal cancer models [8–11].

The use of high-throughput analytical techniques 
for the identification of cellular regulatory pathways 
and novel molecular targets is on the increase. Two 
independent studies on the proteome of blood and spleen 
MDSCs have been published using LC-MS/MS mass 
spectrometry and label-free quantification [12, 13]. 
Although relevant data was obtained, none of these studies 
included control cell types such as myeloid DCs and NC-
MDSCs. Therefore, studies that have been published so far 
have not discriminated pathways associated to cell lineage 
or the tumor environment.

To overcome these issues, we carried out 
in-depth proteomic analyses comparing myeloid 
DCs, MDSCs modeling tumor-infiltrating subsets or 
modeling NC-MDSCs. We found a kinase signature that 
defined neoplastic MDSCs which could be specifically 
targeted to interfere with MDSC differentiation from 
myeloid precursors.

RESULTS

MDSC lineage-specific interactomes

iTRAQ-based quantitative proteomics were 
performed on MDSCs modeling melanoma-infiltrating 
subsets (B16-MDSCs), using immature myeloid DC 
proteomes as a comparative standard to identify melanoma 
MDSC lineage-specific interactomes. 3609 proteins 
were unambiguously identified with an FDR lower than 

1%. Differential protein quantification was performed 
between DCs and B16-MDSCs, and the most affected 
proteins with a significance level of 0.01 were used for 
further analyses (Fig. 1a). Expression of 58 proteins was 
found up-regulated in MDSCs while 46 were down-
modulated (Fig. 1b and Supplementary Table 1). Ingenuity 
Pathway Analysis was used to reconstruct functional 
interactome maps with differentially expressed proteins. 
Three distinct interactomes resulted from the analyses, 
with highly detailed interaction relationships between 
nodes (Figs. 2, 3, 4). The top canonical pathways which 
separated B16-MDSCs from DCs were: (1) mitochondrial 
dysfunction (P = 1.5 × 10−7); (2) leukocyte extravasation 
signaling (P = 5 × 10−6), (3) caveolar-mediated 
endocytosis signaling (P = 2.6 × 10−5) and (4) integrin 
signaling (4 × 10−5). These pathways were associated to 
SRC, FYN and HCK kinases, unambiguously identified 
by mass spectrometry (Supplementary Table 1). Protein 
interactome networks predicted a number of regulatory 
proteins (hubs) including the PI3K-AKT signaling axis 
(Fig. 2). Importantly, SRC kinases controlled changes in 
the cytoskeleton and mitochondrial dysfunction through 
down-regulation of complex I NAPDH dehydrogenase 
subunits (Figs. 2, 3). These kinases were directly 
associated to various molecular nodes such as calmodulin, 
Hsp90, α-catenin and the proteasome (Fig. 4).

Confidence-based protein networks were 
reconstructed using STRING software [14], with  
up-regulated or down-regulated proteins. Both high and 
medium confidence links were considered (score >0.4), 
as the number of networks was limited to allow careful 
confirmation. About 10 distinct protein networks were 
organized around a central group of kinases that included 
SRC family members (Supplementary Fig. 1). These 
networks were associated to production of reactive oxygen 
species (ROS), protection against oxidative damage, 
intracellular vesicle trafficking and aminoacid metabolism. 
Decreases in spliceseosomal proteins, carbohydrate 
metabolism, lysosomal function and MHC II antigen 
presentation were also evident.

KEGG pathway mapping was applied to up- and 
down-regulated proteins. KEGG analyses showed strong 
inhibition of cellular processes associated to inflammatory 
disorders and a decrease in metabolism of aminoacids 
(Fig. 5).

Cancer-specific interactomes in MDSCs 
modeling tumor-infiltrating subsets

Our ex vivo system generates MDSCs that model 
tumor-infiltrating (B16-MDSCs) and non-cancerous NC-
MDSCs (293T-MDSCs) [8, 9, 11]. It has to be pointed out 
that NC-MDSCs are not precursors of tumor-infiltrating 
MDSCs, but cells differentiated ex vivo in non-neoplastic 
conditions as described [8, 9]. Thus, a quantitative 
proteomic comparison between these two subsets was 
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performed to highlight cancer-regulated pathways. These 
analyses uncovered 50 up- and 35 down-regulated proteins 
in B16-MDSCs compared to NC-MDSCs, and pathway 
reconstruction was performed using Ingenuity (Fig. 6, 
Supplementary Table 1). The top canonical pathways 
which differentiated neoplastic from non-cancerous MDSCs 
were: (1) the pentose phosphate pathway (P = 6.4  × 10−8), 
represented by G6PD, PGD and TALDO1 up-regulation; (2) 
epithelial adherence junction signaling with up-regulation 
of EZR, DSTN, tubulin and Rho-like proteins (P = 2.4 × 
10−3). The two top associated molecular and cellular 
functions were (1) free radical scavenging and oxidative 
stress responses (P = 1.1 × 10−8) as indicated by up-
regulation of SOD2, MPO, PRDX, GSTM5 and PARK7 
amongst others, and (2) carbohydrate metabolism which 
was associated to the pentose phosphate pathway (P = 2.5 × 
10−8). Interestingly, Ingenuity protein interaction networks 
included the kinases ERK1 and PKC isoforms as regulatory 
hubs (Fig. 6).

Similar results were obtained with STRING software 
(Supplementary Fig. 2). Most notably, up-regulation 
of the pentose phosphate pathway, changes in 
cytoskeletal proteins and down-modulation of oxidative 
phosphorylation. Results from KEGG pathway mapping 
highlighted increased glutathione metabolism, activation 

of the pentose phosphate pathway and a decrease in 
spliceosomal proteins (Fig. 7).

A kinase signature defines the neoplastic  
MDSC lineage

Systems biology analyses delineated a kinase 
signature of the MDSC lineage (AKT and the SRC family, 
which included SRC, HCK and FYN) and neoplastic 
MDSCs (ERK and PKC kinases). Overall, the expression 
of FYN, HCK and total and phosphorylated SRC agreed 
with proteomic data, as assessed by flow cytometry and 
immunoblotting. The predicted participation of AKT was 
also confirmed (Fig. 8a). AKT expression was particularly 
high in MDSCs modeling tumor-infiltrating subsets as 
detected by immunoblotting. ERK1 and PKC isoforms were 
predicted to be differentially expressed in tumor-infiltrating 
MDSCs. While total ERK expression was equivalent 
between B16-MDSCs and NC-MDSCs, phosphorylated 
(active) ERK1 was increased in B16-MDSCs (Fig. 8a). 
The expression of phosphorylated PKC isoforms 
(phosphorylated pan-PKCs) was tested by immunoblot. 
In agreement with proteomic data and Ingenuity analyses, 
phosphorylated PKCs were present at higher levels in 
MDSCs modeling neoplastic subsets (Fig. 8a).

Figure 1: Differentially expressed proteins in MDSCs caused by lineage and cancer. a. Volcano plots representing the 
fold-change of identified proteins with associated P values from the pair-wise quantitative comparisons of DCs vs B16-MDSCs (lineage 
differences, left plot) and NC-MDSCs vs B16-MDSCs (cancer-regulated differences, right plot). In green, very significantly changed 
proteins (P < 0.01), in blue, significantly changed proteins (P < 0.05) and in red, unchanged proteins between the pair-wise comparisons. 
b. Heat map representing the degree of change for the differentially expressed proteins (P < 0.01, Supplementary Table 1) between the 
indicated samples (independent biological triplicates are indicated as 1, 2 and 3; DCs, dendritic cells; B16-MDSCs, cancerous MDSCs; 
NC-MDSCs, non-cancerous MDSCs), as shown below. Legend (bottom right) indicates color-coded fold-change on Log10 scale. Red and 
green, up- and down-regulated proteins, respectively.
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Figure 2: Functional MDSC lineage-specific interactome networks controlled by SRC, HCK and AKT kinases. Graph 
represents functional interactomes constructed with Ingenuity Pathway Analysis tool using lineage specific (B16-MDSCs vs DCs) 
differentially expressed proteins, which shows detailed interaction relationships between the input nodes (differentially expressed proteins 
between MDSCs and DCs), and regulatory kinases encircled in blue. This interactome links AKT/SRC kinases with mitochondrial 
respiration and dysfunction, protection against oxidative stress and extracellular matrix remodeling. Nodes in red, up-regulated proteins. 
Nodes in green, down-modulated proteins. In white, predicted protein nodes. A, activation; B, binding; C, causes/leads to; CC, chemical-
chemical interaction; CP, chemical-protein interaction; E, expression; EC, enzyme catalysis; I, inhibition; L, proteolysis; LO, localization; 
M, biochemical modification; MB, group/complex; P, phosphorylation/dephosphorylation; PD Protein-DNA binding; PP Protein-Protein 
binding; PR Protein-RNA binding; RB Regulation of Binding; RE Reaction; RR RNA-RNA Binding; T Transcription; TR Translocation. 
Dash arrows, indirect interactions.

AKT and ERK1 specifically contribute to MDSC 
differentiation from myeloid precursors

To assess the contribution of MDSC-associated 
kinases to myeloid differentiation, a collection of kinase 
inhibitors were added to myeloid precursors committed 
towards DC or B16-MDSC differentiation. Inhibitors were 
added at concentrations reported to interfere with cancer 
cell growth. High resolution impedance-based real-time 
cell monitoring (RTCA) was used to continuously monitor 
myeloid differentiation, viability and to calculate IC50s 
(Fig. 8b and Table 1) [15]. Overall, all tested inhibitors 
affected equally to myeloid precursors differentiating 
towards DCs and MDSCs (Table 1). Treatments with 
the specific AKT inhibitor X or the MEK inhibitor 

PD0325901 were an exception. AKT inhibitor X was 
highly toxic to precursors differentiating towards MDSCs, 
while differentiating DCs remained unaltered (Fig. 8b and 
Table 1). Treatment with the MEK inhibitor PD0325901 
selectively inhibited MDSC proliferation. Overall, 
comparing the IC50s for differentiating DCs and MDSCs, 
AKT and MEK-ERK pathways specifically contributed 
to MDSC differentiation (Fig. 8c). Moreover, myeloid 
precursors committed to MDSC differentiation died within 
hours of adding the AKT inhibitor, strongly suggesting 
that AKT was involved in survival but not differentiation 
(Fig. 9a).

The results with kinase inhibitors were also 
confirmed with silencing shRNAs. Thus, myeloid 
precursors committed towards MDSC differentiation were 
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expanded for three days from BM and transduced with 
a lentivector delivering immunoblot-validated shRNAs 
against AKT1 or ERK1 as described [8, 16] (Fig. 9b). 
Transduced myeloid precursors died 48 hours after 
delivery of the AKT1-specific shRNA. Likewise, ERK1 
silencing significantly inhibited cell growth.

Inhibition of the ERK pathway interferes with 
MDSC differentiation and accelerates DC 
maturation

Inhibition of the ERK pathway interfered with 
MDSC growth. As the MEK inhibitor PD0325901 

is currently used for the treatment of several human 
cancers in clinical trials, its effects on differentiation of 
myeloid cell lineages was further tested. Thus, the three 
main myeloid cell populations differentiated from bone 
marrow precursors was quantified by flow cytometry 
after a week of PD0325901 treatment; Namely, 
CD11b+ monocytic myeloid cells (Ly6Chigh Ly6Gneg), 
granulocytic myeloid cells (Ly6C+ Ly6Ghigh) and 
conventional DCs (Ly6C+ Ly6Gneg/low CD11c+) (Fig. 9c). 
Interestingly, PD0325901 treatment accelerated 
conventional CD11c+ DC differentiation. At the 
highest tested concentration, the MEK inhibitor was 
strongly cytotoxic to myeloid cells committed to 

Figure 3: Functional MDSC lineage-specific interactome networks regulating cytoskeletal changes and controlled 
by SRC kinases. Graph presents functional interactomes constructed with Ingenuity Pathway Analysis tool using lineage specific 
(B16-MDSCs vs DCs) differentially expressed proteins, which shows detailed interaction relationships between the input nodes 
(differentially expressed proteins between MDSCs and DCs), and regulatory kinases encircled in blue. This interactome links SRC kinases 
with protein transport, mRNA processing, cytoskeletal re-organization and decreased glycolysis. Nodes in red, up-regulated proteins. 
Nodes in green, down-modulated proteins. In white, predicted protein nodes. A, activation; B, binding; C, causes/leads to; CC, chemical-
chemical interaction; CP, chemical-protein interaction; E, expression; EC, enzyme catalysis; I, inhibition; L, proteolysis; LO, localization; 
M, biochemical modification; MB, group/complex; P, phosphorylation/dephosphorylation; PD Protein-DNA binding; PP Protein-Protein 
binding; PR Protein-RNA binding; RB Regulation of Binding; RE Reaction; RR RNA-RNA Binding; T Transcription; TR Translocation. 
Dash arrows, indirect interactions.
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Figure 4: Functional MDSC lineage-specific interactome networks controlled by PI3K and CDK2 kinases. Graph presents 
functional interactomes constructed with Ingenuity Pathway Analysis tool using lineage specific (B16-MDSCs vs DCs) differentially 
expressed proteins, which shows detailed interaction relationships between the input nodes (differentially expressed proteins between 
MDSCs and DCs), and regulatory kinases encircled in blue. This interactome links PI3K with cell cycle, protein synthesis and transport, 
survival and proliferation. Nodes in red, up-regulated proteins. Nodes in green, down-modulated proteins. In white, predicted protein 
nodes. A, activation; B, binding; C, causes/leads to; CC, chemical-chemical interaction; CP, chemical-protein interaction; E, expression; 
EC, enzyme catalysis; I, inhibition; L, proteolysis; LO, localization; M, biochemical modification; MB, group/complex; P, phosphorylation/
dephosphorylation; PD Protein-DNA binding; PP Protein-Protein binding; PR Protein-RNA binding; RB Regulation of Binding; RE 
Reaction; RR RNA-RNA Binding; T Transcription; TR Translocation. Dash arrows, indirect interactions.

MDSC differentiation, but not to those differentiating 
towards DCs which strongly up-regulated CD11c 
expression.

Overall, these results also confirmed that 
interference with the ERK pathway is inhibitory over 
MDSCs and promotes conventional DC differentiation.

DISCUSSION

High-throughput analyses of biological systems 
provide a unified view of biological processes, and can 
uncover novel molecular targets. However, sorting out 
meaningful information from large datasets is challenging 
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Figure 5: KEGG pathway analyses of differentially-expressed proteins in MDSCs compared to myeloid DCs. Graph 
represents the percentage of differentially up- or down-regulated (as indicated within the graph) proteins ascribed to the indicated KEGG 
pathways.
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and relies on choosing the right controls. In addition, some 
biological systems such as MDSCs are difficult to work 
with. Here we characterized the neoplastic B16 melanoma 
MDSC proteome by differentiating MDSCs modeling 
tumor-infiltrating subsets, and quantitatively comparing it 
with the proteomes of myeloid DCs and MDSCs modeling 
non-cancerous MDSCs. Myeloid DCs and NC-MDSCs 
provide the appropriate controls to discriminate pathways 
regulated by cell lineage or the tumor environment. We 
performed in-depth quantitative proteomics to construct 
highly detailed MDSC interactome maps. Regulatory 
networks were for the first time unambiguously ascribed 
to cell lineage or to a neoplastic environment.

Cell lineage differences were highlighted by 
comparing B16 melanoma-MDSCs with myeloid DCs. 
Mitochondrial dysfunction was a key characteristic 
of MDSCs, reflecting a shut-down of oxidative 
phosphorylation. MDSCs modeling non-cancerous 
subsets provided a convenient standard to discriminate 
cancer-specific pathways. Of these, the pentose phosphate 
pathway was one of the most prominent, probably used 
to produce NADPH for biosynthesis in the absence 
of oxidative phosphorylation. Decreased expression 
of mitochondrial NADPH dehydrogenase, up-regulation of 
free radical scavenging proteins, and cellular stress were 
hallmarks of neoplastic MDSCs compared to NC-MDSCs. 

Figure 6: Functional interactomes with cancer-regulated (B16-MDSCs vs NC-MDSCs) differentially expressed 
proteins. Ingenuity Analysis interactome linking ERK and PKCs with protection against oxidative stress, mitochondrial electron transport 
and NADPH oxidase activity, the pentose phosphate pathway and ROS generation. Regulatory kinases are encircled in blue. Nodes in red, 
up-regulated proteins. Nodes in green, down-modulated proteins. In white, predicted protein nodes; A, activation; B, binding; C, causes/leads 
to; CC, chemical-chemical interaction; CP, chemical-protein interaction; E, expression; EC, enzyme catalysis; I, inhibition; L, proteolysis; 
LO, localization; M, biochemical modification; MB, group/complex; P, phosphorylation/dephosphorylation; PD Protein-DNA binding; PP 
Protein-Protein binding; PR Protein-RNA binding; RB Regulation of Binding; RE Reaction; RR RNA-RNA Binding; T Transcription; TR 
Translocation. Dash arrows, indirect interactions.
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As we found that NC-MDSCs differed from neoplastic 
MDSCs in cell stress pathways and inflammatory 
pathways, it is likely that NC-MDSCs are different to 
other subsets differentiated in non-neoplastic conditions 
such as cell stress and infection. Overall, published data 
agreed with our proteome maps [17–24].

Importantly, neoplastic MDSCs presented a 
specific kinase signature which controlled MDSC-related 
interactomes and clearly separated them from the myeloid 
DC lineage. While SRC, FYN, HCK, PI3K and AKT 
kinases differentiated MDSCs from DCs, ERK and PKC 
discriminated neoplastic MDSCs from non-cancerous 
subsets. The proteomic and systems biology data was 
confirmed by immunoblot and flow cytometry. Ingenuity 
analyses also predicted the PKC isoforms as a differential 
feature of neoplastic MDSCs. DCs and NC-MDSCs 

presented lower but detectable levels of phospho-PKC. As 
we used a pan-phospho-PCK antibody, we cannot rule out 
that some specific PKC isoforms discriminate neoplastic 
MDSCs from non-neoplastic counterparts. In fact, this is 
the case of 4T1 breast cancer MDSCs, for which there 
is evidence that isoforms beta and theta are specifically 
activated [22].

AKT was required for the survival of myeloid 
precursors differentiating into MDSCs, but was 
dispensable in precursors committed to DC differentiation. 
This is in agreement with the requirement of AKT for 
in vivo MDSC expansion [25], and with its anti-apoptotic 
role in hematopoietic cells [26]. Additionally, the MEK1 
inhibitor PD032591 selectively affected differentiating 
MDSCs, while DC maturation was enhanced according to 
CD11c up-regulation. The ERK pathway is known to keep 

Figure 7: KEGG pathway analyses of differentially-expressed proteins in MDSCs modeling tumor-infiltrating subsets 
compared to NC-MDSCs. The graph shows the percentage of differentially up- or down-regulated (as indicated within the graph) 
proteins ascribed to the indicated KEGG pathways.
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Figure 8: A kinase signature discriminates MDSCs from DCs. a. Graphs on the left, flow cytometry histograms with expression 
profiles of the indicated kinases in DCs, NC-MDSCs and B16-MDSCs. Mean fluorescent intensities for each cell population are shown 
within the graphs. US, unstained control; DC, dendritic cells; NC, non-cancerous MDSCs; B16, MDSCs modeling tumor-infiltrating 
subsets. Blots on the right, detection of the indicated kinases by immunoblotting. Two preparations from the indicated cell populations 
(top of the immunoblots) were loaded and lanes were labelled as 1 and 2. An immunoblot for GADPH detection is shown as a reference 
control, on the same membrane used for AKT detection above. b. Representative real-time cell monitoring (RTCA) results for myeloid 
precursors treated with the indicated concentrations of AKT inhibitor X, and grown either in DC-differentiation medium or in B16-MDSC 
conditioning medium as indicated on top. Data is plotted as means of cell index with error bars (standard deviations) from duplicate 
cultures, shown as a function of time. Relevant statistical comparisons are shown and indicated with *, **, and *** for significant  
(P < 0.05), very significant (P < 0.01) and highly significant (P < 0.001) differences, respectively. c. DC/MDSC IC50 ratios calculated for 
the indicated treatments. Ratios close to 1 (horizontal dotted line) indicate that treatments are equally inhibitory over MDSCs and DCs. 
Ratios higher than 1 indicate that MDSCs are more sensitive to the specific treatments than DCs.
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DCs immature and favor tumor progression [27–29]. Here 
we also demonstrated that ERK contributes to MDSC 
differentiation. Our results show that inhibition of ERK 
and AKT pathways could enhance anti-tumor immune 
responses by depleting MDSCs and activating DCs. 
Nevertheless, the other differentially expressed kinases 
may still participate in MDSC functions apart from 
differentiation and survival, which could be susceptible of 
therapeutic intervention.

MATERIALS AND METHODS

Cells and mice

293T, B16F0 cells and BM-DCs were grown 
as described [8, 27]. Approval for animal studies was 
obtained from the Animal Ethics Committee of the 
University of Navarra, and from the Government 
of Navarra. Non-cancerous MDSCs (NC-MDSCs, 
293T-MDSCs) and B16-MDSCs were obtained from 
C57BL/6 murine BM cells as described [8].

Drug treatments of myeloid cell cultures and 
impedance-based real-time living cell monitoring 
(RTCA)

Myeloid hematopoietic precursors were expanded 
from BM cells using granulocyte-monocyte-colony 
stimulating factor (GM-CSF), stem cell factor (SCF) 
and leukaemia inhibitory factor (LIF) for 2 to 3 days, 
following published conditions [8, 30]. Then, myeloid 
precursors were seeded on two L8 cell culture chambers 

for the xCELLingence RTCA monitoring system (ACEA 
biosciences), at a density of 200000 cells per well. DC 
or B16-MDSC differentiation medium was added to 
myeloid precursors, and treatments were carried out 
simultaneously in duplicates. After 30 min, the indicated 
chemical inhibitors were added at concentrations reported 
to be cytotoxic to cancer cells. Control wells were 
treated with carrier solution (either water or DMSO). 
The following inhibitors were used: AKT inhibitor 
X (Calbiochem), tyrosine kinase inhibitor TX-1123 
(Calbiochem), MEK inhibitor PD0325901 (SIGMA), 
ERK inhibitors SCH772984 and VTX-11e [31], broad 
PKC inhibitor GÖ 6983 (Santa Cruz Biotechnology), 
PKC inhibitor NPC-15437 dihydrochloride (Santa Cruz 
Biotechnology), selective LCK and FYN inhibitor PP2 
(Santa Cruz Biotechnology), and the SRC and FYN 
inhibitor Saracatinib (MedChem Express). IC50s for 
each inhibitor were calculated using the RTCA data 
and analysis software, using duplicates for each drug 
treatment.

Lentivector production and cell transduction

Lentivectors were produced and titrated 
by flow cytometry or Q-PCR as described [32]. 
The pHIV-SIREN system developed by our 
group [16] was used as a backbone to clone 
the following validated shRNAs against ERK1 
(GCATGCTTAATTCCAAGGGCTATTCAAGAGATAG 
CCCTTGGAATTAAGCATGTTTTTTACGCGT) and 
AKT1 (GTCTGAGACTGACACCAGGTATTTCAAGAG 
AATACCTGGTGTCAGTCTCAGATTTTTTACGCGT).  

Table 1: IC50s of small molecule inhibitors over myeloid precursors committed towards DC or 
MDSC differentiation
Inhibitor IC50, DCs IC50, MDSC Targeted kinases

AKT inhibitor X >100 μM 3.9 ± 0.6 μM AKT

TX1123 3.2 ± 1.4 μM 3.4 ± 3 μM
SRC

eEF2-K
PKA

Saracatinib 3.5 ± 3.4 μM 8.8 ± 8 μM SRC
FYN

PP2 46.5 ± 0.7 μM 45.4 ± 2 μM FYN
HCK

PD0325901 44.7 ± 4.5 nM 6.2 ± 2.8 nM MEK

SCH772984 86.5 ± 19 nM 21 ± 15 nM ERK1

VTX-11e 8 ± 0.15 μM 1.3 ± 0.14 μM ERK1

Gö 6983 5.7 ± 1 μM 5.7 ± 2.3 μM PKCα, β, γ, δ, ζ and μ

NPC-15437 8 ± 2.3 μM 8 ± 2 μM PKC
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A control shRNA-encoding lentivector targeting the 
human PD1 transcript (SIREN-shPD1a) was used [33]. 
The same shRNAs were cloned into the pSIRACT-GFP 
shRNA-cloning lentivectors, which were derived from 

pHIV-SIREN constructs by replacing the PGK promoter 
by the Actinin 4 promoter. The lentivector backbone was 
changed because PGK was strongly down-modulated in 
MDSCs, while actinin4 was strongly expressed.

Figure 9: AKT is required for survival of myeloid cells committed to MDSC differentiation, while inhibition of the ERK 
pathway enhances conventional DC differentiation. a. The percentages of viable myeloid precursors treated with the indicated 
concentrations of AKT inhibitor X are indicated as a bar graph with standard deviations as error bars. Precursors were committed towards 
DC or MDSC differentiation as indicated on top of the bars. Viable cells were quantified following trypan blue staining. Relevant statistical 
comparisons are shown. b. Graph on the left, growth of myeloid cell precursors transduced with a lentivector encoding a control shRNA 
(shPD1a), or an AKT1-specific shRNA (shAKT1). Data is plotted as means and standard deviations as error bars. The same is shown in 
the graph on the right, but delivering an ERK1-specific shRNA (shERK1). Relevant statistical comparisons are shown within the graph. 
c. Phenotype effects of sustained MEK inhibition with PD0325901 on myeloid precursors committed to MDSC differentiation or to DC 
differentiation. Ly6C+ cells were gated and the Ly6G-CD11c expression profiles are shown in flow cytometry density plots. Percentages of 
CD11c+ myeloid cells after 7 days of culture are highlighted within the graphs. ***, very highly significant differences.
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Immunoblot

Immunoblots were performed as described [27]. 
Anti-GADPH was purchased from Calbiochem. Rabbit 
anti-human HCK was purchased from Millipore. From 
BD bioscience, mouse anti-pan ERK, mouse anti-AKT 
and mouse anti-AKT pT308. From Cell Signaling, 
rabbit anti-mouse T202/Y204 p-P44/42 MAPK, 
phospho-pan-PKC rabbit mAb. Peroxidase-conjugated 
anti-mouse and anti-rabbit antibodies were purchased 
from DAKO. Membranes were stripped and re-probed 
with antibodies for total and phosphorylated proteins, 
when required.

Cell staining and flow cytometry

Surface and intracellular staining were performed as 
described previously [27] using the indicated antibodies. 
From BioLegend: Alexa fluor 488-Ly6C, PE-Cy7-Ly6G, 
PE-Cy7-streptavidin, APC-streptatividin; From BD 
Pharmigen: APC-CD11b, PE-Cy7 anti-mouse CD11c, 
Rat anti-mouse CD16/CD32, PE-conjugated anti-Gr-1, 
Alexa 647-conjugated anti- PY418 SRC, PE-conjugated 
ant-AKT1, from Invitrogen: APC-CD11c, PE-streptavidin, 
FITC-streptavidin; from AbDSerotec: PE-CD62L; From 
Santa Cruz Biotechnology: PE-conjugated anti-Fyn. From 
Cell Signaling, Alexa 647-conjugated anti-SRC rabbit 
antibody (clone 36D10) and PE-conjugated anti-phospho 
AKT rabbit antibody (Ser473, clone D9E).

Mass spectrometry-based quantitative 
proteomics and bioinformatic analyses

A global experiment was carried out with three 
biological replicates in each experimental condition 
using B16-MDSC, NC-MDSC and DC cell pellets. The 
specific procedures for sample preparation, proteomic 
analyses, iTRAQ-based proteomic workflows and 
mass spectrometry using triple-TOF 5600 system (AB 
Sciex) have been published [8]. The mass spectrometry 
proteomics data were deposited to the ProteomeXchange 
Consortium (http://proteomecentral.proteomexchange.
org) via the PRIDE partner repository with the data set 
identifiers PXD001103 and PXD001106.

Analyses of raw data (.wiff, AB Sciex) were 
performed with MaxQuant software [34]. For peak 
list generation, default AB Sciex Q-TOF instrument 
parameters were used except the main search peptide 
tolerance, which was set to 0.01 Da, and MS/MS match 
tolerance, which was increased up to 50 ppm. Minimum 
peptide length was set to 6. Two databases were used. 
A contaminant database (.fasta) was firstly used for 
filtering out contaminants. Peak lists were searched against 
UniProt murine database, and Andromeda was used as 
a search engine [35]. Methionine oxidation was set as 
variable modification, and the carbamidomethylation of 

cysteine residues was set as fixed modification. Maximum 
false discovery rates (FDR) were set to 0.01 at protein 
and peptide levels. Analyses were limited to peptides 
of six or more amino acids in length, and considering 
a maximum of two missed cleavages. Relative protein 
abundance output data files were managed using R scripts 
for subsequent statistical analyses and representation. 
Proteins identified by site (identification based only on 
a modification), reverse proteins (identified by decoy 
database) and potential contaminants were filtered out. 
Only proteins with more than one identified peptide 
were used for quantification. For possible quantification 
data rescue, up to one missing value for each group was 
rescued replacing it by the mean of the rest in-group 
samples. Data was normalized and transformed for later 
comparison using quantiles normalization and log2 
transform respectively. The Limma Bioconductor software 
package in R was used for ANOVA analyses. Significant 
and differential data were selected by a p-value lower than 
0.01, fold changes of <0.77 (down-regulation) and >1.3 
(up-regulation) in linear scale. These parameters were 
used for differential expression threshold with volcano 
and profile plots.

The proteomic information was analyzed using 
bioinformatic tools. Studies with the Kyoto Encyclopedia 
of Genes and Genomes (KEGGS) Pathway mapping 
tool were performed as described (http://www.genome 
.jp/kegg/tool/map_pathway1. html). The identification 
of specifically up- or dysregulated regulatory/metabolic 
networks in MDSCs was analyzed with the open access 
STRING (Search Tool for the Retrieval of Interacting 
Genes) analysis tool (v.9.1) [14] and with the Ingenuity 
Pathway Analysis Tool (Qiagen).

Statistical analyses

GraphPad Prism and SPSS software packages were 
used for plotting data and statistical analyses. No data 
was considered an outlier. Real time cell monitoring data 
(RTCA, ACEA biosystems) was analyzed by exporting 
the Cell Index data as a function of time. It was confirmed 
that Cell Index in a growing population of cells was highly 
homogeneous and normally distributed at any given 
time-point. Therefore, the data was analyzed by one-way 
ANOVA and Tukey’s pair-wise comparisons. IC50s were 
estimated for each treatment (using three published active 
concentrations per compound) in duplicates by RTCA, 
and means with standard deviations were obtained. IC50s 
were also highly homogeneous and normally distributed. 
The relative IC50 ratios for DCs vs MDSCs were also 
calculated, and compared by one-way ANOVA and Tukey’s 
pair wise comparisons. Cell viability was quantified by 
trypan blue staining and data analyzed by one-way ANOVA 
and Tukey’s pair wise comparisons. Triplicates per 
treatment were used for the analyses. Growth of myeloid 
cells transduced with lentivectors encoding shRNAs was 
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compared by a two-way ANOVA with “time of growth” 
as a random factor with data from four independent 
transductions, as described previously [8].
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