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ABSTRACT
Lung cancer is the most feared of all cancers because of its heterogeneity and 

resistance to available treatments. Cancer stem cells (CSCs) are the cell population 
responsible for lung cancer chemoresistance and are a very good model for testing 
new targeted therapies. Clomipramine is an FDA-approved antidepressant drug, able 
to inhibit in vitro the E3 ubiquitin ligase Itch and potentiate the pro-apoptotic effects 
of DNA damaging induced agents in several cancer cell lines. Here, we investigated the 
potential therapeutic effect of desmethylclomipramine (DCMI), the active metabolite 
of Clomipramine, on the CSCs homeostasis. We show that DCMI inhibits lung CSCs 
growth, decreases their stemness potential and increases the cytotoxic effect of 
conventional chemotherapeutic drugs. Being DCMI an inhibitor of the E3 ubiquitin 
ligase Itch, we also verified the effect of Itch deregulation on CSCs survival. We 
found that the siRNA-mediated depletion of Itch induces similar anti-proliferative 
effects on lung CSCs, suggesting that DCMI might exert its effect, at least in part, by 
inhibiting Itch. Notably, Itch expression is a negative prognostic factor in two primary 
lung tumors datasets, supporting the potential clinical relevance of Itch inhibition to 
circumvent drug resistance in the treatment of lung cancer.

INTRODUCTION

Lung cancer is the leading cause of cancer-related 
deaths worldwide [1, 2]. Most patients relapse after surgery 
and require medical treatment like patients diagnosed with 
a metastatic disease. Despite recent advances in treatment 
of subsets of patients, the vast majority of patients 
receive chemotherapy and soon become chemoresistant 
[3]. This is the reason why the overall 5-year survival of 
patients diagnosed with lung cancer is less than 15% [4]. 
Chemotherapy predominantly kills the drug-sensitive cells, 
leaving behind a heterogeneous population of resistant 
cells that gradually expand to produce a chemoresistant 

tumor. Recent studies have demonstrated that a specialized 
population of tumor cells named cancer stem cells (CSCs) 
or tumor-initiating cells is thought to be responsible for 
tumor initiation, progression and resistance to therapy [5]. 
We have identified lung CSCs and developed a technology 
for in vitro and in vivo expansion and characterization, 
which allow us testing and preclinical validation of new 
targeted therapies [6, 7]. 

A current strategy to enhance the efficacy of 
anticancer therapy involves the usage of drugs deregulating 
autophagic processes. Autophagy is a conserved lysosome-
mediated process, which degrades cellular organelles and 
macromolecules, allowing the recycling of bioenergetics 
components in order to favour the survival of cells in 
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response to diverse stress like starvation, hypoxia and 
endoplasmatic reticulum stress [8, 9]. Besides its role in 
the regulation of several biological processes, autophagy 
is also known to be closely involved in many human 
diseases, including cancer [9, 10]. However, the role of 
autophagy in tumor progression is controversial and may 
depend on various factors, such as the cancer type, the 
development stage and the genetic background [11-14]. 
Currently, several drugs targeting autophagy process has 
been tested and some of them are in clinical trials [15, 16]. 
Clomipramine is an FDA-approved drug generally used 
for treatment of obsessive-compulsive disorders [17, 18]. 
It has a long-standing record with good subject tolerance. 
Besides its function as noradrenergic and serotonergic 
reuptake inhibitor, clomipramine acts as a regulator of 
autophagy [19, 20]. Treating cells with clomipramine or 
its active metabolite desmethylclomipramine (DCMI) 
induces the blockade of the autophagic flux, as revealed 
by the increase of authophagosomal markers and a 
concomitant blockade of the degradation of autophagic 
cargo, such as p62. Importantly, DCMI increases the pro-
apoptotic effects of conventional chemotherapic drugs in 
several cancer cell lines [21].

Recently, clomipramine has been also identified 
as an inhibitor of Itch, an E3 ubiquitin ligase belonging 
to the HECT-type family of E3 ubiquitin ligase [22]. By 
controlling the proteasomal-dependent degradation of a 
subset of target proteins, Itch regulates several important 
biological processes, such as apoptosis, cell growth and 
inflammation [23-25]. Several reports have demonstrated 
that the expression levels of Itch affect the apoptotic 
response induced by the chemotherapeutic drugs [26-28]. 
In details, it has been shown that Itch depletion by siRNA 
increases the cytotoxic effect of anti-neoplastic drugs in 
different cancer cell lines and the in vivo administration 
of siRNA duplex targeting Itch mRNA is effective in 

sensitizing pancreatic cancer to gemcitabine [29]. The 
pro-apoptotic effects exerted by Itch depletion are more 
evident in cells with no functional p53, highlighting the 
importance that changes in levels of Itch may play in 
majority of cancers, where p53 is absent or mutated.

In the present manuscript, we investigate the 
biological effect of DCMI on the growth properties of 
lung CSCs isolated from non-small-cell lung cancers 
(NSCLC) surgical specimens. We report that DCMI 
inhibits lung CSC growth, decreases their stemness 
potential and increases the cytotoxic effect of conventional 
chemotherapeutic agents. Being the DCMI an in vitro 
inhibitor of the E3 ubiquitin ligase Itch, we also analyzed 
the consequences of Itch downregulation on lung CSCs. 
Similarly to what we observed in DCMI treated lung 
CSCs, the siRNA-mediated depletion of Itch decreases 
CSCs survival in response to gemcitabine treatment, 
suggesting that the pro-apoptotic effects of DCMI might 
be exerted, at least in part, by Itch inhibition. Notably, 
Itch expression is a negative prognostic factor in several 
primary lung cancer datasets, supporting the potential 
clinical relevance of Itch inhibition to circumvent drug 
resistance in the treatment of lung cancer.

RESULTS

Characterization of non-small cell lung CSCs and 
their resistance to conventional chemotherapeutic 
drugs

Two squamous cell carcinomas (LC1 and LC2) 
and one adenocarcinoma (LC3) lung CSCs were isolated 
from NSCLC surgical samples and characterized for the 
presence of common genetic alterations exhibited by lung 

Figure 1: Characterization of lung CSCs and their resistance to conventional chemotherapeutic drugs. A. Expression 
of CD133 detected by flow cytometry in the indicated lung CSC line (LC1). B. Lung CSCs (Stem) and the corresponding differentiated 
progeny (Diff) treated for 72 h with chemotherapeutic drugs. Cell viability was measured by Cell-Titer-Glo Assay. The experiments were 
performed with 2.5 µg/ml cisplatin, 50 µM gemcitabine or 30 ng/ml paclitaxel. Bars shown are the mean ± S.D. of three independent 
experiments. *P-value <0.05 and **P-value <0.01.
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tumors and for their ability to histologically recapitulate 
the tumor of origin in mice (Table 1) [7, 30]. In serum-free 
medium containing EGF and basic-FGF these cells grow 
as tumor spheroids expressing stem cell markers such 
as CD133. Upon serum addition the lung CSCs reduce 
their stemness potential, as indicated by the decreased 
expression of CD133 (Figure 1A).

Generally, CSCs are characterized by an elevated 
resistance to the pro-apoptotic effects induced by different 
chemotherapeutic treatments. To test this feature in these 
lung CSCs, we treated lung cancer sphere-forming 
cells and their differentiated progeny with cisplatin, 

gemcitabine or paclitaxel at doses comparable with those 
reached in the plasma of lung cancer treated patients and 
measure the cell proliferation and/or cell viability by 
ATP assay. In contrast to the differentiated progeny, all 
three lung CSCs are markedly resistant to the growth 
arrest/apoptotic effect induced by the chemotherapeutic 
drugs even after a long exposure (Figure 1B). These 
data demonstrated that the three lung CSCs possess the 
expected features of chemotherapy resistance, supporting 
their use in the search for new therapeutic options.

Figure 2: Cytostatic effect by DCMI on lung CSCs. A. Viability of lung CSCs treated with increasing doses of DCMI (1-20 
µM) for 48 h. Bars shown are the mean ± S.D. of three independent experiments. *P-value <0.05 **P-value <0.01. B. Fold variation of 
ALDEFLUOR-positive cells in DCMI treated lung CSCs as compared with vehicle-treated controls. Bars represent mean ± S.D.; *P-value 
<0.05 (n = 3). C. Colony formation in soft-agar culture of lung CSC LC2 plated in the presence of 10 µM DCMI. Bars represent mean ± 
S.D.; **P-value <0.01 (n = 3). D. Size of colonies formed in soft-agar assay by lung CSC LC2 treated as in C. Bars represent mean ± S.D.; 
*P-value <0.05 and **P-value <0.01 (n = 3). E. Western blot analysis of lung CSCs treated with DCMI (10 or 20 μM) for 48 hours. All 
whole cell extracts were analyzed by IB using antibodies to the indicated proteins. 
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DCMI exerts a cytostatic effect in lung CSC

Our group has previously demonstrated that 
clomipramine and its active metabolite DCMI synergize 
with gemcitabine in killing bladder, breast and prostate 
tumor cell lines [22]. To verify the anti-proliferative effect 
of DCMI in lung CSCs, we treated LC1, LC2 and LC3 
stem cells with different doses of DCMI and measured 
cell growth by quantifying the ATP content. As shown 
in Figure 2A, DCMI induced a significant reduction of 
lung CSCs growth and/or viability. Cancer stem cells are 
characterized by an increased activity of the Aldehyde 
deidrogenase (ALDH) and the quantification of ALDH 
activity is commonly utilized to evaluate the percentage 
of the stem cells in a certain cell population [31-33]. To 
verify whether DCMI has a preferential growth inhibitory 
action on the stem cell counterparts, we measured the 
ALDH activity (ALDEFLUOR) and found a significantly 
reduced content of ALDH-positive cells in DCMI-treated 
cells compared to the control cells (Figure 2B). These 
results suggest that the DCMI growth inhibitory activity is 

mainly ascribed to an effect on the stem cells population. 
In supporting of this statement, we also measured the 
sphere-forming capacity of lung CSC treated with DCMI. 
As shown in Figure 2C and 2D, DCMI treatment reduced 
both the number and the size of sphere-forming cells as 
compared to non-treated cells, thus confirming that DCMI 
negatively affects either the frequency of CSCs or their 
proliferation potential. 

In tumor cell lines the anti-proliferative effect 
of DCMI has been associated with the blockade of 
the autophagic flux. To verify whether DCMI might 
exert similar effects on the authophagic machinery 
in lung CSCs, we measured the protein levels of the 
autophagosomal marker microtubule-associated protein 
light 1 chain 2 (LC3) and p62, a cargo protein that is 
degraded through the autophagic pathway [34, 35]. We 
observed that DCMI induces a significant increase of LC3 
lipidation in a dose dependent manner without triggering 
p62 degradation (Figure 2E). The block of the autophagic 
flux is not accompanied by a significant induction of the 
caspase 3 activity, suggesting that DCMI exerts an anti-

Figure 3: Combination of chemotherapy and DCMI increases cytotoxic effect on lung CSCs. A. Viability of lung CSCs 
treated with 10 µM DCMI alone or in combination with 2.5 µg/ml cisplatin, 50 µM gemcitabine or 30 ng/ml paclitaxel for 48 h (LC1 
left side; LC2 right side). Bars shown are the mean ± S.D. of three independent experiments. *P-value <0.05 **P-value <0.01. B. Fold 
variation of ALDEFLUOR-positive cells in treated lung CSCs with 10 µM DCMI alone or in combination with 2.5 µg/ml cisplatin, 50 µM 
gemcitabine or 30 ng/ml paclitaxel for 48 h as compared with vehicle-treated controls (LC1 left side; LC2 right side). Bars represent mean 
± S.D.; **P-value <0.01 (n = 3).
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proliferative rather that a pro-apoptotic effect in lung 
CSCs. All together these findings indicate that DCMI 
inhibits the lung CSCs expansion through inhibition of 
their self-renewal and proliferation and these effects are 
associated with a deregulation of the autophagic flux. 

DCMI increases the cytotoxic effect of 
conventional chemotherapeutic drugs in lung 
CSCs

Pharmacological inhibition of autophagy has been 
shown to enhance the anti-tumoral efficacy of different 
chemotherapeutic agents in cancer cells that have become 
chemoresistant [36-40]. To test whether DCMI could 

potentiate the cytotoxic effect of anti-neoplastic agents in 
lung CSCs, we treated LC1 and LC2 cells with cisplatin, 
gemcitabine or paclitaxel for 72 hours, in the presence 
or absence of 10 µm of DCMI and then measured the 
cell growth by quantifying the ATP content. As shown 
in Figure 3A and 3B, DCMI strongly sensitized lung 
CSCs to the toxic effect of the chemotherapeutic agents 
as assessed by the cell viability assay. We next verified 
whether DCMI together with gemcitabine might exert 
a preferential growth inhibitory action on the stem cells 
sub-population. To this aim, we measured the ALDH 
activity in LC1 and LC2 cells treated with gemcitabine 
alone or in combination with DCMI. We found that, 
while gemcitabine alone slightly reduces the percentage 
of ALDH-positive cells, the combination of DCMI and 

Figure 4: RNA-mediated silencing of Itch impairs lung CSCs proliferation. A. Western blot analysis of Itch expression in lung 
CSC LC1 transfected with short-hairpin RNAs non-targeting (Scrambled) or direct against Itch (sh Itch). B. Colony formation in soft-agar 
culture of lung CSC LC1 transfected as above. Bars represent mean ± S.D.; **P-value <0.01 (n = 3). C. Size of colonies formed in soft-agar 
assay by lung CSC LC1 transfected as above. Bars represent mean ± S.D.; *P-value <0.05 and **P-value <0.01 (n = 3). D. Viability of lung 
CSC LC1 transfected as above and treated with 50 µM gemcitabine for 96 h. Bars represent mean ± S.D.; *P-value <0.05 and **P-value 
<0.01 (n = 3). E. Fold variation of ALDEFLUOR-positive cells in treated lung CSCs with 50 µM gemcitabine for 96 h. Bars represent mean 
± S.D.; **P-value <0.01. F. Western blot analysis of lung CSC LC1 transfected as above and treated with 50 µM gemcitabine for 96 h. 
All whole cell extracts were analyzed by IB using antibodies to the indicated proteins. G. GEO lung adenocarcinoma data set (GSE31210 
and GSE11969) were analyzed for the expression of Itch with computation estimation of Kaplan-Maier. Green line represents patients 
displaying high Itch expression levels while red line represents those with low expression. The R statistical package was used to perform 
survival analyses and to draw the KM plots.
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gemcitabine induced a significant reduced content of 
ALDH-positive cells. All together, these results suggested 
that DCMI treatment might be a valid method to increase 
the cytotoxic effect of conventional chemotherapeutic 
agents in lung CSCs.

RNA-mediated silencing of ITCH impairs lung 
CSCs proliferation

Recently our group has identified DCMI as an 
inhibitor of the E3 ubiquitin ligase activity of Itch [22]. 
Similarly to DCMI, Itch silencing synergizes with anti-
neoplastic agents in killing prostate, bladder and breast 
cancer cell lines. To verify whether Itch down-regulation 
affects lung CSCs homeostasis, we firstly tested three 
shRNA oligos for their efficiency to decrease Itch protein 
levels. We infected LC1 cells with lentiviral particles 
expressing shRNA oligos targeting different sequences 
of the Itch mRNA and identified sh-Itch #1 as the 
more efficient Itch targeting oligo (Figure 4A). Then, 
we analyzed the effect of Itch silencing on lung CSCs 
stemness properties and observed that Itch depletion 
decreases the sphere forming capability (Figure 4B and 
4C). Importantly, we found that Itch silencing induces 
a marked increase of the pro-apoptotic effect of the 
gemcitabine, which is accompanied by a decrease of the 
ALDH positive cells, suggesting that, similarly to what 
observed in DCMI-treated cells, Itch silencing exerts a 
cytotoxic effect towards the stem cell counterpart (Figure 
4D and 4E). At molecular level, we found that Itch 
depletion induces the activation of the apoptotic program 
in gemcitabine-treated cells, as reveled by the increase of 
the caspase 3 cleavage (Figure 4F). These results indicate 
that down modulation of Itch expression decreases 
the chemoresistance of lung CSCs and suggest that the 
expression levels of Itch might be predictive to evaluate 
the chemotherapeutic response and, as a consequence, the 
survival of the lung adenocarcinoma affected patients. 
To test this possibility, we assessed the impact of Itch 
expression levels on patient survival by performing a 
computational analysis in two publicly available lung 
adenocarcinoma primary tumor datasets[41]. We stratified 
the samples in two groups: patients displaying high 
Itch expression levels and those with low expression. 
Computation estimation of Kaplan-Maier in these two 
subgroups revealed that high levels of Itch negatively 
impact on patient survival (Figure 4G), indicating that 
Itch expression is a negative prognostic factor on patient 
survival and it might be functionally important to regulate 
the tumor progression.

DISCUSSION

Despite the knowledge on lung cancer biology has 
significantly increased in the last twenty years, there have 

been limited progresses in the therapeutic management. 
However, the recent identification of CSCs as the cell 
population responsible for tumor initiation, propagation 
and resistance to therapy may provide an unprecedented 
tool to develop more effective treatments [42, 43]. 
Therefore, it is not surprising that many efforts have been 
concentrated to the identification and characterization 
of specific inhibitors of CSC homeostasis in order to 
attenuate their ability to survive conventional cytotoxic 
therapies and promote tumor recurrence [44-49]. In 
this report, we utilized as cellular model primary CSC 
cultures from three NSCLC surgical samples that showed 
the expected resistance to commonly used antineoplastic 
agents. We found that DCMI, the active metabolite of 
clomipramine, inhibits lung CSC growth, decreases their 
stemness potential and increases the cytotoxic effect of 
conventional chemotherapic agents. 

Although we observed a slight increase of the 
caspase 3 cleavage upon DCMI treatment, this effect is 
not associated with PARP cleavage. It is possible that 
DCMI does not trigger a significant apoptotic signaling 
but rather it exerts a growth-suppressive effect due to its 
effect on the autophagic flux. Clomipramine and DCMI 
have previously described as inhibitors of the authophagic 
flux in several cancer cell lines [21]. This mechanism is 
preserved in lung CSCs. Although the role of autophagy in 
controlling cancer growth is controversial and it is likely 
to be tumor specific, many reports indicate that induction 
of autophagy upon nutrient, growth factor or oxygen 
deprivations, functions to maintain the survival of tumors 
cells [9, 11, 50, 51]. Furthermore, many chemotherapeutic 
agents induce autophagy, most likely by causing damage 
to DNA, cellular proteins, and organelles [51, 52]. So it 
is reasonable that inhibition of the autophagy program 
might be a valid method to sensitize cells to endogenous 
or exogenous stresses. Accordingly, inhibitors of 
autophagy augment the efficacy of anticancer agents 
in many preclinical models, indicating that autophagy 
might be utilized by the cells to sustain cancer cells 
against the effect of cytotoxic compounds, ensuring 
thus the survival of transformed cells [11, 36, 37, 52]. In 
agreement with these observations, autophagy inhibition 
with hydroxychloroquine in combination with anticancer 
regiments is currently in clinical trial for patients with 
several refractory malignancies, including prostate, lung, 
breast and brain tumors. In this scenario, we characterized 
the effects of the DCMI-mediated autophagy inhibition in 
lung CSCs and showed that DCMI treatment inhibits the 
stemness potential of lung CSCs and potentiates the anti-
tumoral effects of conventional chemotherapic agents. 

Besides its effect as inhibitor of the autophagic flux, 
DCMI has been recently reported as an inhibitor of the E3 
ubiquitin ligase ITCH [22]. Itch belongs to the HECT-type 
E3 ubiquitin ligase and controls the proteasome-dependent 
degradation of several proteins involved in the regulation 
of cell survival, cell growth and inflammatory response. 
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Among the substrates of Itch, the transcription factors p73 
and p63 are particularly important for their involvement 
in the regulation of cell survival and proliferation [24, 
53]. p73 is a structural and functional homologue of the 
tumour suppressing transcription factor p53 [54-57]. p53 
is considered the guardian of the genome since it is able 
to restrict cell proliferation or induce DNA repair in cells 
exposed to different cellular stresses avoiding that DNA 
damage is converted to inherited mutation [58-60]. A 
variety of intracellular and exogenous stimuli are indeed 
able to stabilize and activate p53 activity towards a large 
number of transcriptional targets, including micro-RNAs, 
pro-survival, pro-apoptotic, cell cycle and metabolic 
genes [61-76]. Based on its important role in mediating 
the cellular response to various stimuli, it is not surprising 
that deregulation of its activity is strictly associated with 
the onset and the progression of pathological processes 
[77-79], mainly tumor development [80-82]. The most 
significant evidence involving p53 in cancer is its high 
mutation rate in cancers as well as its ability, when 
mutated, to drive cancer metastasis [83-89]. Several novel 
drug-design or high content screening is attempting to 
use the p53 pathway for therapeutic application in cancer. 
The majority of the drugs targeting p53 pathway are 
exploited to induce p53 protein stabilization rather than 
activate its transcriptional activity [90-92]. However, 
more than 50% of human tumors harbor mutations 
in the p53 gene. Therefore, drugs regulating the p53-
independent apoptotic pathways would be extremely 
useful to restrict cell proliferation in the p53 defective 
tumors. p73, similarly to p53, is able to mediate cell 
cycle arrest and apoptosis in response to DNA damage-
induced cellular stress [56]. p73 is rarely mutated in 
cancer and it is expressed at different protein isoforms, 
exhibiting contrasting effects on cell tumor development 
[55, 93, 94]. Specifically the TAp73 isoforms mimics the 
tumor suppressive function of p53 and its expression is 
maintained at low levels in mammalian cells by different 
ubiquitin-dependent mechanisms, among them the Itch-
dependent degradation of p73 is the most characterized 
[28]. Therefore, inhibitors of Itch activity might be useful 
to activate p73-dependent apoptotic program in those 
tumors harbouring p53 mutations. Although we do not 
know whether the DCMI-mediated effect on lung CSCs 
survival depends of its activity as inhibitor of autophagic 
flux or inhibitor of Itch, we reported that the shRNA-
mediated inhibition of Itch expression potentiates the anti-
apoptotic effects of gemcitabine in lung CSCs, similarly 
to what we observed in DCM1-treated cells. Furthermore, 
we found that depletion of Itch decreases the stemness 
capability of lung CSCs, as measured by clonogenicity 
and ALDH activity assay. These results are in agreement 
with several reports demonstrating that Itch is required for 
both embryonic stem cell (ESC) self-renewal capacity and 
somatic cell reprogramming efficiency, through its control 
on Oct-4 protein stability [95]. Moreover, while the 

DCMI-mediated inhibition of Itch activity occurs at high 
micromolar concentration in vitro [22], its effect on cancer 
cell growth is evident at low micromolar concentration, 
suggesting that DCMI might block cancer cell growth in 
an Itch-independent manner. 

We have also reported data showing that Itch 
expression level is a negative prognostic factor on 
patient survival in two lung adenocarcinoma primary 
tumor datasets. This bioinformatic analysis suggests that 
Itch levels might be predictive to establish an efficient 
chemotherapeutic response of lung tumors. Furthermore, 
this analysis also suggests the proof of principle to 
concentrate our efforts in identifying and characterizing 
more potent and specific inhibitors of Itch. Indeed, 
although the proteasome inhibitor Bortezomib is clinically 
utilized to treat patients with multiple myeloma or 
mantle-cell lymphoma, it is not curative and toxic in solid 
malignancies, probably due to its broad biological response 
[96-98]. Recently, preclinical studies demonstrated that 
autophagy inhibition by hydroxychloroquine augments 
the efficacy of the proteasome inhibitor bortezomib in 
myeloma, indicating that the combination of autophagy 
and proteasome inhibition might be clinically useful for 
improving the outcomes of this neoplasia [99, 100]. Thus 
targeting specific E3 ubiquitin ligases might represent a 
potentially more effective therapeutic strategy, limiting 
unwanted side effects. 

In conclusion, although the mode of action of DCMI 
should be further clarified, our data demonstrated for the 
first time that DCMI treatment might be a valid approach 
to regulate lung CSC homeostasis and their response to 
chemotherapeutic agents, supporting a potential clinical 
application. 

MATERIALS AND METHODS

Antibodies and reagents

Gemcitabine, Paclitaxel and Cisplatin were 
purchased from Sigma-Aldrich (St.Louis, MO, USA). 
ALDEFLUOR assay was from StemCell Technologies 
(Durham, NC, USA). CD133/1PE (used for flow 
cytometry) was from Miltenyi Biotec (Bergisch Gladbach, 
Germany). Monoclonal antibodies: anti-ITCH antibody 
was from BD Transducion Laboratories (San Jose, CA, 
USA), anti-p62 SQSTMI from Santa Cruz Biotechnologies 
(Dallas, Texas, USA), anti-PARP1 from ENZO (New 
York, NY, USA), anti-actin from Sigma-Aldrich (St. 
Louis, MO, USA); polyclonal antibodies: anti-LC3 was 
purchased from Sigma-Aldrich and anti-caspase3 from 
Cell Signaling (Danvers, MA, USA). Secondary anti-
mouse and anti-rabbit antibodies coupled to horseradish 
peroxidase were from Bio-Rad (Hercules, CA, USA).
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Cell cultures

Lung CSCs were isolated as previously described 
[6] from surgically resected tumor samples through 
selective culture in serum-free medium containing EGF 
20 ng/ml and basic FGF 10 ng/ml (PeproTech, London, 
UK) at 37 C° with 5% CO2. Non-treated flasks for tissue 
culture (Corning, Tewksbury, MA, USA) were used to 
reduce cell adherence and support growth of lung CSCs 
as multicellular spheres. The medium was replaced 
twice a week until cells started to grow forming floating 
aggregates. Cultures were expanded by mechanical 
dissociation of spheres, followed by re-plating of both 
single cells and residual small aggregates in complete 
fresh medium. Lung CSCs differentiation was obtained 
by culture overnight in Dulbecco’s modified Eagle’s 
medium (DMEM) supplemented with 10% fetal bovine 
serum (FBS) (Gibco, Invitrogen, Carlsbad, CA, USA) and 
for additional 3 days in Bronchial Epithelial Cell Growth 
Medium (Cambrex, East Rutherford, NJ, USA).

Viability assay

Lung CSCs viability upon treatment with 
chemotherapeutic drugs, or DCMI was determined with 
the CellTiter-Glo assay (Promega, Madison, WI, USA) 
according to the manufacturer’s instructions. In brief, 1.5 
x 103 dissociated lung CSCs were plated in triplicate in 
96-well flat bottom plates. Chemoterapeutic agents were 
added at the following final concentration: gemcitabine 50 
uM, paclitaxel 30ng/ml, cisplatin 5 ug/ml. Cell viability 
was analyzed after 72 hours with a Promega Glomax Multi 
Detection System plate reader (Promega, Madison, WI, 
USA). 

Sphere-forming ability assay

The sphere-forming capacity of lung CSCs was 
carried out by plating 500 cells per well in triplicate in 
24-well plates containing a soft agar bilayer (0.3% top and 
0.4% bottom layer, SeaPlaque Agarose, Cambrex) with or 
without DMCI. Cultures were incubated at 37 C° for 21 
days. Colonies were stained with crystal violet (0.01% in 
10% methanol). Data shown represent the percentage of 
colonies normalized to the number of plated cells.

Western blotting

Immunoblot analysis was performed as previously 
described [101]. Briefly, whole cell extracts were obtained 
by lysing cell pellets with Triton Buffer (50 mM Tris-
Hcl pH 7.5, 250 mM NaCl, 50 mM NaF, 1mM EDTA 
1 pH 8, 0.1% Triton), supplemented with protease and 
phosphatase inhibitors. Lysate concentrations were 

determined by the Bradford assay (Bio-Rad Laboratories). 
Proteins were separated by SDS-PAGE, transferred onto 
PVDF membranes and blocked with PBS-T (Phosphate-
buffered saline and 0,1%Tween-20) containing 5% non-
fat dry milk for one hour at room temperature (RT). The 
incubation with primary antibodies was performed for two 
hours at RT, followed by incubation with the appropriate 
horseradish peroxidase-conjugated secondary antibody. 
Detection was performed with ECL Western Blot Reagent 
(Perkin Elmer) or with Super SignalWest Pico (Pierce).

RNA interference

Briefly, cells were seeded at a density of 1.5 x 106 
cells/well in a 6-well plates and incubated over night at 
37 C° in the presence of SMART Vector 2.0 Lentiviral 
shRNA particles (FE5S00500001 non targeting Human 
siRNA, FE5SK0071960010 Human Itch Dharmacon/
Thermo Scientific, Lafayette, CO, USA) according to 
manufacturer’s instructions. Transduced GFP-positive 
cells were determined by fluorescent microscopy 48 
h after infection. Cells were collected and lysates were 
analyzed for protein expression.

Flow cytometry analysis

Expression of lung CSCs marker was evaluated 
by flow cytometry. Lung CSCs were dissociated as 
a single cells, washed in PBS and incubated with the 
appropriate dilutions of control or specific antibodies for 
1 hour at room temperature. Cells were stained live in 
the staining solution containing BSA and PE-conjugated 
monoclonal anti-CD133 (clone AC133 Miltenyi Biotech) 
at the concentration recommended by the manufacturers. 
Corresponding isotype-matched mouse immunoglobulins 
were used as negative controls (BD Bioscience). Lung 
CSCs were dissociated as single cells, washed in PBS 
and incubated with the appropriate diluitions of control 
or specific antibodies for 1 hour at room temperature. 
Fluorescence intensity of labeled cells was evaluated by 
FACS Calibur (Becton Dickinson, Franklin Lakes, NJ, 
USA). Ten thousand events were evaluated using the Cell 
Quest (BD, Franklin Lakes, NJ) and Modfit LT (Verity 
Software, BD) programs. 

Aldefluor assay

The Aldefluor kit assay (StemCell Technologies, 
Vancouver, Canada) was used to profile the aldheyde 
dehydrogenase (ALDH) activity in lung CSCs. Cells were 
incubated in Aldefluor assay buffer containing the ALDH 
protein substrate BODIPY-aminoacetaldehyde (BAAA) 
for 40 min at 37 C°. Cells that could catalyze BAAA to 
its fluorescent product BODIPY-aminoacetate (BAA) 
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were considered ALDH+. Sorting gates for FACS were 
drawn relative to cells baseline fluorescence, which was 
determined by the addition of the ALDH specific inhibitor 
diethylaminobenzaldehyde (DEAB) during the incubation 
and DEAB-treated samples served as negative controls. 
Cells were sorted by a FACS Calibur (Becton Dickinson, 
Franklin Lakes, NJ, USA). 

Statistical and data analysis

All data are presented as mean ± standard deviation 
(S.D.). Statistical significance was determined by 
ANOVA. And threshold was set at 0.05. A P-value < 0.05 
is represented by a single asterisk, a P value <0.01 is 
represented by a double asterisk. 

Human lung adenocarcinoma sample data 
was downloaded from the GEO database, accession 
numbers GSE31210 (226 patients) and GSE11969 
(149 patients). The analysis of the Kaplan-Maier 
estimation curves was performed utilizing the 
PPISURV bioinformatics tool (http://bioprofiling.de/
Results/PPISURV_1290_1434547360/main.html) as 
previously described [41]. Briefly, the separation of 
patients into “cohort 1” and “cohort 2” along with the 
survival information was used to identify any significant 
differences in the survival outcome. The R statistical 
package was used to perform survival analyses and to 
draw the KM plots.
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