
Oncotarget24797www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 28

Dissecting tRNA-derived fragment complexities using 
personalized transcriptomes reveals novel fragment classes and 
unexpected dependencies

Aristeidis G. Telonis1, Phillipe Loher1, Shozo Honda1, Yi Jing1, Juan Palazzo2, Yohei 
Kirino1 and Isidore Rigoutsos1

1 Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
2 Department of Pathology Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, 
Philadelphia, PA, USA

Correspondence to: Isidore Rigoutsos, email: isidore.rigoutsos@jefferson.edu
Keywords: tRNA fragment, human genome, nuclear tRNA, mitochondrial tRNA, Argonaute
Received: June 10, 2015 Accepted: June 20, 2015 Published: July 06, 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 

ABSTRACT
We analyzed transcriptomic data from 452 healthy men and women representing 

five different human populations and two races, and, 311 breast cancer samples 
from The Cancer Genome Atlas. Our studies revealed numerous constitutive, distinct 
fragments with overlapping sequences and quantized lengths that persist across 
dozens of individuals and arise from the genomic loci of all nuclear and mitochondrial 
human transfer RNAs (tRNAs). Surprisingly, we discovered that the tRNA fragments’ 
length, starting and ending points, and relative abundance depend on gender, 
population, race and also on amino acid identity, anticodon, genomic locus, tissue, 
disease, and disease subtype. Moreover, the length distribution of mitochondrially-
encoded tRNAs differs from that of nuclearly-encoded tRNAs, and the specifics of these 
distributions depend on tissue. Notably, tRNA fragments from the same anticodon 
do not have correlated abundances. We also report on a novel category of tRNA 
fragments that significantly contribute to the differences we observe across tissues, 
genders, populations, and races: these fragments, referred to as i-tRFs, are abundant 
in human tissues, wholly internal to the respective mature tRNA, and can straddle 
the anticodon. HITS-CLIP data analysis revealed that tRNA fragments are loaded 
on Argonaute in a cell-dependent manner, suggesting cell-dependent functional 
roles through the RNA interference pathway. We validated experimentally two i-tRF 
molecules: the first was found in 21 of 22 tested breast tumor and adjacent normal 
samples and was differentially abundant between health and disease whereas the 
second was found in all eight tested breast cancer cell lines. 

INTRODUCTION

A major characteristic of the last decade is the 
explosion in the amount of genomic, transcriptomic, 
epigenomic, and other “–omic” data that can be 
generated for a given individual, healthy or patient. Not 
surprisingly, the ensuing data tsunami enabled invaluable 
interdisciplinary and integrative analyses that linked 
molecular signatures to phenotypes and diseases [1, 2]. 
At the same time it recast the definition of disease and 
the practice of treatment giving both an increasingly more 
individualized character. Where the microarray technology 

of the late 90’s and early 00’s deepened our understanding 
of disease, deep-sequencing technology has allowed us 
to refine, and frequently redefine, our views. In fact, the 
technological improvements in deep-sequencing of the 
last several years have helped establish new categories 
of molecular players, particularly non-coding RNAs 
(ncRNAs), with critical roles in many contexts for which 
we thought we had reasonably comprehensive descriptions 
[3, 4]. Such discoveries have important implications 
for our practice of individualized therapy, especially 
since they can reveal molecular differences that depend 
on gender, population and race, all three being patient 
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attributes whose relevance in deciding a therapeutic 
regime has traditionally not been taken into account.

TRNAs are ancient ncRNAs with a central role in 
the process of translation of a messenger RNA (mRNA) 
into an amino acid sequence. As such, tRNAs are present 
in archaea, bacteria, and eukaryotes. The conventional 
understanding had been that genomic loci harboring 
tRNAs produce a single precursor transcript that is 
processed to produce the mature tRNA. Recent evidence, 
however, suggests that “tRNA fragments” represent 
a novel and potentially important group of ncRNAs. 
However, the knowledge about their biogenesis, their 
roles and their potential function remains limited [5-8]. 
Studies with human cell lines have shown that tRNAs 
can be cleaved at the anticodon loop to produce “tRNA 
halves” that are 30-35 nt in length a process that seems 
to be facilitated by the enzyme Angiogenin following 
induction of stress [9-13]. tRNA fragments (‘tRFs’) have 
also been found to originate from cleavage of either the 
mature tRNA or the tRNA precursor molecule. In the latter 
case, RNase Z cleaves the 3´ part of the tRNA precursor as 
part of the maturation process with the resulting fragment 
also being considered a tRF [14, 15]. tRFs that are derived 
from mature tRNAs emerge after cleavage at either the 
D-loop (giving rise to 5´-tRFs) or the T-loop (giving 
rise to 3´-tRFs with the CCA addition present) and are 
approximately 20 nt long [15-17]. Further investigation 
into the enzymes responsible for the fragments has shown 
that the process is Dicer-dependent in several organisms 
[14, 18-20] but not in the mouse, the fruitfly Drosophila 
melanogaster, or the yeast Schizosaccharomyces pombe 
[21]. The generation of fragments is also Angiogenin-
dependent (cleaving the tRNA at the T-loop) [19] and 
RNase-Z-dependent (producing 5´-tRFs) [14]. 

The available evidence indicates that tRFs are not 
random degradation products [15, 18]. Indeed, some 3´-
tRFs are loaded on Argonaute thereby regulating RNA 
abundance [14, 21] and affecting physiological processes 
like cell growth [12], cell proliferation [15] and cellular 
responses to DNA damage [20]. tRFs have been shown 
to have regulatory roles in translation initiation [10] and 
stress granule formation [22]. 3´-tRFs have also been 
described to emerge in human MT4 T-cells after HIV 
infection from the host cell [23]. Further adding to the 
likelihood that they are not random in nature is the fact 
that tRFs have been described in mouse [24, 25], yeast 
[26, 27], the protozoan Giardia lamblia [28], Tetrahymena 
thermophila [29, 30], the bacterium Streptomyces 
coelicolor [31], and the archaeon Haloferax volcanii [32]. 

The idiosyncrasies of tRNA genomics necessitate 
that special computational provisions be made when 
building an analytical pipeline for the study of tRFs using 
next-generation sequencing datasets. Additionally, from 
an experimental perspective, conventional schemes are 
of little assistance and new biochemical approaches are 
needed to specifically amplify tRFs of interest. Lastly, 

from a patient perspective, it is important to investigate the 
extent and nature of functional tRFs that are contributed 
to the pool of active molecules in a given tissue and how 
they change between men and women, between races, 
and between individuals who belong to the same race but 
different population groups.

Below, we describe our interdisciplinary 
investigations of these questions and report on the 
findings that resulted from our study of two large datasets: 
lymphoblastoid cell lines derived from 452 men and 
women representing five human populations [33] and 311 
breast samples from the BRCA repository of The Cancer 
Genome Atlas (TCGA) at the National Institutes of Health 
(NIH) [34]. 

RESULTS

First, we describe the technical and algorithmic 
hurdles that we needed to overcome in order to properly 
analyze deep-sequencing data arising from nuclear and 
mitochondrial tRNA loci. We follow by describing the new 
molecular category of i–tRFs, and our discovery of the 
multiple dependencies of the tRNA fragments on disease 
and on the characteristics of individuals. We conclude by 
reporting on our experimental validation of two i-tRFs in 
22 normal and breast cancer samples and in eight breast 
model cell lines.

Background considerations

The proper analysis of tRNA sequences requires 
several considerations that go well beyond what is 
typically done when one maps RNA-seq data for the 
purpose of e.g., profiling the expression of miRNAs 
or mRNAs. Among other things, these considerations 
stem from the fact that tRNAs are repeat elements. 
Considering the hierarchy at hand, where each amino 
acid (at the top of the pyramid) has multiple associated 
anticodons (isoacceptors) and each anticodon has multiple 
associated genomic instances (isodecoders, at the bottom 
of the pyramid), our analyses seek to unravel for each 
tRNA fragment details at the lowest possible level of the 
hierarchy. We stress that due to the nature of the sequences 
at hand this goal is inherently unattainable in some 
instances. As many isodecoders have indistinguishable 
sequences, we report our results at the anticodon level, an 
intermediate level between isoacceptors and isodecoders. 
We also keep track of the genomic origins of all fragments 
reported (see the Notation section in Materials and 
Methods).

Nota bene: In what follows, all shown sequences are 
given in 5´3´ orientation. Also, the terms “tRNA-derived 
fragments”, ”tRNA fragments”, “tRFs” and “fragments” 
will be used interchangeably throughout the text. We use 
the terms “nuclear” and “mitochondrial” tRNAs to refer 
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to the nuclearly-encoded and mitochondrially-encoded 
tRNAs, respectively. However, this distinction of the 
origin of the DNA precursor template may not be entirely 
accurate from a biological standpoint: as we recently 
reported [35, 36], mitochondrially-encoded tRNAs have 
numerous lookalikes in the nuclear genome (see below 
and also Discussion).

Nomenclature: in what follows, we will be 
recognizing “three tRNA regions” and “three types of 
tRNA fragments.” The three tRNA regions are “+1,” 
“internal,” and “CCA-ending” and give rise to “5´-tRFs,” 
“i-tRFs,” and “3´-tRFs” respectively.

Data availability: In order to facilitate research on 
tRNA fragments, we include all the data matrices used 
in this study as Supplementary Tables. In addition, we 
make the data available through our website at https://
cm.jefferson.edu/tRNA-fragments-2015/.

Mapping with mismatches will generate erroneous 
results

Multiple sequence alignments of the genomic copies 
for a given anticodon reveal many instances of sequence 
segments that are shared among these copies and can be 
made to look like one another if one permits a small number 
of either insertions/deletions (indels), or replacements. 
These segments can occur anywhere across the length of 
the mature tRNA, and thus be present in tRNA fragments. 
Moreover, these segments can occur in the sequences of 
distinct anticodons of the same amino acid. Consequently 
permitting indels or replacements during read mapping 
will misidentify the genomic origin of a read and lead to 
erroneous results. As the following example highlights, 
problems can occur even if we excluded indels and 
allowed a single replacement. Let us consider the 5´-tRF 
GGGGAATTAGCTCAAG-T-GGTAGAGCGCTTGCT 
which appears at five genomic locations, all of which are 
AlaAGC tRNA instances. By contrast, the 32 nt sequence 
GGGGAATTAGCTCAAG-C-GGTAGAGCGCTTGCT, 
which differs from the previous one at a single 
location (TC), is a 5´-tRF of AlaAGC but appears 
at two different genomic locations that are distinct 
from the previous five. If we were to allow for read 
mapping with a single mismatch these two distinct 
5´-tRF molecules would become indistinguishable 
confounding any transcriptional differences that 
potentially exist among the seven loci where 
GGGGAATTAGCTCAAG-N-GGTAGAGCGCTTGCT 
is found. The problem is accentuated further when 
working with the typically shorter reads that are 
contained in “short” RNA-seq datasets. The 22 nt 
sequence GGGGGTGTAG-A-TCAGTGGTAGA 
is a 5´-tRF from the AlaAGC anticodon (trna117 
on chromosome 6). Allowing for exactly one 
mismatch makes this 5´-tRF indistinguishable from 

GGGGGTGTAG-C-TCAGTGGTAGA, which appears 
in 11 isodecoders of three Ala anticodons (AlaAGC, 
AlaCGC, AlaTGC) as well as in two non-Ala anticodons, 
namely CysGCA (trna7 on chromosome 3) and ValAAC 
(trna115 on chromosome 6). Thus, by allowing a single 
replacement during mapping, reads that arise from any one 
of these 14 genomic locations would be indistinguishable 
leading to cross-talk and consequent erroneous estimates 
about the abundance of 5´-tRFs arising from those tRNAs. 
To avoid such confounding events we do not permit indels 
or replacements in our analysis.

Mapping on tRNA space alone will generate 
erroneous results

It is tempting to consider compiling a database 
of tRNA sequences (e.g. by combining all the spliced 
nuclear and mitochondrial tRNA sequences) and 
then map the sequenced reads on this subset of the 
genomic real estate. Such an approach would be easy 
to implement, fast to execute, and seemingly adequate. 
Unfortunately, this approach is error-prone and will lead 
to misrepresentation of expression and miscalculation 
of relative abundances of the various tRNA anticodons. 
Indeed, in addition to the multiple instances of bona fide 
nuclear tRNAs, the human genome is also riddled with 
many instances of nuclear and mitochondrial tRNA-
lookalikes [35] as well as partial tRNA sequences. Thus, 
any and all reads that simultaneously land inside and 
outside “tRNA space” (see Methods) must be excluded 
from consideration since their tRNA provenance 
cannot be guaranteed. To achieve this objective all 
sequenced reads must be mapped on the entire genome. 
We illustrate this statement using as an example the 24 
nt sequence GCTCCAGTGGCGCAATCGGTTAGC. 
The sequence is a 5´-tRF of the IleTAT anticodon and 
appears identically at five genomic instances of this 
tRNA. However, this sequence also appears outside 
tRNA space on the forward strand of chromosome 7 
between locations 44465584 and 44465607 inclusive 
(GCh37). This sequence forms part of the 38 nt sequence 
GCTCCAGTGGCGCAATCGGTTAGCATGCGGTACTT 
ATA that spans locations 44465584 through 
44465621. Even though this 38-mer is labeled 
as a “tRNA” by RepeatMasker it is much shorter 
than the 93 nt of the typical IleTAT and thus not 
a bona fide tRNA: any reads with a sequence of 
GCTCCAGTGGCGCAATCGGTTAGC would need 
to be discarded as their provenance is obviously 
ambiguous. Consequently, we map the sequenced reads 
on the whole genome and discard all those reads that land 
simultaneously inside and outside tRNA space.

Another important consideration here relates to the 
nontemplated addition of the trinucleotide “CCA” to the 
3´ end of mature tRNAs. Since the post-transcriptionally 
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added CCA-tail is absent from the genome’s tRNA 
loci explicit provisions must be made in order to map 
such reads or they will be inadvertently excluded from 
consideration. At the same time, and depending on its 
length, a CCA-ending read can exist elsewhere on the 
genome and outside tRNA space. In such an event, the 
tRNA provenance of the CCA-ending read cannot be 
guaranteed and it too needs to be excluded from further 
consideration. 

Finally, we note that across all bona fide tRNA 
loci, and accounting for the CCA addition, there exist 
505,295 distinct tRNA fragment sequences solely in 
tRNA space with lengths between 16 and 50 nt inclusive 
(Supplementary Table S1). 

It is necessary to carry out exact multi-mapping

Typical pipelines that map deep-sequencing datasets 
report reads that can be mapped either unambiguously 
to a single location (“unique-mapping”) or to a small 
number of genomic locations. However, considering 
that the typical tRNA anticodon has multiple genomic 
instances, neither of these two choices is appropriate. 
As an example we note that the 72 nt AspGTC sequence 
TCCTCGTTAGTATAGTGGTGAGTATCCCCGCCTGT 
CACGCGGGAGACCGGGGTTCGATTCCCCGACGGG 
GAG appears identically at 11 genomic loci: five 
on chromosome 1, two on chromosome 6, three on 
chromosome 12 and one on chromosome 17. Since we 
work with short RNA-seq profiles, the typical read 
will be shorter than 72 nt, which will in turn increase 
the chance that a read is present at multiple genomic 
locations some of which may not even be related to 
tRNAs. The multiple instances of tRNA anticodons and 
the existence of repeating elements like pyknons [37] 
require that we carry out “exact multi-mapping” (i.e. no 
indels, no replacements) where we permit a read to map to 
practically as many locations as possible – see Methods. 
We then post-process the resulting maps and only keep 
reads all of whose instances are within tRNA space. For 
reads that map to multiple locations yet reside exclusively 
inside tRNA space we keep the read counts from only one 
such genomic locus to avoid multiple counting. 

TRNA fragments arise from three distinct regions 
of the mature tRNA span

The first analyzed dataset comprises the short-RNA 
sequencing profiles of lymphoblastoid cell lines (LCLs) 
from 452 men and women belonging to five different 
populations: Utah residents with Northern- and Western-
European ancestry (CEU), Finnish (FIN), British (GBR), 
Toscani Italians (TSI) and Yoruba Africans from the city 
of Ibadan (YRI) [33]. The second dataset comprises 17 
normal and 294 breast cancer samples covering the basic 

hormone profiles from The Cancer Genome Atlas (TCGA) 
repository at the National Institutes of Health (NIH) [34]. 
After filtering out tRNA fragments with low support, 
we were left with 1,573 tRNA fragments in the LCL set 
and 437 in the BRCA set. In what follows, we will use 
LCL to refer both to the analyzed 452 individuals and 
the corresponding collection of 1,573 tRNA fragments. 
Analogously, we will use BRCA to refer both to the 
analyzed 311 primary datasets and the corresponding 
collection of 437 tRNA fragments. We have included 
the filtered datasets in Supplementary Tables S2 and S3. 
We should note here that it is likely that in both of these 
datasets the quantity of tRNA fragments is lower than 
the actual abundance in the biological sample, due to the 
possibility that some fragments do not have a phosphate 
group at the 5´ end or have a phosphate group at the 
3´ end. This is a known limitation of the field of tRNA 
fragment biology at large [21, 38] and is not unique to our 
analysis. 

We categorized each of the fragments based on 
the specifics of its endpoints within the span of the 
corresponding mature tRNA and discovered evidence 
for the following three categories of tRNA fragments: 
a) fragments whose 5´ terminus begins exactly at the 
1st nucleotide of the corresponding mature tRNA (“+1” 
fragments or 5´-tRFs); b) fragments that are strictly 
internal to the mature tRNA sequence, i.e. whose 5´ 
terminus begins at the 2nd nucleotide or further to the right 
and whose 3´ terminus ends to the left of the first “C” 
of the nontemplated “CCA” addition to the mature tRNA 
(“internal” fragments or i-tRFs); and, c) fragments whose 
3´ terminus coincides with any of the bases of the “CCA“ 
terminal addition (“CCA-ending” fragments or 3´-tRFs). 
The categories of fragments starting at position +1, and the 
ones within the CCA tail have been described previously 
and are known as 5´-tRFs and 3´-tRFs, respectively. 
However, although there were signs of the presence 
of i-tRFs in early studies [15, 18] they have not been 
recognized and defined until now as a distinct and rich 
category of abundant tRFs, in either cell lines or in human 
tissues. Supplementary Figure S1 shows a schematic 
presentation of the tRFs mapped on one tRNA instance. 
Below, we present multi-faceted evidence that i-tRFs are 
distinct from both 5´-tRFs and 3´-tRFs and, thus, represent 
a new category of tRNA-derived fragments.

The i-tRFs have atypical lengths that are 
characteristic of the internal region and distinct 
from those of 5´-tRFs and 3´-tRFs

We histogramed the lengths of the reads mapping 
to the internal region and compared them to those of the 
two known categories of tRNA fragments (5´-tRFs and 
3´-tRFs). Figures 1A-1D show the length distributions for 
the 452 individuals of the LCL dataset. As can be seen 
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Figure 1: Atypical tRNA fragment lengths. Fragment lengths in the 452 individuals of the LCL dataset (A-D) and the 311 breast 
samples (E-H). A and E: the length distribution for “internal” fragments only. B and F: the length distribution for 5´-tRFs only. C and G: 
the length distribution for 3´-tRFs. D and H: the length distribution for all fragments combined. See also text for a detailed explanation of 
these three shown regions. Error bars are present but barely visible in this Figure and capture standard error across the 452 individuals (A-
D) and across the 311 breast samples (E-H). Note the rightmost label of the X-axis in E-H: we opted for this label in order to indicate that 
the observed 30-mers are likely truncated versions of longer-length fragments.
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from Figure 1A, in these datasets i-tRFs are dominated 
by a single length, namely 36 nt. By our definition, the 
5´ terminus of i-tRFs begins at position +2 of the mature 
tRNA, or further to the right: consequently, the internal 36-
mers in LCL comprise the full anticodon triplet (typically 
centered at position +34 of the mature tRNA sequence) 
and thus they straddle the point that has been typically 
associated with the terminus of tRNA halves. Figures 1B 
and 1C show the length distributions for the +1 and the 
CCA-ending regions. In Figure 1D we show the combined 
length distribution. As is evident, each of the three tRNA 
regions gives rise to fragments with characteristic length 
profiles and specific relative abundances. Importantly, the 
very small standard errors (too small to be visible in the 
four panels) indicate that the lengths of these fragments 
persist across each of the three regions and across the 452 
individuals and thus are not random degradation products. 

In the tRNA literature, the 5´-tRFs have been 
associated with lengths of 18, 22, and 32 nt. In addition to 
identifying fragments with these lengths, our analysis of 
the LCL datasets revealed a prevalence for fragments with 
lengths of 20, 26, 33 and 36 nt: we are not aware of these 
lengths having been associated previously with 5´-tRFs. 
Similarly, in LCL, the CCA-ending fragments (3´-tRFs) 
show prevalence for lengths of 18, 22, 33 and 36 nt. More 
than half of these 33-mers and 36-mers start after the 
anticodon, which makes many of these fragments distinct 
from the typical tRNA-halves and thus complementary 
to the previously reported length-families of 3´-tRFs. It 
is also worth noting that all the 3´-tRF 33-mers and more 
than half of the 3´-tRF 36-mers (26 out of 43) originate in 
mitochondrial tRNA genes.

We repeated the same analysis for the 311 TCGA 
BRCA datasets. Figure 1E-1H shows the corresponding 
length distributions. Note how different the i-tRF 
distribution (Figure 1E) is from those of the 5´-tRFs 
(Figure F) and the 3´-tRFs (Figure G): i-tRFs comprise 
a lot of fragments that are 20 nt long and virtually no 
fragments ≥30 nt, whereas the 5´-tRFs are characterized 
by a prevalence of fragments with lengths 19 and ≥30 nt. 
Just like the case of LCLs, the lengths of the fragments 
arising from each of the three regions have characteristic 
profiles and specific relative abundances. Moreover, the 
very small standard errors (barely visible in the Figure) 
indicate that the atypical lengths of these fragments remain 
consistent across the analyzed datasets. It is important to 
emphasize that these NIH-TCGA datasets were obtained 
by running the deep sequencing PCR for a total of 30 
sequencing cycles. Consequently, any short fragment that 
may exist in each sample’s milieu and is longer than 30 
nt [39], will be represented by a 30-mer “proxy.” Also, a 
considerable portion of the CCA-ending fragments in the 
BRCA datasets have lengths that have not been previously 
associated with 3´-tRFs [40]. In all, these datasets revealed 
several length families that have not been previously 
reported: these families comprise fragments with lengths 

of 16, 20, 21, and 23-29 nt and collectively account for 
21.2% of the 3´-tRFs in the BRCA datasets. Lastly, we 
note that we will delve further into the significance of 
the length distribution of i-tRFs in breast tissue in the 
following analyses.

i-tRFs represent a diverse new family of tRNA 
fragments

Our analyses revealed i-tRFs to be a surprisingly 
rich category with many of its members having 5´ termini 
that are away from the 5´ end of the mature tRNA: i-tRFs 
represent 27.5% of all fragments in the LCL and 21.0% 
of all fragments in the BRCA dataset. Figure 2 shows the 
distribution of the starting positions of the i-tRFs for the 
LCL (panel A) and BRCA datasets (panel B): for each 
starting position, the length distribution is also shown as 
colored bars, with the color of each bar representing the 
average expression of the respective fragment in the LCL 
or BRCA dataset. For the LCL dataset, internal 36-mers 
can begin anywhere within the D-loop of the mature tRNA 
(generally positions 12-22) or immediately after it (in 5´ 
 3´ orientation). As is evident, no specific position can 
be singled out as the preferred starting position of internal 
fragments in this dataset (Figure 2A). On the contrary, 
in the BRCA dataset, there are two main “clusters” of 
starting positions for the i-tRFs: a first cluster spanning 
positions 11-17 that generally reside in the D-loop and 
a second cluster spanning positions 32-43 comprise the 
anticodon loop and the variable loop of the mature tRNA. 
Importantly, each of the starting positions exhibited its 
own associated range of lengths for the fragments that 
began there: fragments that began at position 13 were 23, 
22 or 21 nt long whereas fragments that began at position 
15 or 16 were slightly shorter with lengths 19, 20, or 21 
nt. As we have already seen that these fragment lengths 
recur in both the LCL and BRCA datasets and have very 
small standard deviations (Figure 1), we surmise that the 
mechanisms behind the production of these fragments 
have specific preferences for the starting and ending 
positions and/or the length of the tRNA fragment. We 
conjecture that some of the molecules that appear to be 
30-mers in Figure 2B starting at positions 2, 34 and 36 
might be tRNA-halves that cannot be “seen” as such due 
to the 30-PCR-cycle limitation in the breast datasets that 
we mentioned above.

TRFs from all three regions exhibit diversities and 
abundances that depend strongly on the choice 
of anticodon and differ between nuclearly- and 
mitochondrially-encoded tRNAs

For each of the two collections of analyzed datasets, 
and separately for each anticodon, we enumerated the 
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fragments arising from all of the bona fide genomic 
instances of the anticodon being considered each time. 
In each case, we also determined how many fragments 
arise from which of the three regions of the mature tRNA, 
namely “+1”, “internal,” or “CCA-ending.” The results 
are summarized in Supplementary Table S4 (LCL datasets) 
and Supplementary Table S5 (BRCA datasets). We also 
enumerated the fragments originating from pseudo-tRNAs 
and from sequences of potential pseudo-tRNA origin and 
found them to be considerably fewer than those from true 
tRNAs (Supplementary Table S6).

In the LCL collection, we find 63 anticodons (from 
a possible total of 75 nuclear and mitochondrial ones) that 
generate fragments with abundance levels that meet our 
mapping and filtering criteria. The mitochondrial tRNA 
GluTTC generates the highest number of distinct tRNA 
fragments followed by the nuclear LysCTT. Notably, we 
found that the diversity of fragments that arise from each 
of the three regions of the mature tRNA strongly depends 
on the anticodon at hand (Supplementary Table S4). 
Indeed, for some anticodons the “+1” region gives rise 
to the most diverse set of tRNA fragments (e.g. nuclear 
GluTTC) whereas for other anticodons most of the 

diversity is encountered in the internal (e.g. mitochondrial 
HisGTG) or the CCA-ending region (e.g. mitochondrial 
ValTAC). 

Analogously, in the BRCA collection, we find 
that 52 of the 75 possible nuclear and mitochondrial 
anticodons generate fragments satisfying our filtering 
criteria. As with the LCL datasets, here too the diversity 
of fragments that arise from each of the three regions 
of the mature tRNA strongly depends on the considered 
anticodon (Supplementary Table S5). Similarly to the 
LCL collection, the mitochondrial GluTTC produces the 
highest number of distinct fragments here as well whereas 
the mitochondrial ValTAC gives rise mainly to CCA-
ending fragments. 

The analysis of these two different types of datasets 
also revealed examples of anticodons where the fragment 
profile changes with the tissue type (see also below). 
For example, in the LCL datasets, the nuclear AlaACG 
generates predominantly CCA-ending fragments. On the 
other hand, in the BRCA datasets the anticodon’s 5´-tRFs 
are favored as well and are produced at a ratio of 1:1 
compared to the 3´-tRFs. Additional details can be found 
in Supplementary Tables S4 and S5.

Figure 2: Distribution of starting position and lengths for i-tRFs. 3D graphs showing the starting positions of the internal tRNA 
fragments, their span and lengths in the LCL (A) and BRCA (B) datasets. The positions are numbered with reference to the +1 position of 
the mature tRNA. The representative positions for the D- and T-loops as well as for the anticodon loop are highlighted with green boxes. 
The coloring of each bar is proportional to the relative abundance of each length of the fragments starting at that specific position as 
indicated by the respective color-key below each graph. The thickness of the projections on the right wall of the graph is proportional to the 
number of fragments spanning the specific position. For the LCL dataset, only the top 50% most expressed internal fragments are shown.
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Additionally, we found that the abundance of the 
tRNA fragments exhibits anticodon-dependencies as well. 
In fact, from this standpoint the differences between the 
LCL and the BRCA collections are more pronounced. 
In the LCL dataset, the relative abundances of different 
fragment lengths are due to fragments from different 
anticodons. As shown in Supplementary Figure S2, the 
mitochondrial SerGTC anticodon is responsible for 
68.7% and 80.4% of the contribution to fragments with 
the previously unreported lengths of 20 and 26 nt. On the 
other hand, for fragments of length 36 nt, it is the nuclear 
GluCTC, nuclear GluTTC, and the mitochondrial GluTTC 
anticodons that account for 37.9% of all 36-mers, with the 
rest being contributed by an assortment of anticodons. 
Interestingly, in the BRCA datasets, the mitochondrial 
ValTAC anticodon generates approximately 30.0% of the 
fragments with lengths of 20-23 nt (Supplementary Figure 
S3).

We further sought to examine the relationship 
between tRNA fragment lengths and abundances, and 
their genomic origin (i.e. whether nuclearly-encoded vs. 
mitochondrially-encoded). To this end, we decomposed 
the graphs of Figures 1D and 1H into their nuclear and the 
mitochondrial contributions (Supplementary Figure S4). 
We identified several statistically significant differences 
in the expression of nuclear and mitochondrial tRNAs 
in both the LCL and the BRCA dataset (Supplementary 
Figure S4). Notably, the 36-mers in the LCL dataset are 
predominantly from mitochondrially-encoded tRNAs, 
while the 33-mers are from nuclearly-encoded ones. This 

result, combined with the observations from Figure 1 on 
the region-dependencies of each length, suggests links 
between the length of a fragment, its DNA origin, and 
which of the three tRNA regions it is part of.

TRFs from the same anticodon have poorly-
correlated abundances

Considering the richness of fragments that can 
arise from a given anticodon (Supplementary Tables S4 
and S5), we investigated whether their abundances are 
correlated. Figure 3A shows a Pearson correlation heatmap 
for the fragments arising from the nuclear AspGTC in the 
LCL datasets. Figure 3B shows the analogous heatmap 
for the mitochondrial GluTTC in the BRCA datasets: as 
we saw above, this anticodon produces the largest number 
of fragments in the BRCA datasets and most of them are 
internal, i.e. i-tRFs. The abundances of reads originating 
from the three tRNA regions (i.e., “+1,” “internal,” 
“CCA-ending”) show a poor correlation. Similarly poor 
correlation characterizes fragments that arise from the 
same anticodon yet are of different lengths. We note 
however the existence of several small clusters in these 
heatmaps. For the nuclear AspGTC (LCL datasets – Figure 
3A), cluster 1a comprises internal and CCA-ending 36-
mers whereas cluster 1b captures mainly internal 32-mers 
and 33-mers. Cluster 2 comprises CCA-ending fragments 
that are 37 nt or longer. Cluster 3b contains CCA-
ending fragments between 24 and 27 nt whereas cluster 

Figure 3: Uncorrelated abundances. Heatmap of the Pearson correlation coefficient for statistically significant fragments. A: Case 
of tRNA fragments that arise from the nuclear AspGTC (trna10 on chromosome 12) anticodon in the LCL dataset. B: Case of tRNA 
fragments, mostly i-tRFs, which arise from the mitochondrial GluTTC anticodon in the BRCA dataset. Several mini-clusters are evident in 
each heatmap: however, there is correlation across the mini-clusters of the same tRNA (see text for a detailed explanation). Orange-colored 
labels mark the i-tRFs.
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3c comprises internal fragments between 17 and 23 nt. 
Analogous observations can be made for the fragments 
for the mitochondrial GluTTC fragments (BRCA datasets 
– Figure 3B): short internal fragments, generally of length 
21 nt or shorter, form cluster 3, while internal fragments 
of intermediate length (21-27 nt) comprise cluster 1. On 
the other hand, cluster 2 contains long internal fragments 
and all of the CCA-ending fragments from this anticodon. 
A mini sub-cluster of cluster 2 comprising the shorter 
CCA-ending fragments (22-25 nt) is also evident.

Examination of the Pearson correlation maps for the 
other anticodons shows that they are qualitatively similar 
to the ones shown in the two panels of Figure 3. This 
allows us to make two general observations. First, we find 
evidence in all anticodons for well-defined mini-clusters 
each of which contains only a few of the anticodon’s 
fragments: the members of each such mini-cluster have 
correlated abundances. Second, when we compare a given 
anticodon’s mini-clusters with one another, we observe 
a characteristic absence of correlation even in cases 
where fragments from two mini-clusters overlap on the 
mature tRNA sequence from which they originate (see, 
for example, the mini-clusters 1a and 2 in Figure 3A, or 
clusters 1 and 3 in Figure 3B). These observations, in 
conjunction with the very small standard errors across the 
452 (LCL) and 311 (BRCA) individuals shown in Figure 
1, give more weight to the view that the fragments from all 
three regions of the mature tRNA are constitutive in nature 
and not random degradation products.

TRFs have lengths that depend on tissue type and 
tissue state

Inspection of the distributions shown in Figures 1 
and 2 indicates that the specifics of 5´-tRFs, i-tRFs, and 
3´-tRFs depend strongly on the tissue. Looking at the 
BRCA datasets (and without distinguishing between the 
normal and tumor datasets), it is evident that the dominant 
fragments here have lengths between 19 and 24 nt and 
account for 60.2% of all tRNA fragments in this collection. 
By contrast, in the LCL datasets, the dominant fragments 
have lengths of 18, 33, and 36 nt and account for nearly 
50% of all tRFs. 

To increase our resolving power we further 
decomposed the BRCA fragment distributions of Figure 
1E-H into their two constituent parts, namely the subset of 
normal datasets and that of the tumor datasets (Figure 4). 

The tissue-type differences that exist between the 
normal BRCA and the normal LCL datasets are now more 
evident. In the internal region, 36-mers i-tRFs take the 
lion’s share in the LCL set (Figure 1A) whereas in the 
BRCA set 20-mer i-tRFs provide a modest contribution 
to the total pool of fragments in the normal breast datasets 
(Figure 4A). In the +1 region, 5´-tRFs with length 19 nt 
(Figure 4B) are the dominant population in normal breast 
(compare this with the 33-mers and 36-mers in the +1 

region in LCLs shown in Figure 1B). Lastly, the CCA-
ending region is dominated by 17-mer, 18-mer and 33-mer 
3´-tRFs in LCL (Figure 1C) yet shows a fairly uniform 
distribution in i-tRFs with lengths 17-24 nt in normal 
breast (Figure 4C).

Having decomposed the BRCA distribution into 
its normal (17 datasets) and tumor (294) components 
we next sought to identify similarities and differences 
that might depend on tissue state. We find that the most 
striking differences are among the i´-tRFs and the 5´-tRFs, 
which suggests an intriguing and currently unexplored 
interconnection between the two categories of fragments. 
As can be seen from Figure 4, the the proportion of 
internal fragments with length 20 nt is nearly halved in the 
tumor datasets compared to normal (p-val < 10-3) whereas 
the proportion of 5´-tRFs with length 19 nt and with 
lengths ≥ 30 nt more than doubles in the tumor datasets 
(p-val < 10-3 for both comparisons). It appears as if the 
normal datasets preferentially produce i-tRFs while also 
reducing the expression of the 5´-tRFs, with a reversal of 
this situation occurring in the tumor. Notably, the relative 
abundance for the rest of the i-tRFs and 5´-tRFs remains 
largely unchanged between normal and tumor. 

TRFs have relative abundances that are tissue-
specific and tissue-state-specific

In the context of messenger RNA (mRNA) 
expression studies, the abundance profiles of mRNAs that 
are common to two tissues can be used to tell the tissues 
apart (tissue-specific mRNA “signatures”). Similarly, for 
a given tissue, mRNA abundance profiles can distinguish 
between normal and disease states (tissue-state-specific 
mRNA “signatures”). Naturally, we wondered whether 
tRFs possess similar properties. 

To investigate the possibility of a tissue-specific 
profile, we focused solely on the 200 tRFs that are 
common to the following two datasets: a) the subset of 
253 female datasets from the LCL dataset (all of whom 
are healthy), and b) the 17 normal (female) datasets from 
the BRCA dataset. In Figure 5A, we show that a principal 
component analysis (unsupervised) of the abundances of 
these 200 fragments can easily distinguish between the 
two tissues. It is important to note how characteristically 
tight each of the two point clusters is: this indicates that 
the abundance profiles of these 200 tRNA fragments are 
very similar across all datasets belonging to the same 
cluster. We note that this evident within-group similarity 
of the tRF abundance profiles further supports the view 
that these fragments are constitutive in nature and not 
degradation products. 

As the LCL and BRCA datasets come from two 
distinct studies, we wanted to exclude the possibility 
that the differences we see are due to biases caused by 
either the sequencing methods and/or by the whole 
experimental handling of the datasets [41, 42]. Due to 
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the lack of standard datasets that were common to both 
studies, we truncated the data by rank-normalizing the 
two datasets. By ranking the expression in each dataset, 
much of the quantitative information is lost and only the 
relative ordering based on abundance is retained [43]. 
By performing PCA on this truncated dataset we can 
still distinguish easily the two datasets (Supplementary 
Figure S5), which indicates that the differences in the 
abundance profiles have a biological basis and are not 
due to experimental biases. We also used SAM [44], a 
non-parametric significance analysis method, to identify 
quantitative differences between the two datasets. We 
found that most of the fragments are differentially 
abundant between the two tissues (Supplementary Figure 
S5B). More than 30% of the significantly differentiated 
fragments are in fact i-tRFs (Supplementary Table S7), 
which further argues for the importance of this novel 
category of tRFs.

To investigate the possibility of a tissue-state-
specific profile, we formed a single group by combining 
all tumor datasets independently of hormone status. 
Unlike the above example, we are now dealing with an 

artificially increased underlying heterogeneity, the result 
of our having combined all breast cancer subtypes into a 
single group of datasets. We thus opted for a supervised 
clustering approach, namely PLS-DA [45]. Figure 5B 
shows that PLS-DA can easily distinguish between the two 
sets based on the abundance levels of these tRFs. It is also 
worth pointing out how the tumor dataset heterogeneity 
is reflected by the lack of tightness in the formed tumor 
cluster of Figure 5B. 

TRFs and in particular i-tRFs exhibit race-
dependent differences at the molecular, cellular 
and tissue levels

In recent work, we reported on transcripts whose 
abundance profiles differ across human races [46], 
between males and females of the same population [47], 
and between population groups [47]. Considering that 
both the LCL and the BRCA datasets include individuals 
belonging to different races, we sought to determine 
whether the abundance profiles of the tRFs exhibited any 

Figure 4: Fragment lengths in the breast datasets. Atypical tRF lengths in normal and tumor breast datasets. A: length distributions 
for the i-tRFs. B: length distributions for 5´-tRFs only. C: length distribution for the 3´-tRFs. D: length distribution for all the fragments 
combined. Green curve: normal dataset fragments. Red curve: tumor dataset fragments. For the 19-mer and 30-mer 5´-tRFs as well as for 
the 20-mer i-tRFs the statistical significance (Mann-Witney U-test; p-val < 10-3) between the normal and the tumor datasets is indicated. 
Error bars capture standard error across the analyzed groups of datasets.
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differences along this dimension. 
First, we compared the transcriptional profiles in the 

93 LCL datasets from the CEU (white, men and women) 
group vs. the 95 datasets from the YRI (black, men 
and women) group. Figure 6A shows the results of the 
(unsupervised) principal component analysis for these two 
subsets. As is evident, the 1st and 3rd principal component 
provide a good separation of the two groups with only 
modest crosstalk. This indicates that the tRNA fragments 
exhibit race-dependent transcriptional differences at the 
cellular level (EBV-immortalized B-cells). 

Second, we focused on the 78 triple negative breast 
cancer datasets from the BRCA dataset. This subset 
comprises an adequate number of black (16) and white 
(51) patients to permit statistical analyses. Because of the 
known underlying heterogeneity of this particular subtype, 
we opted for a supervised approach (PLS-DA). As Figure 
6B shows, there is an evident separation between the 
white and black patients that is again characterized by 
only modest crosstalk. This is analogous to the above 
result with the LCL datasets and indicates that the 
tRNA fragments exhibit race-dependent transcriptional 
differences at the tissue level as well.

Third, we investigated the possibility that such 
differences exist among populations. To this end, we 
decomposed the graphs of Figure 1A-1D into their 
constituent components, one for each of the five 
populations (the full graph for all populations is shown 
in Supplementary Figure S6). Qualitatively, the length 

distributions of all five populations follow a similar 
pattern. However, a closer look reveals statistically 
significant differences in the distributions of the 
tRF lengths among races. The left panel of Figure 
6C shows that the novel category of i-tRFs contains 
population-dependent differences: the YRI population 
is characterized by significantly lower abundance of 36-
mer i-tRFs compared to the TSI population. In Figure 
6C, two details from the CEU and YRI distributions 
are also shown on the middle and right panel. Here we 
see that there are nearly twice as many 18-mer 3´-tRFs 
in the YRI population compared to the CEU population 
(p-val ≤ 10-4). The situation is reversed for 33-mer 3´-
tRFs with the CEU population now having twice as many 
33-mers as the YRI population (p-val ≤ 10-4). These 
quantitative and statistically significant differences in the 
fragments produced by the CEU and YRI indicate that the 
tRNA fragments exhibit race-dependent transcriptional 
differences at the molecular level as well.

In light of these observations, we sought to 
determine which tRNA fragments have significantly 
different abundances between the CEU and YRI 
populations in a multivariate way. Using SAM [44], 
a nonparametric significance analysis method, at a 
strict FDR setting of 0.00% we identified 93 tRFs with 
differential abundances: 48 had lower abundance in the 
YRI datasets compared to the CEU ones whereas the 
remaining 45 had higher abundance (Supplementary 
Figure S7 and Table S8). Notably, we found that most of 

Figure 5: Dependence on tissue and tissue-state. Looking at tRFs that are present in two tissues we find that they have tissue- and 
tissue-state specific abundances. A: PCA (unsupervised) of the abundance levels of the 200 tRNA fragments that are common to female 
LCL datasets and to the normal breast datasets can distinguish between the two tissues. B: PLS-DA (supervised) of the abundance levels of 
the 437 tRFs found in the BRCA dataset can distinguish between the two groups. See also text.
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Figure 6: Dependence on race. Race-dependent abundance profiles for statistically significant tRNA fragments. A: Principal 
components analysis of fragment expression in LCLs. The CEU population (white) is represented by the yellow points whereas the YRI 
population (black) is represented by the magenta points. Both men and women from the two populations were included in this analysis. 
The number next to the label of each axis indicates the amount of variance that the corresponding principal component explains. B: Partial 
Least Squares – Discriminant Analysis on the tRNA fragments in the 78 triple-negative-breast-cancer datasets. The yellow points represent 
white patients where the magenta dots represent black patients. See also text for details. C: Relative abundances of 36-mer i-tRFs for the 
FIN and YRI populations (left panel) and 18-mer 3´-tRFs (middle panel) and 33-mer 3´-tRFs (right panel) for the CEU and YRI datasets. 
The differences for all three comparisons are statistically significant as indicated by the respective p-value on each graph (Mann-Whitney 
U-test). Error bars capture the standard error of the relative abundance of each type of fragments for n = 93 (CEU) and n = 95 (YRI) 
datasets. D: Map of the nucleotides of differentially expressed fragments between the YRI and the CEU populations as projected on the 
respective mature tRNA. Each base is colored based on the number of distinct fragments containing it. As reference for the LysCTT, the 
trna10 of this anticodon on chromosome 16 was used. The full list of significantly differentiated fragments between the two populations is 
included in Supplementary Table S8.
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the differentially abundant fragments are i-tRFs, which 
further highlights the significance of the internal region. 
The majority of tRNA fragments that exhibit lower 
expression in the YRI group originate in the mitochondria: 
specifically, they are i-tRFs from the internal region 
of the mitochondrial SerGCT tRNA that straddle the 
anticodon (they begin around position +13 and end around 
position +43) (Figure 6D). In addition to SerGCT, the 
mitochondrial ValTAC and mitochondrial PheGAA also 
contribute considerably to the list of fragments that are 
differentially expressed between CEU and YRI. 

Among the fragments that had higher expression 
in the YRI datasets compared to the CEU ones and were 
identified by SAM, those originating from the nuclear 
LysCTT anticodon dominated. Of the 45 tRNA fragments 
that are significantly significant, 30 arise from the LysCTT 
template. An additional 5 statistically significant tRNA 
fragments with higher abundance in the YRI datasets 
are contributed by the LysTTT anticodon. Only 2 of the 
30 statistically significant LysCTT fragments begin at 
position +1, and, thus, are classic 5´ tRNA-halves). The 
remaining 28 of the 30 statistically significant LysCTT 
fragments are i-tRFs, i.e. they arise from the internal 
region: they begin between positions 2 and 7 inclusive of 
the mature tRNA and end just before the anticodon triplet 
(position +33 using trna10 of LysCTT on chromosome 13 
as a reference, Figure 6D); these i-tRFs have no apparent 
length consensus (21-33 nt).

TRFs exhibit gender-dependencies

We also examined the possibility that the tRFs 
show differences across gender boundaries. As mentioned 
above, we recently reported on transcripts whose 
abundance profiles differ between males and females [47], 
thus making this a possibility worth investigating.

Among the 452 individuals of the LCL dataset, 
both genders and the five populations (CEU, FIN, GBR, 
TSI, YRI) are represented evenly. Our analyses indicate 
that there is a tendency for separation but not a sharp 
discrimination between the two genders. Focusing on the 
internal fragments, we first decomposed the fragment 
length distributions of Figure 1A but did so separately for 
men and women and for the five populations. Figures 7A 
shows two details of the distributions for men and women 
(YRI datasets only) for the internal 36-mers. These i-tRFs 
are less abundant in YRI males compared to YRI females 
(p-val = 0.036). Figure 7B shows an analogous detail for 
CCA-ending fragments for men and women (TSI datasets 
only). In the TSI population these 22-mers are more 
abundant in women compared to men with the difference 
been statistically significant (p-val = 0.018). Using PLS-
DA on the TSI men and women we can discern a trend 
for separation of the two genders (Figure 7C). Among the 
fragments that are significant for the construction of the 
PLS-DA-driven separation (VIP scores > 1.5) more than 

half (49 out of 94; Supplementary Table S9) are i-tRFs. 

The abundances of tRFs depend on disease 
subtype

The different tumor subtypes captured by the BRCA 
datasets we analyzed allowed us to investigate whether 
the profiles of tRFs differ between tumor subcategories. 
For this analysis, we focused on three subsets: the normal 
breast datasets, the ER-/PR-/HER2- (triple negative) 
datasets, and the ER+/PR+/HER2+ (triple positive) 
datasets [48]. Since we have already shown that the tRF 
profiles are race-dependent, we chose to work with a single 
race and in particular white women who were represented 
in the BRCA collection at adequately high numbers (15 
normal, 24 triple positive and 51 triple negative datasets). 

We performed pair-wise PLS-DA analyses and 
found that in all three cases, the two subtypes being 
compared can be discriminated clearly from one another 
(Figure 8 – panels A, B and C). Importantly, the ability 
to discriminate the two tumor subtypes based on tRNA 
fragment abundance suggests a potentially significant 
role for these fragments in the respective biology of these 
breast cancer subtypes. 

All of the statistically significant tRFs had lower 
abundance in the tumor datasets compared to the normal 
datasets (Figure 8D). We cross-validated the findings 
through an independent SAM analysis (see Methods, 
Supplementary Table S10, and Figure S7). In concordance 
with the PLS-DA model, SAM also identified the same 
17 fragments as having lower abundance in each tumor 
subtype compared to the normal datasets. Triple negative 
tumors were characterized by an additional 19 fragments 
that had lower abundance in the tumor compared to the 
normal datasets (for a total of 36 fragments in the triple 
negative subtype). It is important to also note that the 
majority of differentially abundant tRFs in the two normal 
vs. tumor comparisons are from the internal region, i.e. 
i-tRFs (Figure 8). On the other hand, in the intra-tumor 
comparison, the differentially abundant tRFs are all 5´-
tRFs and most of them are 19-mers from different genomic 
loci of the nuclear ArgTCG anticodon (Supplementary 
Table S10). These findings are in concordance with 
Figures 4A and 4B and were validated by two independent 
statistical methods (PLS-DA and SAM), which in turn 
suggests the existence of concrete differences in the 
abundance of the tRNA fragment population in the two 
disease subtypes.

TRFs are loaded on Argonaute in a cell-line-
specific manner

Previous work [20, 21, 49] demonstrated that tRFs 
can be loaded on Argonaute (Ago) which indicates that 
one of their functions is through the RNAi pathway. We 
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are not aware however of any reported studies that have 
examined differential Ago-loading of tRFs as a function 
of tissue, tissue-state, race, or disease subtype. To this 
end, we analyzed the publicly available Ago HITS-CLIP 
datasets for three different breast cancer cell lines each of 
which models specific breast cancer categories [50]. For 
consistency, and since the TCGA-BRCA dataset contained 
only reads ≤ 30 nt, we analyzed the HITS-CLIP datasets 
using only fragments ≤ 30 nt long. We included the filtered 

raw data in Supplementary Table S11. 70 of the abundant 
fragments originated in the internal (i-tRFs) and 68 in the 
CCA-ending (3´-tRFs) regions; by comparison, only 25 
abundant 5´-tRFs were loaded on Argonaute.

As we demonstrated above, the triple negative and 
triple positive breast tumor subtypes can be discriminated 
based on the transcriptional abundance profile of their 
tRFs. Thus, we first examined if the Ago-loaded tRNA 
fragments can also distinguish between these two tumor 

Figure 7: Dependence on gender. Differences in the abundance of tRNA fragments between men and women. A: Detail from the 
length distributions for YRI men and women for internal fragments. B: Detail from the length distributions for TSI men and women for 
CCA-ending fragments. The difference in abundance is statistically significant in both comparisons (Mann-Whitney U-test). Error bars in 
(A) and (B) capture standard error across the analyzed groups of datasets. C: PLS-DA graph of TSI men and TSI women showing a trend 
for gender-specific tRNA profiles. The important fragments for the projection (VIP score > 1.5) are provided in Supplementary Table S9.
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subtypes: as shown in Figure 9A, unsupervised PCA can 
easily separate the BT-474 (triple positive) and MBA-231 
(triple negative) cell line data (three replicates each). This 
is further corroborated by the independent clustering of 
the same data by Hierarchical Clustering (Figure 9B). 
This is an important and interesting result: what drives 
this separation is not the presence or absence of specific 
tRFs but rather their differential Ago-loading in each cell 
line. Indeed, we refer the reader to the Venn diagram of 
Supplementary Figure S9A where we examine the overlap 

among the tRF populations in all three cell lines [50]: the 
Venn diagram shows that the vast majority of the Ago-
loaded tRFs are present in all three cell lines whereas there 
are only two out of the 163 tRFs that are unique to only 
one cell line. 

Additionally we examined the length distributions 
of all Ago-loaded tRFs with length ≤ 30 nt in the three cell 
lines. Interestingly, we found that each cell line has its own 
distinct profile of Ago-loaded fragments (Supplementary 
Figure S9B-E). In particular, BT-474 cells exhibited a 

Figure 8: Dependence on disease state. Differences in the tRNA profiles between normal and disease states (in white individuals 
only). A: PLS-DA graph for the discrimination of normal and triple positive datasets. B: PLS-DA graph for the discrimination of normal 
and triple negative datasets. C: PLS-DA can also discriminate between the two subtypes. D: The fragments that are important for each 
separation were used to identify disease subtype-specific abundance changes. The number of fragments with higher or lower abundance 
is indicated next to each arrow; the number of i-tRFs in each case is shown parenthesized. Each arrow represents a comparison between 
two groups: the start of the arrow indicates the “control” group compared to which the fragments in the “target” group (end of arrow) have 
altered abundance. A detailed list of the fragments is given in Supplementary Table S10.
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peak for 26-mers that is due mainly to i-tRFs. On the other 
hand, MDA-MB-231 had a prevalence for Ago-loaded 16-
mers, 17-mers, and 21-mers 3´-tRFs and for 23-mers that 
are of internal origin (i-tRFs). In MCF-7, we also noted a 
“gradient” in the length of Ago-loaded fragments per tRNA 
region. The +1 region contributed the longest (28-30 nt) 
among the Ago-loaded fragments whereas the CCA-ending 
region contributed the shortest (16-18 nt) among them. 
In MCF-7, the internal region was represented by Ago-
loaded tRNA fragments with intermediate lengths (21-
23 nt). SAM analysis identified seven fragments that are 
loaded in statistically significantly fewer amounts on Ago 
in MDA-MB-231 compared to BT-474 (Supplementary 
Figure S9F and Supplementary Table S12): six of these 
seven differentially expressed fragments are i-tRFs and 
from two specific anticodons: the mitochondrial ProTGG 
and the nuclear HisGTG. These findings support a model 
where the tRNA fragments are preferentially Ago-loaded 
in a manner that is cell-line-specific, presumably reflecting 
disease-subtype specificity. The findings also corroborate 
recently proposed functional roles for the shorter among 
the tRFs [20, 21] through their participation in the RNAi 
pathway as miRNA-like entities.

Fragment-specific PCR-based validation of 
expression of internal tRNA fragments

As the tRFs that arise from the internal region of 
mature tRNAs represent a novel category of tRFs we 

sought independent experimental validation for these 
novel molecules. For this purpose, we selected one 
i-tRF that begins within the loop region of the D-loop 
of AspGTC and ends at the anticodon (Figure 10A) and 
one that starts before the anticodon loop and ends at the 
T-loop of GlyTCC (Figure 10B); both fragments were 
identified repeatedly in our analyses of the BRCA datasets. 
What makes the quantification task challenging is the 
requirement to amplify the fragment while also specifically 
ensuring that the amplified molecule has exactly the 
endpoints captured by the RNA-seq datasets. To this 
end, we devised a novel PCR method [51] that is able to 
detect only RNA molecules with specified length and with 
specified endpoints; the method relies on the ligation of 
specific adaptors followed by TaqMan PCR quantification 
(Supplementary Figure S8; see Methods). We also 
exploited the Multiplex miRNA Assay [52, 53], a method 
with single nucleotide specificity, for quantification of the 
second tRF. The starting material for our experiments was 
total RNA extracted from 11 breast tumor and from 11 
adjacent normal breast samples (Supplementary Table S13 
lists the hormone profile of these samples, the pathology 
diagnosis etc.) for the quantification of the fragment from 
the AspGTC tRNA and total RNA from eight different 
normal or breast cancer cell lines for the quantification of 
the GlyTCC-derived fragment.

Each tissue RNA sample was subjected to ligation 
with specific adaptors for the tRF from the AspGTC 
anticodon (Supplementary Table S14; Supplementary 
Figure S8) and to q-PCR quantification as outlined in 

Figure 9: Ago-loading dependence on cell sub-type. Cell-line-specific Ago-loaded tRF profiles. Unsupervised PCA (A) and 
Hierarchical Clustering (B) discriminated the replicates of two model cell lines for triple negative (MDA-MB-231) and triple positive (BT-
474) breast tumors. Kendall’s tau coefficient was used as distance metric for the dendrogram in (B).
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Methods (Supplementary Figure S10B). We were able 
to specifically amplify this i-tRF and to quantify its 
expression in 21 of the 22 experiments (Figure 10A). 
In five of the 11 analyzed pairs there was a statistically 
significant decrease in the tumor sample (p-val < 0.01; 
Student’s t-test) whereas in two other samples, the 
fragment’s expression was statistically significantly 
increased in the tumor (p-val < 0.01; Student’s t-test). 
These results validate the existence of the novel i-tRFs in 
independent samples and provide initial evidence that such 
fragments have differential abundance in health and breast 
tumors, in agreement to what we deduced from analyzing 
the BRCA datasets. The second i-tRF, from the GlyTCC 
tRNA, spanning the anticodon triplet was quantified in 

eight different normal and breast cancer cell lines using 
the Multiplex miRNA assay (Figure 10B). In all of the 
cases, the i-tRF was detected and found present in the cell 
lines significantly above the background threshold.

 We stress that our intent with these experiments 
was not to determine a “signature” of expression for the 
internal fragments at hand but rather to show that these 
i-tRFs are present in a variety of settings with relevance to 
breast cancer studies. Consequently, we analyzed datasets 
that correspond to different hormone profiles and come 
from patients representing two different races and for 
whom we have no knowledge of the specific population 
membership (such attributes have not been part of the 
typical questionnaire to date). With that in mind, and 

Figure 10: Internal fragments in breast samples and breast cell lines. Experimental validation of two internal fragments. 
A: Quantification of the i-tRF from the nuclear AspGTC anticodon in 11 breast tumor and 11 adjacent normal breast samples. N.D.: not 
determined; in this case, the fragment’s expression was too low to be detected. Stars indicate statistically significant changes in abundance 
(p-val < 0.01; Student’s t-test) between the tumor and adjacent normal tissue of the same subject. In all cases there were n = 3 repetitions 
of the experiments. Error bars show the standard deviation. B: Quantification of the i-tRF from the nuclear GlyTCC anticodon in eight 
different normal and breast cancer cell lines. Column height represents the average expression value and error bars the standard deviation 
of at least 10 independent measurements in each sample. On the right hand-side of (A) and (B), the examined fragment is highlighted in 
red. The anticodon triplet is highlighted by the black box. The genomic coordinates of the depicted AspGTC tRNA are from 125424264 to 
125424193, inclusive, on chromosome 12, while for the depicted GlyTCC tRNA are from 8124866 to 8124937, inclusive, on chromosome 
17. ER: Estrogen Receptor status, PR: Progesterone Receptor status, HER2: Human Epidermal Growth Factor Receptor 2 status.
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taking into account the dependence of fragment expression 
on population and race that we demonstrated in the earlier 
sections, the apparent diversity of expression shown in 
Figure 10 is expected.

DISCUSSION

In this report, we described our analyses of the 
personalized transcriptomes of many hundreds of 
individuals and our discovery of links between molecules, 
the tRNA fragments, and attributes such as tissue, 
disease, disease subtype, gender, population and race. 
These links are important because the molecules, which 
are part of the personal transcriptome signatures of each 
individual, were shown to be functional, constitutive, 
and identically present across like individuals. However, 
these molecules exhibit statistically significant differences 
across individuals who are dissimilar in one or more of 
these attributes. These findings build on our earlier reports 
of race-dependent differences in pseudo-gene levels [46], 
and, of gender-/population-/race-dependent difference 
in miRNA isoform levels [47]. They also provide a 
new perspective for our recent findings that the nuclear 
genomes of humans, primates, and marsupials, but not 
rodents, are riddled with lookalike copies of mitochondrial 
tRNAs [35, 36]. Another important element of our study 
is the discovery of i-tRFs, an unsuspected and previously 
uncharacterized family of functional molecules, whose 
composition and abundance, as we showed, contributes 
much of the difference we observe across individuals. 
The findings suggest that these molecular differences that 
depend, among other things, on gender, population and 
race, will need to be taken into account when deciding a 
therapeutic regime. 

With regard to tRNAs, our study contributes 
to the field’s current knowledge about tRNA-derived 
fragments. We extended the concept of tRFs to include 
fragments from mitochondrial tRNAs, described novel 
length families for 5´-tRFs and 3´-tRFs, and discovered 
and characterized a novel class of internal fragments, the 
i-tRFs, that are wholly contained to the interior of the 
mature tRNA sequence and straddle the anticodon. 

The project indeed required an interdisciplinary 
approach. The analysis of RNA-seq datasets at tRNA 
genomic loci imposed several constraints that needed 
to be taken into account and addressed. As we showed, 
exact multi-mapping on the whole reference genome is 
necessary as the sequences of tRNA genes have subtle 
differences and allowing mismatches during mapping 
will result in an ambiguous or erroneous deduction of 
the possible genomic origin(s) of each fragment. Using 
exact multi-mapping but mapping the sequenced reads 
on the tRNA space alone (and not on the entire genome) 
can also lead to erroneous results as there are multiple 
instances of partial tRNAs and tRNA-lookalikes in the 
human genome: if such non-tRNA loci are not taken into 

account, sequenced reads that may originate there would 
be erroneously treated as derived from bona fide tRNAs. 

What is our definition of tRNA space? In this 
analysis, the tRNA space comprises all 610 tRNA genes 
of the nuclear genome contained in the tRNA-scan-SE 
database [54], all 22 tRNA genes of the mitochondrial 
genome, and the eight tRNA-lookalike sequences 
in the nuclear genome that are identical copies of 7 
mitochondrial tRNA genes [35]. We are not aware of any 
previous studies that examined mitochondrial tRNAs 
for their potential to generate tRNA fragments. Thus, 
we included mitochondrial tRNA genes in our analyses. 
Doing so greatly complicates the ensuing analysis as the 
22 mitochondrial tRNAs have hundreds of non-identical 
lookalikes across the human genome [35]. Their presence 
requires additional bookkeeping that would exclude any 
reads that map simultaneously on mitochondrial tRNAs 
and their nuclear non-identical lookalikes. 

Inclusion of mitochondrial tRNAs in the analysis 
proved particularly fruitful, especially in light of our 
recently reported findings [35, 36]. In fact, it allowed us 
to demonstrate that the concept of tRFs extends beyond 
nuclear tRNAs, and to identify a significant number 
of statistically significant such fragments. Moreover, 
we showed that several of the mitochondrial tRFs 
exhibited race-dependent abundance profiles (Figure 
6). The finding that mitochondrial tRNAs can serve as 
a source of fragments is important when considered in 
the context of mitochondrial biology. Mitochondria are 
involved in multiple cellular functions and are the point of 
convergence of many biological processes [55, 56], e.g. by 
conducting and regulating metabolic pathways, apoptosis 
[57] and signaling pathways [58, 59]. Importantly for our 
study, mitochondria have been linked to many diseases 
that are caused by mitochondrial tRNA dysfunction [60] 
and, presumably, a concomitant dysregulation of the 
corresponding tRFs. In this regard, the links between 
the abundance of full-length tRNAs and the abundance 
of fragments have not been characterized and await 
elucidation. Such links will be especially interesting in 
the context of diseases. For example, in breast cancer, 
and in cancer in general, tRNA levels have been shown to 
increase [61, 62]. On the other hand, as shown in Figure 8, 
the abundance of tRFs in tumor datasets exhibits a global 
decrease compared to the levels in normal tissue. This 
observation becomes particularly intriguing in the context 
of cancer biology considering that the fragments from 
the same anticodon have poorly correlated abundances 
(Figure 3). 

The addition of the eight identical nuclear copies 
mitochondrial tRNAs to the reference tRNA space allowed 
for further expansion of our results. In both of the analyzed 
datasets, LCL and BRCA, the mitochondrial GluTTC 
anticodon produced the largest number of fragments. The 
respective tRNA gene has an identical (100%) nuclear 
copy on chromosome 5: had we not included this nuclear 
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copy to the reference tRNA space we would have excluded 
a considerable number of tRFs. Naturally, many important 
biological questions arise that pertain to the possible 
biogenesis of these fragments; we examine these topics 
below. On the other hand, one should be careful not to 
include non-identical tRNA-lookalikes in the tRNA space: 
doing so is likely to lead to erroneous results as these loci 
may be evolutionary descendants that have diverged from 
their original tRNA function.

Another key technical point that had to be considered 
in our tRNA analyses relates to the fact that the genomic 
sequence does not capture the entire sequence of a mature 
tRNA. The nontemplated CCA addition at the 3´ end and 
the excision of tRNA introns are tRNA-specific processes 
that were taken into account explicitly when mapping 
the sequencing data. Among our derived fragments are 
ones whose sequence is shared by the tail of the first exon 
and the head of the second exon, indicating that these 
fragments arise from the mature or semi-mature tRNA 
molecule: such reads too need to be treated specially since 
they cannot be mapped on the full genome (and mapping 
on tRNA space alone is not advisable either, as explained 
above). One such example is the fragment trna14_
TyrGTA_6_+_26569086_26569176@32.50.19__1_0_12, 
an internal fragment that maps solely on the 12 genes 
of the nuclear TyrGTA anticodon and spans the exon-
exon junction in all 12 cases. This 19-mer, which does 
not appear elsewhere in the genome, would have been 
discarded if special provisions were not made for handling 
tRNA introns. 

We emphasize that in this analysis we focused solely 
on fragments that are within the span of a mature tRNA. 
Consequently, we did not consider in our analyses any 
fragments that could derive from the precursor molecule, 
e.g. fragments that arise from the 3´ end of the precursor 
tRNA and are cut during maturation of the tRNA in the 
nucleus [5, 7]. Many aspects on the biogenesis of tRFs 
remain unknown, especially for the novel fragments that 
we report in this study, namely the new length-categories 
and the novel family of internal tRNA fragments. It is 
conceivable that there are multiple possible such pathways 
and that these can be independent for different types of 
fragments. Even though the existence of fragments 
that incorporate the nontemplated CCA addition and of 
fragments spanning two consecutive exons suggest a 
mature tRNA origin, extensive experimental work will be 
required for at least some of the fragments that we report 
in order to decipher the mechanisms and the cellular, 
molecular and environmental conditions that govern and 
drive the biogenesis. 

Among the many uncovered fragments is a 
considerable-in-size group of mitochondrial tRFs. We 
point out that at least some of these fragments may not 
have mitochondrial-specific localization and function. 
Previously, mature mitochondrial tRNAs were shown 
experimentally to be in the cytosol [63]. However, 

the existence of exact tRNA-lookalikes in the nuclear 
chromosomes and the evidence that they are transcribed 
[35], in conjunction with the transcriptomic signatures that 
we reported in this study, complicate matters, especially 
in the context of human disease. Indeed, based on the 
currently available evidence it is conceivable that at 
least some these fragments may originate and function 
outside of mitochondria and possibly independent of 
mitochondria.

If mature tRNAs indeed serve as the source of the 
reported tRFs, then the base modifications in the mature 
tRNA are probably carried by the fragments. One such 
example was recently shown for a mitochondrial 5´-
tRF where a known base modification caused specific 
sequence variations in the read sequence [38]. However, 
in humans, the global tRNA modification landscape 
is largely unknown making it currently impossible to 
comprehensively predict specific sites of variation. 
It is known that non-complementary nucleotides are 
frequently incorporated in cDNA synthesis during reverse 
transcription at the corresponding sites of modified bases 
[64, 65]. Mapping with mismatches is a double edge 
sword: it seemingly provides a solution to this problem but 
as we have demonstrated doing so will lead to biased and 
erroneous interpretations. An additional complication can 
emerge from the biogenesis of the fragments. At least a 
subgroup of them arises as a result of Angiogenin cleavage 
[10, 12, 22], an enzyme that leaves a cyclic phosphate at 
the 3´ end of the cleaved site [66]. The presence of the 
cyclic phosphate can hinder the ligation of the sequencing 
adaptors making such sequences ‘invisible’ to deep-
sequencing approaches without any prior treatment. 
Nonetheless, some of the Angiogenin-derived fragments 
can be deep-sequenced indicating that some of the 
fragments are not 3´-modified. Indeed, previous studies 
[21, 38], as well as the current study, demonstrate that a 
significant amount of knowledge on tRNA biology and 
tRFs can be extracted from deep-sequencing datasets. 
It is currently not known under which conditions these 
modifications will occur or which fraction of the resulting 
fragments carry them. However, these modifications 
affect only the abundance of the observed molecules 
[21] and do not give rise to any sequencing artifacts [21]. 
This represents a true and present limitation in attempts 
to combine the fields of tRNA biology and RNA-seq; 
comprehensive future studies will be needed to address 
these matters. 

It is important to emphasize that many of the 
fragments that we have discovered and described are 
distinct from what has been generically referred to as 
‘tRFs’ in the literature of the last several years [5, 7, 17]. 
In fact, in addition to having discovered 5´ and 3´ products 
similar to the previously reported 5´- and 3´-tRFs, we 
also found that the 5´ and 3´ regions of mature tRNAs 
constitutively give rise to distinct molecular species of 
different and concrete lengths and different and concrete 
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starting points (Figure 1). Moreover, we found a novel 
and very rich category of nuclear and mitochondrial tRNA 
fragments that are wholly internal to the mature tRNA 
sequence: this category includes fragments that begin in 
the loop region of the D-loop, long fragments that extend 
from the D-loop to the T-loop and straddle the anticodon, 
fragments that start at the anticodon and terminate 
within the T-loop, etc. One such internal molecule was 
previously described in the archaebacterion H. volcanii for 
the anticodon ValGAC and which gets cleaved at specific 
positions in the anticodon and the T-loop [32]. Instead, 
the internal tRNA fragments in our study arise from many 
anticodons, both nuclear and mitochondrial, originate 
from multiple yet consistent positions, while their origin 
and length attributes persist across individuals and are 
cell-type-dependent. Glimpses of the existence of i-tRFs 
were present in the early studies of the field with cell lines 
[15, 18] but neither research effort nor review publications 
pursued them until now or described them as a rich and 
distinct family of tRFs in eukaryotic organisms. We 
experimentally validated the existence of two members 
of this novel class of i-tRFs. Indeed, in independently 
obtained pairs of breast tumor and adjacent normal tissue 
from 11 different subjects, we specifically quantified the 
expression of an i-tRF and showed that for many of the 
pairs there were statistical differences between the normal 
and tumor tissue (Figure 10). In addition, we profiled eight 
different normal and cancer cell lines for a second i-tRF 
and found it present in all of them. Lastly, as evidenced 
from Figure 2, we have found many examples of 
fragments that have lengths and position similar to tRNA-
halves but which are not stress-related and are produced 
constitutively across many hundreds of people.

Our analysis also revealed that different cell 
types have different tRF abundance profiles and this is 
evidenced by the existence of LCL-specific and BRCA-
specific fragments. Although the LCL datasets are more 
deeply sequenced (2x) than the BRCA datasets, only half 
of the tRFs we discover in the BRCA dataset are present 
in the LCL dataset. Even if we confine ourselves to the 
common set of fragments, the two cell types/tissues 
(lymphoblastoid B-cells and the subset of normal breast 
tissue datasets) have distinct fragment abundance profiles 
(Figure 5). It thus follows that the lack of overlap in the 
identities of tRFs present in these tissues is unrelated to 
sequencing depth and instead reflects differences in the 
processes that give rise to and make use of these fragments 
in the two tissues.

Even when we restrict ourselves to the same tissue, 
we find that the abundance of tRFs is race-dependent; 
additionally, there are also glimpses of gender-dependent 
differences (Figures 6 and 7). The findings are in 
concordance with our previously reported race- and 
gender-dependent differences in the abundance of non-
coding RNAs in the LCL datasets [47] and in platelets 
[46]. 

Looking at different tissue states we find the tRFs 
to have specific and distinct abundance profiles as well. 
This is exemplified by the results summarized in Figure 
8: triple negative and triple positive tumors were found 
to have differences in tRNA fragment abundance both 
when compared to one another and when compared to 
the normal tissue. These cancers exhibit distinct clinical 
profiles, differences in survival rates and the patients have 
different treatment options [48, 67, 68]. In addition, it is 
becoming evident that triple negative BRCA exhibits race-
specific clinical and molecular characteristics [69, 70]. The 
link between the tRF profile and clinical attributes as well 
as the mechanisms behind the differences in the profiles 
among cancer subtypes remain elusive, but our findings 
provide evidence of a possible involvement of the tRNA 
fragments in breast cancer biology.

The above findings clearly suggest a functional 
involvement of the tRFs in arguably important molecular 
events. The repertoire of the fragments’ functional roles 
is probably not limited to a few cellular and molecular 
pathways, as the few tRFs that have been studied to 
date have been shown to regulate a diverse group of 
biological processes [5, 7, 17]. The possible functions 
may extend to novel and seemingly unrelated aspects 
of cellular mechanisms, as tRNA molecules have been 
shown to exhibit functional properties beyond translation 
[6, 71]. Focusing on the well-studied pathway of post-
transcriptional regulation, we examined the Ago-loading 
characteristics of the fragments in the context of breast 
cancer. By using a dataset with multiple replicates of 
Ago CLIP-seq in different breast cancer cell lines [50], 
we were able to confirm Ago-loading for the classical 5´- 
and 3´-tRFs as well as for the newly-discovered i-tRFs. 
Also intriguing was our finding that the specifics of Ago-
loading of these fragments depends on the cell line, and by 
extension on disease subtype. These data extend previous 
reports of association of the fragments with transcript 
regulation [14, 21, 49] while also paving the way for 
new functional analyses. As the shorter among the tRFs 
are sized approximately like miRNAs, it is reasonable to 
assume that such Ago-loaded fragments will be targeting 
other RNA transcripts; one such example was reported 
and studied recently [20]. Given the large numbers of 
fragments computational analyses in combination with 
the mining of Ago CLIP-seq data will prove useful in this 
context and are bound to uncover unknown aspects of 
post-transcriptional regulation. In this regard, we recently 
published a method for mining CLIP-seq data and deriving 
high-confidence miRNA-MRE heteroduplexes [72]. Our 
method is directly applicable to studying the potential 
roles of fragments with short tRNA fragments replacing 
miRNAs. 

In conclusion, we have presented a comprehensive 
and detailed analysis of two large publically available 
datasets that revealed a rich repertoire of tRNA-derived 
fragments many of which have not been previously 
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reported. In addition to uncovering a novel family of 
tRNA fragments that are wholly internal to the mature 
tRNA, we provided evidence for tissue-, cell-type-, cell-
state-, population- and race-dependent abundance profiles 
for all three categories of tRFs, namely 5´-tRFs, i-tRFs and 
3´-tRFs. Our results shine a new light on tRNA molecules 
and tRNA-derived fragments and provide previously 
unsuspected evidence that this ncRNA layer is highly-
dynamic and highly-regulated, and by extension important. 
The current study may seem to contribute to an already 
chaotic genomic complexity. Our view is decidedly 
optimistic and parallels that expressed in [73]: a more 
comprehensive characterization of the molecular players 
in a given context represents an important contribution to 
our attempts to design better and more targeted drugs. 

CONCLUSIONS

By analyzing two large publicly available datasets, 
we establish that tRNA loci are a rich source of constitutive 
fragments with unexpected dependencies. In particular, 
we demonstrate that the profile of these tRNA fragments 
depends qualitatively and quantitatively on the race and 
the gender of the individual. We also demonstrate that 
the profile depends on cell type: cells of different types 
exhibit distinct tRNA fragment signatures. Specifically 
for the breast cancer samples we also demonstrate that 
this signature can discriminate between races and among 
histological subtypes. However, the tRNA fragment profile 
in a given tissue type and tissue state is identical across 
individuals that belong to the same gender, population 
and race, strongly arguing for the fragments’ constitutive 
nature. A large contributor to these observed differences 
is a previously unreported and very rich category of 
constitutive tRNA fragments that are wholly internal to the 
sequence of the mature tRNA: using a recently published 
method we demonstrate for two internal tRNA fragments 
that they are present breast cancer and adjacent normal 
samples, and in breast cancer cell lines. 

MATERIALS AND METHODS

Notation

To facilitate the discussion about fragments, we will 
be augmenting the notation that is used by tRNAscan-
SE [54]. In particular, we tag the existing labels with 
fragment-specific information, namely the relative 
positions inside a reference tRNA and the number of 
appearances in other tRNAs of the same or different 
anticodons. For example, the augmented label trna116_Gl
uCTC_1_-_145399233_145399304@23.45.23__1_0_8 
refers to the tRNA fragment that has length 23 and spans 
positions 23 through 45 inclusive of the mature trna116 of 

GluCTC, the latter being located on the reverse (negative) 
strand of chromosome 1 between positions 145399233 and 
145399304 inclusive. In those cases where more than one 
genomic tRNA loci can produce this fragment, we chose 
only one tRNA locus to serve as a source-proxy. The last 
three numbers of the augmented label that follow the 
double underscore capture the following information: a) 
the number of different anticodons that may give rise to this 
fragment (1 in the above example), the number of pseudo 
tRNAs that also contain this fragment sequence (0 in the 
example), and, the total number of genomic loci within 
the tRNA space (see below) that are possible sources of 
the fragment (8 in this case). Lastly, for fragments whose 
3´ end is within the span of the terminal CCA we add 
the infix “CCA” before the double underscore as in, e.g., 
trna75_MetCAT_6_+_28912352_28912424@57.76.20.
CCA__1_0_2.

Defining the tRNA space

For the purposes of this study, we combined a) 
the 22 known human mitochondrial tRNA sequences 
(NCBI entry NC_012920.1 - http://www.ncbi.nlm.
nih.gov/nuccore/251831106); b) 610 (508 true tRNAs 
and 102 pseudo-tRNAs) of the 625 nuclear tRNA 
sequences from gtRNAdb [54]; c) the eight genomic 
intervals chr1:+:566062-566129, chr1:+:568843-
568912, chr1:-:564879-564950, chr1:-:566137-566205, 
chr14:+:32954252-32954320, chr1:-:566207-566279, 
chr1:-:567997-568065, and, chr5:-:93905172-93905240 
that correspond to exactly identical instances (tRNA-
lookalikes) of seven mitochondrial tRNAs TrpTCA, 
LysTTT, GlnTTG, AlaTGC (x2), AsnGTT, SerTGA, 
and, GluTTC respectively [35]. We excluded from the 
considered gtRNAdb entries the selenocysteine tRNAs, 
tRNAs with undetermined anticodon identity, and 
tRNAs mapping to contigs that are not part of the human 
chromosome assembly. In total, our reference tRNA space 
comprises 640 sequences. 

Mapping on the genome

The repeating nature of tRNA sequences requires 
that special steps be taken when mapping the RNA-seq 
data on the genome. In particular, we must:

i) allow for multiple hits. Recall that any given 
tRNA anticodon may have instances at multiple genomic 
locations. To account for this and properly map sequenced 
reads arising from such loci we permit any given 
sequenced read to potentially map to up to 10,000 distinct 
genomic locations. See also below about excluding some 
of the mapped reads from further consideration.

ii) seek only exact matches. As is known, and 
independently of the platform that is employed, sequenced 
reads occasionally contain errors that are manifested in 
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the form of nucleotide replacements, nucleotide insertions 
or deletions (indels), or various combinations thereof. 
Thus, to accommodate the possibility of such events a 
small number of indels and mismatches has typically been 
permitted during the mapping step of deep sequencing 
data: even though doing so may intuitively suggest more 
flexibility and improved mapping rates, when working 
with tRNAs this flexibility translates into localization 
errors. We thus use a conservative mapping strategy and 
allow only the exact mapping of reads on the genome 
without any insertions or deletions.

iii) map on the full genome (and not on the tRNA 
space only). As we discussed in the Results section above, 
compiling a database of all known tRNA sequences 
and then mapping the sequenced reads to it would miss 
the fact that some segments of the known tRNAs also 
appear inside non-tRNA sequences, and lead to incorrect 
conclusions. We thus map the sequenced reads on the full 
genome then post-process each mapped read and discard 
those that map both inside and outside the known tRNAs. 

iv) take into account the presence of the terminal 
CCA. Any sequenced reads that correspond to the 3´ of 
mature tRNAs will include the post-transcriptionally 
added terminal triplet CCA. Since we enforce strictly exact 
mapping of the reads, we cannot accommodate CCA’s 
presence by allowing an adequate number of mismatches 
(replacements). Instead, and prior to mapping, we create 
a modified instance of the genome where we use CCA 
to replace the three genomic nucleotides immediately 
downstream of each of the 640 reference mature tRNAs.

v) account for introns considering that 31 of the 
bona fide tRNAs contain introns. As our work focuses on 
mature tRNAs, we permit reads to span tRNA exon-exon 
junctions but discard reads that partially step on the intron 
segment of such tRNAs. 

Dataset normalization and statistical analyses

For each of the datasets, we built an expression 
matrix with each row representing a fragment 
independently of whether the fragment exists on 
multiple tRNA loci. Through a filtering step we excluded 
lowly expressed tRFs as well as fragments that were 
not supported by many datasets: for the LCL dataset 
collection, we required an expression of at least 30 reads 
in each of at least 30 of the datasets; for the smaller BRCA 
dataset collection, we required an expression of at least 
30 reads in each of at least 20 datasets; and, for the Ago 
HITS-CLIP-seq dataset, we required an expression of 
at least 30 reads in each of at least 3 datasets. The raw 
expression value of each fragment was normalized using 
the sequencing depth of the respective dataset and the 
normalized value entered in the expression matrix. For 
the LCL dataset, the deep sequencing was shared by 
seven independent laboratories and, thus, we imposed a 
further normalization step: using the five samples that had 

been sequenced in all seven laboratories, we estimated 
an average expression vector for each laboratory, 
identified the laboratory with the most sequenced samples 
(laboratory 1), and rescaled each fragment’s abundance by 
referring to this laboratory’s data. Rank normalization was 
performed in each dataset independently. For each dataset, 
each abundance value was substituted with its position 
(rank) in the dataset. When two or more values were equal, 
they were replaced by the average of the ranked values 
that were to be attributed to them.

Statistical analyses were performed using the R 
statistical package [74]. PCA was run with the prcomp 
function and PLS-DA with the plsDA function of the 
DiscriMiner package [75]. For SAM, we used the samr 
package [44] with 5,000 permutations with the exception 
of the MDA-MB-231/BT-474 comparison where 720 
permutations were performed. Heatmaps and hierarchical 
clustering of the correlation matrixes of the specific 
anticodons were done using the heatmap.2 function of 
the gplots package. Hierarchical clustering was also 
performed with the hcluster function of amap package 
using the Kendall’s tau coefficient as a distance metric and 
visualization was performed with the dendextend package.

For the comparison of the different breast cancer 
subtypes and normal datasets, we integrated the PLS-
DA and SAM outputs. Specifically, for each of the 
comparisons with PLS-DA, we extracted the VIP 
(Variance Importance in Projection) scores and kept 
tRFs that had a VIP score of at least 1.5. The filtered 
fragments were also analyzed using SAM to identify 
differentially expressed fragments between categories 
at a strict FDR of 0.00% (Supplementary Figure S6 and 
Supplementary Table S4). As it is unknown whether the 
relative abundance of the lengths of the tRFs follows a 
particular distribution, we used the non-parametric Mann-
Witney U-test to statistically evaluate the differences in 
the length histograms.

Selective experimental amplification of tRFs

As our study uncovered a new category of internal 
tRNA fragments we chose the following fragment for 
further experimentation with dumbbell-PCR:

This fragment was sought in independently obtained 
breast tumor datasets whose hormone profile is provided 
in Supplementary Table S10. Total RNA was extracted 
from tissue samples using Trizol (Life Technologies). 
For the quantification of this fragment, we used a special 
method that specifically identifies RNA molecules with 
specific endpoints and can discriminate between tRNA 
fragments whose endpoints differ by as little as 1 nt. The 
method is described in detail in [51]. Briefly the protocol 
had as follows: 0.1 μg of total RNA was used for ligation 
with 20 pmol of a 5´ stem-loop adaptor by the T4 RNA 
ligate 2 enzyme (New England BioLabs). Following 
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30 min incubation at 37oC, 20 pmol of a 3´ stem-loop 
adaptor were added, incubated for 30 min and left for 
overnight ligation at 4oC. Using 1 μL of the resulting mix, 
qPCR was performed with the One-step PrimeScript RT-
PCR kit (Clonetech) using 2 pmol of each of the qPCR 
primers and the specific TaqMan probe. The following 
served as negative controls: (1) qPCR with 10ng of total 
(unligated) RNA as template, (2) qPCR with no template, 
(3) ligation and wPCR with no template, i.e. only adaptors 
and primers mix. In all of the negative controls neither 
amplification signal nor a band at the target length on the 
electrophoreses could be detected. Electrophoreses were 
run on 3% MetaPhor Agarose gels (LONZA). QPCRs 
were run in triplicate and results were normalized to the 
U6 RNA using the 2(-Δ Δ C(T)) method [76]. It is noted 
that the Ct values for the tRNA fragments in the breast 
samples of Figure 10 ranged between 25 and 28 cycles. 
For U6 quantification, reverse transcription was performed 
with the SuperScript III Reverse Transcriptase kit (Life 
Technologies) and qPCR with the SYBR Select Master 
Mix (Life Techonologies). All used adaptor, probe and 
primer sequences are listed in Supplementary Table S11. 

The following fragment was chosen for 
quantification in eight different model cell lines:

 
using the FirePlex method (Firefly BioWorks). The 
cells were cultured in their specific culture media: 
DMEM (MDA-MB-231, MDA-MB-468), DMEM/F12 
(MCF-10A), EMEM (BT-20, MCF-7), L-15 (MDA-
MB-453, MDA-MB-157) and RPMI1640 (BT-549). 
RNA was extracted from each cell line using Trizol 
(Life Technologies) and was sent for quantification of 
the specific fragment with the Multiplex miRNA Assay 
(Firefly BioWorks) [52, 53]. Raw values are reported as 
the average of at least 10 independent measurements after 
subtracting the background noise. 
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