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ABSTRACT
Long non-coding RNAs (lncRNAs) play key roles in diverse biological processes. 

Moreover, the development and progression of cancer often involves the combined 
actions of several lncRNAs. Here we propose a multi-step method for constructing 
lncRNA-lncRNA functional synergistic networks (LFSNs) through co-regulation of 
functional modules having three features: common coexpressed genes of lncRNA 
pairs, enrichment in the same functional category and close proximity within protein 
interaction networks. Applied to three cancers, we constructed cancer-specific LFSNs 
and found that they exhibit a scale free and modular architecture. In addition, cancer-
associated lncRNAs tend to be hubs and are enriched within modules. Although there 
is little synergistic pairing of lncRNAs across cancers, lncRNA pairs involved in the 
same cancer hallmarks by regulating same or different biological processes. Finally, 
we identify prognostic biomarkers within cancer lncRNA expression datasets using 
modules derived from LFSNs. In summary, this proof-of-principle study indicates 
synergistic lncRNA pairs can be identified through integrative analysis of genome-
wide expression data sets and functional information.

INTRODUCTION

Recent analyses of the mammalian transcriptome 
revealed that an abundance of long non-coding RNAs 
(lncRNAs) lie interspersed with the coding genes [1]. While 
the functions of most lncRNAs remain unknown, growing 
evidence suggests that the like microRNAs (miRNAs), 
lncRNAs, mediate oncogenic or tumor-suppressing effects 
and may constitute a new class of cancer therapeutic targets 
[2, 3]. Moreover, it appears likely that many biological 
molecules, including miRNAs and lncRNAs, exert their 
effects by acting in combination rather than individually 
[4, 5]. But despite the growing appreciation of the 
importance of lncRNAs in normal physiology and disease, 
our understanding of the combined effects of the cancer-
associated lncRNAs remains limited.

Several recent studies suggest that lncRNAs play 
important roles in oncogenesis [6, 7]. H19, for example, 
is an lncRNA induced during liver development [8], but 
it also promotes glioma cell invasion by giving rise to 

miR-675 [9]. Other lncRNAs involved in various types 
of cancers include HOTAIR [10, 11], MEG3 [12], PVT1 
[13] and CDKN2B-AS1 [14]. Among those, levels of the 
lncRNA MEG3 are markedly lower in glioma tissues than 
adjacent normal tissues, and ectopic expression of MEG3 
inhibits cell proliferation and promotes apoptosis [12]. 
In addition, several earlier findings implicate PVT1 in 
the pathophysiology of cancer [15], and silencing PVT1 
expression using siRNA reduces cell proliferation and 
increases apoptosis in breast and ovarian cancer cell lines 
[16]. Another well-known potential cancer-associated 
lncRNA is PCA3, a prostate-specific molecule that is 
markedly overexpressed in prostate cancer. A noninvasive 
assay for urinary PCA3 expression is currently being 
developed as a clinical diagnostic [17].

Studies focusing the mode of action of lncRNAs 
suggest an intriguing hypothesis, that lncRNAs serve as 
flexible modular scaffolds [18–20]. In this model, lncRNAs 
contain discrete domains that interact with specific proteins. 
In this way, lncRNAs bring specific regulatory proteins 
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into close proximity to produce a functional complex. In 
addition, Ma et al. demonstrated that genes are regulated 
by lncRNAs in part through chromosome conformation 
capture, which suggests lncRNAs may act synergistically 
[21]. Although the modular RNA regulatory code remains 
to be tested, studying the modular regulation of lncRNAs 
and investigating their combined effects are important 
steps toward further definition of lncRNA functions on a 
system-wide level. One approach to classifying the putative 
functions of lncRNAs is through “guilt-by-association” 
[22]. This approach associates lncRNAs with biological 
processes based on a common expression pattern across 
cell types and tissues, and can therefore identify groups 
of lncRNAs that are associated with specific cellular 
processes [23, 24]. Analysis of coexpressed genes of 
lncRNAs has revealed significant coregulation of genes by 
lncRNAs, suggesting that lncRNA clusters may regulate 
biological processes synergistically. It has also been 
reported that combined lncRNA signatures enable more 
accurate prediction of patient survival than individual 
lincRNAs [25, 26]. Results from all of these studies attest 
to the importance of lncRNA synergism and indicate that 
integrating expression of correlated genes and functional 
information could enable identification of synergistic 
lncRNA pairs and simultaneously reveal their underlying 
functions.

Here we present a multi-step computational method 
for identifying significantly functional synergistic 
lncRNA pairs through the functional modules they jointly 
regulate. This entails integrating genome-wide lncRNA 
and mRNA expression profiles, functional information 
and protein interaction data. After assembling all the 
lncRNA-lncRNA functional synergistic pairs, we 
constructed a lncRNA functional synergistic network 
(LFSN, our strategy is illustrated in Figure 1). Applying 
this approach to three cancer types, glioblastoma 
multiforme (GBM), ovarian cancer (OV) and prostate 
cancer (PCa), we constructed cancer associated LFSNs 
having scale free and modular architectures, and 
investigated the properties of cancer-related lncRNAs 
within their corresponding synergistic networks. Our 
findings suggest that cancer-related lncRNAs are 
enriched in hubs and modules, and that the cancer-related 
lncRNA modules are associated with cancer prognosis. 
This study contributes to a comprehensive understanding 
of the synergistic behaviors of lncRNAs from the 
viewpoint of systems biology.

RESULTS

The lncRNA functional synergistic network 
(LFSN) across cancers

We are proposing a multi-stage method to gradually 
identify synergistic lncRNA pairs in cancer (Figure 1, 
see details in methods). On the basis of lncRNA pairs 

regulating at least one functional module, we assembled 
all synergistic lncRNA pairs into a LFSN, where nodes 
represent lncRNAs and edges represent their functional 
synergistic interactions. We applied this approach to 
three cancer types, GBM, OV and PCa, and constructed 
three cancer-specific LFSNs. In total, we obtained 35,584 
synergistic interactions among 2,798 lncRNAs for GBM, 
7,399 synergistic interactions among 1,104 lncRNAs 
for OV and 6, 908 synergistic interactions among 2,588 
lncRNAs for PCa (Figure 2A and Supplementary Table 
S1). This indicates that lncRNA pairs identified by our 
method simultaneously regulate multiple cancer-associated 
biological processes (BPs), which may contribute to 
carcinogenesis. In particular, a number of known disease-
related lncRNAs with high connectivity within the network 
were observed to co-regulate the cancer associated BPs. For 
example, an analysis of genome-wide DNA copy number 
alterations revealed the loss of LINC00032 in approximately 
one-fourth of tumors [27]. We observed that LINC00032  
co-regulated 285 functional modules with other lncRNAs, 
including the highly connected lncRNA RP11–290F20.1 
in GBM (left panel, Figure 2B). In addition, MEG3 has 
been shown to activate p53 and inhibit tumorigenesis and 
disease progression of several types of cancers [28, 29], 
including OV [30]. We found that MEG3 co-regulated 
142 functional modules with other lncRNAs, among 
which MIR22HG is associated with stress responses  
[31, 32]. These two lncRNAs act synergistically to 
regulate coagulation-related functions (middle panel, 
Figure 2B), which are associated with tissue invasion and 
metastasis. In PCa, we observed two lncRNAs with high 
connectivity that co-regulate the immune response (right 
pane, Figure 2B). The lncRNA RP11–538D16.2 regulated 
102 functional modules, while ENSG00000248849 
regulated 87 modules. In addition, ENSG00000248849 is 
subject to recurrent deletion in PCa, and shows significant 
overlap with a known disease lncRNA DLX6-AS1  
[33, 34]. All of these observations demonstrate the 
feasibility of using our method to identify lncRNA pairs 
through their synergistically regulating functional modules. 
Furthermore, the examples summarized above suggest 
that some disease-associated lncRNAs have especially 
high connectivity within the LFSN. Understanding the 
structure of LFSNs may provide additional insight into the 
tumorigenesis of certain types of cancer.

Properties of LFSNs

We initially explored the structure and organization 
of LFSNs in GBM, OV and PCa. We found that most 
lncRNAs interact with few lncRNA partners, while a quite 
few lncRNAs have large numbers of synergistic partners 
(Supplementary Figure S1A). Investigation of the degree 
distribution of the cancer-associated LFSNs revealed power 
law distributions, indicating that the LFSNs are scale free. 
These observations suggested that like many biological 
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networks, the structures of LFSNs were not randomly 
organized; instead, they were characterized by a core set 
of principles that distinguish them from random networks. 
We next analyzed the modular structure of each LFSN. As 
shown in Figure 3A, the number of modules decreased with 
increases in the k-value. We hypothesized that this reflected 
the tendency of lncRNAs to implement synergistic regulation 
as small modules rather than as individuals or as parts of 
larger modules. The same features were observed in OV and 
PCa. In total, approximately 74.92%, 51.25% and 38.14% of 
lncRNAs were involved in at least one module in GBM, OV 
and PCa, respectively.

Exploration of the chromosomes on which the 
synergistic lncRNA pairs were located showed that only 
1,918 (5.39%) lncRNA pairs in GBM, 422 (5.70%) pairs 
in OV and 474 (6.86%) pairs in PCa were located on the 

same chromosomes (Figure 3B). Although the number 
of lncRNA pairs co-localizing on the same chromosome 
in OV and PCa was small, the relation was significant  
(p = 0.057 and p < 0.001, respectively). In addition, 
12.62%, 14.22% and 10.13% of pairs locate within 
less than 10 Mb on the same chromosomes, but these 
proportions are not significantly higher than random. These 
results indicate that the majority of the synergistic pairs 
regulate the same function modules in trans, while a small 
fraction of lncRNA pairs synergistically regulate in cis.

Cancer associated lncRNAs tend to be hubs and 
enriched in modules

For each biological network, a key property is its 
connectivity, which reflects how often a node interacts 

Figure 1: The workflow to construct the LFSNs via co-regulating functional modules. The process involves three main steps. 
First, we identified the coexpressed genes for each lncRNA based on a linear regression model. Second, an lncRNA pair that synergistically 
regulates at least one functional module was identified. Third, we repeated the first and second steps for any lncRNA pairs, and assembled 
all the significant lncRNA pairs to construct a LFSN.
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Figure 2: The lncRNA-lncRNA synergistic network across cancers. A. The LFSNs in GBM, OV and PCa. A node represents 
a lncRNA, and an edge represents a synergistic action. B. Three examples of lncRNA synergistic pairs in each cancer. The known disease 
lncRNAs with high connectivity were selected as examples. The GO processes regulated by lncRNA pairs were also shown. The indirect 
dashed line represents the lncRNA synergistic action; the direct line represents the lncRNA regulation of the functional module.

Figure 3: The topological features of the LFSNs across cancers. A. Number of cliques at different k-values and cumulative 
ratios of lncRNAs in cliques with k-values are not bigger than k. The left y-axis represents the number of cliques under different k-values, 
corresponding to the blue line. The right y-axis represents the cumulative ratios of lncRNAs within cliques, corresponding to the yellow 
line. B. The chromosome distribution of lncRNA pairs in cancers.
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with other nodes. Hub nodes whose connectivities are 
extremely high are always very important nodes. For 
example, in the protein-protein interaction networks of 
various organisms, hubs tend to be essential proteins 
involved in maximal information exchange with other 
proteins [35]. We focused on lncRNAs that had been 
experimentally validated as disease lncRNAs. Notably, the 
connectivities of these disease lncRNAs were significantly 
greater than the connectivities of other lncRNAs within the 
entire network (Figure 4A, Wilcoxon rank sum test). This 
suggests disease lncRNAs are highly connected within the 
network and may be enriched in hubs. Because the number 
of experimentally validated disease lncRNAs is limited, 
we extended this set by identifying cancer-associated 
lncRNAs in each cancer type (details in Methods). 
Generally, the hub and cancer-associated lncRNAs defined 
in the three cancer networks examined were almost 
entirely separate with little overlap (Figure 4B). But 
When we tested whether the cancer-associated lncRNAs 
were more likely to be hubs, which we defined as the top 
10% of nodes with the highest connectivity within each 
network, we found that cancer-associated lncRNAs were 
significantly enriched in the hubs across all three cancers 
tested (Figure 4C, Fisher’s exact test).

Another important feature of a biological network is 
modularity. Modules are groups of highly interconnected 
nodes that are often involved in the same biological processes 
or pathways. In contrast to hubs and cancer-associated 
lncRNAs, we found substantial overlap of module lncRNAs 
across the three cancer types (Figure 4B). This is reasonable 
and understandable since modules mainly reflect their 
underlying biological processes. The cancer-associated 
lncRNAs showed a significant enrichment in modules across 
GBM and OV (Figure 4D, Fisher’s exact test). This suggests 
that cancer-associated lncRNAs work more synergistically 
and reflect the group behavior, making it likely that they are 
more informative regarding tumor initiation and progression.

Synergistic lncRNAs modulate cancer-associated 
hallmarks

Although the biology of cancer is extremely 
complex, that complexity can be reduced and represented 
by a few cancer hallmarks that enable tumor growth and 
metastasis [36]. These hallmarks provide a framework 
for understanding the remarkable diversity of cancers. 
To further understand the functional roles of synergistic 
lncRNA pairs in carcinogenesis, for each LFSN, cancer 
hallmarks associated lncRNA pairs were selected to form 
cancer hallmark subnetworks. This analysis showed 
that several cancer hallmarks were deeply involved in 
the three LFSNs (Supplementary Figure S2), but with 
different cancer specificities. In brief, lncRNA pairs in 
GBM primarily regulate the cancer hallmarks of “self 
sufficiency in growth”. Previous studies have demonstrated 
that GBM is characterized by extensive invasion, rapid 

growth, necrosis and angiogenesis [37, 38]. The lncRNA 
pairs in OV mostly regulate the hallmarks “self sufficiency 
in growth” and “tissue invasion and metastasis”, which is 
consistent with clinically rapid progress and high metastatic 
potential of ovary tumors [39, 40]. In addition, “evading 
immune detection” and “tumor promoting inflammation” 
are the two most affected hallmarks in PCa, which indicates 
that inflammation and immune processes are important 
for the malignancy of prostate tissue. This is consistent 
with histological observations, indicating that innate and 
adaptive immunity actively participates in the pathogenesis, 
surveillance and progression of prostate cancer [41–43].

Although no synergistic lncRNA pair was found 
to share by any two hallmark subnetworks, the hallmark 
subnetworks are conserved among the three cancers to a 
certain extent. That is, a large percentage of lncRNA pairs 
contribute to the same cancer hallmarks by regulating 
biological processes annotated to those hallmarks. For 
example, 29, 11 and 689 lncRNA pairs in GBM, OV and PCa, 
respectively, regulate the biological process of “DNA repair”, 
which is related to the “genome instability and mutation” 
hallmark (Supplementary Figure S3). For GBM and OV, 108 
and 97 pairs of lncRNAs regulate “positive regulation of cell 
proliferation” (Supplementary Figure S4). In PCa, there are 
no lncRNA pairs regulating this biological process, but three 
lncRNA pairs control another process, “positive regulation 
of signal transduction” and both processes are annotated 
to the cancer hallmark “self sufficiency in growth”. Within 
these cancer hallmark subnetworks, some experimentally 
validated disease lncRNAs contribute to carcinogenesis. In 
GBM, TRAF3IP2-AS1, which is related to brain-associated 
disease, cooperates with three lncRNAs to regulate “wound 
healing”: AC078883.3, RP11-645N11.2 and XLOC_004923. 
In OV, the obesity-associated lncRNA SNHG11 cooperates 
with three lncRNAs, RP11-79H23.3, XLOC_002749 and 
XLOC_0092721, to regulate “positive regulation of cell 
proliferation” which is annotated to the hallmark of “self 
sufficiency in growth”. In PCa, the lncRNA MIAT functions 
together with AC005562.1 to regulate “DNA repair” and so 
impacts the hallmark of “genome instability and mutation”. In 
addition, for a specific cancer, the same lncRNA synergistic 
pairs may regulate different processes to control cancer 
growth. In GBM, for example, ENSG00000248849, which 
shows 80% overlap with the disorder-associated lncRNA 
DLX6-AS1, cooperates with RP5-1185K9.1 to regulate the 
processes “negative regulation of apoptosis” and “negative 
regulation of programmed cell death”, both of which 
annotated to the cancer hallmark “evading apoptosis”. These 
results indicate that lncRNA pairs in each cancer hallmark 
subnetwork may contribute to carcinogenesis and deserve 
further investigation across these three cancer types.

Clinically relevant lncRNA synergistic modules

The notion that it may be possible to reduce cancer 
mortality by identifying and monitoring survival-related 
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biomarkers rests on the idea that a module biomarker is a 
better predictor of survival than an individual gene [44]. 
Given than lncRNA pairs within hallmark subnetworks 
were associated with cancer-related biological processes, 
we were interested in identifying prognostic modules 
from the cancer hallmark subnetworks. We therefore used 

the Markov Clustering Algorithm (MCL) method with 
suggested parameters to identify modules in each hallmark 
subnetwork. As a result, 43, 13 and 15 modules were 
identified in GBM, OV and PCa, respectively. Among 
these lncRNA modules, 12 and 2 in GBM and OV can 
be used to classify cancer samples into two groups with 

Figure 4: The cancer-associated lncRNAs tend to be hubs and are enriched in modules. A. The difference in degrees between 
disease-associated lncRNAs and lncRNAs not related to disease. Light colored boxes represent the distribution of disease-associated 
lncRNA degrees, and the dark colored boxes correspond to lncRNAs not related to disease. P-values were calculated using the Wilcoxon 
rank-sum test. B. Overlap of hubs, cancer-associated lncRNAs and module lncRNAs across three cancers. C. Cancer-associated lncRNA 
are enriched in the hubs. Light and dark colored bars respectively depict the proportions of hubs among cancer-associated and unrelated 
lncRNAs. P-values were calculated using Fisher’s exact test. D. Cancer-associated lncRNAs are enriched within the modules. Light and 
dark colored bars respectively depict the proportions of module lncRNAs among cancer-associated and unrelated lncRNAs. P-values were 
calculated based on Fisher’s exact test.
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significantly different overall survival rates (log-rank test, 
P < 0.05). Furthermore, the gene or miRNA expression 
patterns can be used to segregate those two diseases into 
subtypes with different prognoses [45, 46]. However, 
it is not yet clear whether the classifier power of these 
modules reflects their correlation with global expression 
subtypes in GBM or OV. To determine whether these 
functional modules can provide additional predictive 
power, we performed a multivariate survival analysis 
using prognostic factors, such as age, sex, subtype, grade 
or stage of patients, along with subnetwork modules. We 
observed that four lncRNA modules in GBM and two 
modules in OV were significantly associated with patient 
survival (Supplementary Table S2–S4).

A representative prognostic module in GBM found 
to be associated with patient survival time (P = 7.73E-
4, Figure 5A), included three synergistic pairs among 
four lncRNAs (Figure 5B). This module remained 
significantly associated with patient overall survival 
(Hazard Ratio = 0.65, p = 0.021) in a Cox multivariate 
analysis, after adjusting for patient age, gender and 
tumor subtype. The module includes the lncRNA RP11-
419K12.1, which overlaps an experimentally validated 
GBM-associated lncRNA, CCDC26. A single nucleotide 
polymorphism (SNP) rs891835 in CCDC26 is reportedly 
associated with glioblastoma susceptibility. Analysis of 
the genes co-regulated by these four lncRNAs showed 
that they are mainly involved in signal transduction 
and included RIPK1, CFLAR, NOD1 and FLNA. This 
suggests identification and characterization of signal 
transduction pathways altered by lncRNA synergistic 
pairs may contribute to identification of therapeutic 
targets and enable more effective treatment in GBM. 
A module consisting of 91 synergistic pairs among 
41 lncRNAs was associated with survival in OV  
(P = 5.88E-4, Figure 5C). Cox multivariate analysis 
indicated that this module was significantly associated 
with overall patient survival (Hazard Ratio = 0.7, p = 
0.004) after adjusting for patient age, grade and tumor 
stage. Among these lncRNAs, MEG3 is affected in many 
cancer types, including cervical and prostate cancer. 
Another lncRNA in the module ENSG00000249548 
shows more than 80% overlap with an experimentally 
validated PCa associated lncRNA, CTBP1-AS. Moreover, 
some lncRNAs in this module, such as MIR22HG [47] 
and MIR181A1HG [48], were found to be host genes 
for miRNAs known to play critical roles in various types 
of cancer.

Evidences also shows that activation of PAR1 
(F2R) induces changes in cell morphology associated 
with increased cell motility and plays a critical role in 
cancer cell invasion and metastasis [49]. In addition, 
DUSP3 has been implicated in human cancer, though 
it has been alternatively described as having tumor 
suppressive and oncogenic properties [50]. Functional 
analysis of these genes revealed that this module mainly 

regulates coagulation-related functions (Figure 5B). In 
the context of cancer biology, hemostatic components 
are interconnected in multiple ways. Consequently, while 
cancer cells are able to activate the coagulation system, 
hemostatic factors also play a role in tumor progression. 
This analysis potentially opens the way to development of 
bifunctional therapeutic approaches that capable of both 
attacking malignant processes and resolving coagulation 
impairment.

Collectively, our examples suggest that analysis of 
the structure of LFSNs is a simple and efficient method 
for detecting prognostic biomarkers in cancer lncRNA 
expression datasets using modules derived from the 
LFSNs.

DISCUSSION

In this study, we presented a multi-step method 
for constructing the LFSNs based on co-regulating 
functional modules, which enable an in-depth analysis of 
lncRNA regulation on a system-wide level. We applied 
this approach to three types of cancer and performed a 
systematic analysis of the properties of cancer-associated 
lncRNAs in the context of LFSNs. Although the LFSNs, 
cancer-associated lncRNAs and hub membership 
within the networks varied greatly from one cancer to 
another, our study revealed several distinct properties 
of cancer-associated lncRNAs, and the consistency of 
observed patterns across multiple cancers highlights their 
robustness. As general biological networks, LFSNs are 
scale free and modular. Hub lncRNAs are topologically 
central within LFSNs and have maximal informational 
connections with other lncRNAs. In addition to their high 
overall connectivity, we found cancer-associated lncRNAs 
to be enriched in the hub nodes of cancer-specific LFSNs. 
As hubs are associated with very high levels of activity 
involving both the receiving and sending of signals, 
disruption of their expression may contribute to the 
progression of cancers.

Cancer-associated lncRNAs are enriched within 
modules, which are groups of functionally related lncRNAs 
dedicated to specific biological processes. Compared to 
single prognostic lncRNAs, biological lncRNA modules 
may provide more robust prognostic signatures. Based 
on the topological structures of LFSNs, we described a 
simple and rapid procedure for combining disease-specific 
lncRNA expression data in order to identify candidate 
prognostic network modules. From a clinical viewpoint, it 
would be much more applicable if one biomarker could be 
detected in serum or other body fluid. With that in mind, 
we reannotated the probes in the microarray provided by 
Noerholm et al. [51] for these candidate lncRNAs and 
observed that 54.55% of lncRNAs within the modules were 
detected in serum. In particular, four lncRNAs within the 
modules were differentially expressed in GBM (P < 0.1, 
Student’s t-test). In addition, using the RNA-Seq dataset 
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for OV from one recent study [52], we found that 92.68% 
of lncRNAs within the modules (Figure 5B) were detected 
and 63.16% were differentially expressed in OV (P < 0.05, 
Student’s t-test). These results suggest that the majority of 
lncRNAs are detectable in serum or ascites and may be 
applicable for clinical trial.

In our present study, we used a common simplification 
process to facilitate analysis of the topological structure of 
the LFSNs and to identify central lncRNAs and lncRNA 
modules within the LFSNs. This entailed setting the weights 
of all edges to 1. In addition, we also tried to consider the co-
regulating strength for each lncRNA pair based on the number 
of shared modules. Analysis of the structure of the weighted 
LFSNs yielded results simiar to those obtained earlier and 
the degree distributions of the networks also followed power-
law distributions (Supplementary Figure S1B). Similarly, the 
top 10% lncRNAs with the highest summary scores were 
defined as central lncRNAs within the weighted LFSNs, and 
the modules were further identified under different weight 
thresholds. Cfinder was also used to detect modules, and four 
different weight gradients were considered in GBM and OV. 

Because most synergistic lncRNA pairs in PCa shared no more 
than two functional modules, we analyzed only two weight 
gradients for PCa. The weighted networks continued to show 
modular structures (Supplementary Figure S5), and cancer-
related lncRNAs were enriched in the central lncRNA sets 
(Supplementary Figure S6 and S7). In summary, these results 
are indicative of the robustness of the structures of LFSNs and 
the topological features of cancer-associated lncRNAs.

We not only identified the synergism among 
lncRNAs, we also revealed their underlying functional 
patterns. LncRNAs are a new class of ncRNAs functioning 
as regulators of gene expression, and their dysregulation of 
lncRNAs and the resultant dysregulated gene expression, 
has been shown to play critical roles in cancer. We have 
shown here that lncRNAs carry out their functions by 
acting in combination and proposed a hierarchical model 
to systematically understand the lncRNA regulatory 
networks in human cancers (Figure 5B). Four kinds of 
nodes were included in the model: lncRNA modules, 
genes, GO terms and cancer hallmarks. All of the 
illustrated examples suggest that lncRNA pairs function 

Figure 5: The prognostic lncRNA modules in cancer. A. Kaplan-Meier survival curves for GBM patients classified into high- and 
low-risk groups using the lncRNA module expression signature. P-Values were calculated using the log-rank test. B. LncRNA modules in 
GBM and OV. The coexpressed genes, GO terms enriched by the genes and cancer hallmarks are also shown in the hierarchical model. C. 
Kaplan-Meier survival curves for OV patients classified into high- and low-risk groups using the lncRNA module expression signature.
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synergistically through regulation of co-correlated genes 
to further impact cancer-related singaling pathways, 
thereby mediating tumor initiation and development.

Although our study provides a degree of insight 
into the emergent properties of cancer-related lncRNAs 
in the context of LFSNs, additional effort will be required 
to validate and extend our findings. A univariate linear 
regression model was used here to identify potential a 
lncRNA-correlated mRNA subset. The co-expression of 
lncRNAs and protein coding genes may reflect a variety 
of scenarios. For example, the genes may co-localize 
within the genome or may be co-regulated by the same 
transcription factors, or the lncRNA may be regulated 
by protein coding genes. To exclude these scenarios, 
we excluded co-localized and co-regulated genes from 
the lncRNA-correlated genes (details in Methods). Only 
0.16% of lncRNA-gene pairs in GBM were co-localized 
or co-regulated by transcription factors, and only 0.36% 
in OV and 0.07% in PCa. After excluding these pairs 
from the lncRNA-gene pairs, we observed that all of the 
lncRNA pairs within the LFSNs also shared the common 
correlated genes. A large majority (99.90% in GBM, 
98.34% in OV and 98.82% in PCa) of candidate functional 
modules co-regulated by lncRNA pairs in the LFSN 
were the same as in our earlier analyses. In addition, we 
believe that stringent functional enrichment analysis of 
GO biological processes and the filtering of candidate 
functional modules in the PPI network in later steps will 
compensate for this limitation, increasing our confidence 
in the functional synergistic lncRNA pairs we identified.

We are only beginning to understand the 
mechanism by which lncRNAs carry out their 
regulatory functions. A modular RNA regulatory code 
is an attractive hypothesis but remains to be tested. 
Understanding these principles will require identification 
of lncRNA-protein interactions. At present, however, 
the lncRNA-protein interaction dataset is limited [53]. 
Alternatively, we anticipate that by repurposing the 
publically available lncRNAs and protein-coding gene 
expression profiles, we will be able to accurately model 
the combinatorial functions of lncRNAs.

In conclusion, our research provides new insight into 
the properties of lncRNA regulation through construction 
of lncRNA functional synergistic networks at the system 
level. Although limitations exist with the current methods 
and datasets, the results presented here shed light on the 
key roles played by synergistic lncRNA regulation within 
complex diseases.

MATERIALS AND METHODS

Datasets

lncRNA and mRNA expression profiles across cancers

The genome-wide paired lncRNA and mRNA 
expression profiles in cancers were obtained from a recent 

study that repurposed publically available array-based data 
[54]. Briefly, the exon array data was downloaded from 
TCGA (https://tcga-data.nci.nih.gov/), after which probe 
sets for the Human Exon array were reannotated to the 
human genome (hg19). The expression level of a lncRNA 
or mRNA was calculated by summarizing the background-
corrected intensity of all probes mapped to this gene. The 
expression of lncRNA and mRNA was quantile normalized 
across different biological samples, and Combat was used to 
remove potential batch effects [55]. This procedure yielded 
the expression of 10, 207 lncRNAs and 18, 292 mRNAs. 
All the expression profiles were log2 transformed. In our 
present study, three cancers were analyzed, including 450 
samples of GBM tumor tissue, 584 samples of OV and 150 
samples of PCa. Twenty-nine samples of healthy tissue 
were also analyzed. In addition, overall survival data for 
419 GBM samples and 558 OV samples were downloaded 
from Synapse, the TCGA Pan-Cancer website [56] (https://
www.synapse.org/).
Functional annotation of human genes

The 825 Biological Process (BP) terms for Gene 
Ontology (GO) were downloaded from the Molecular 
Signatures Database (MsigDB) [57]. As in previous 
studies, process categories from GO are restricted to BP 
terms such that the number of genes annotated to a term 
is at least 5 and no more than 500. Ultimately, 792 GO 
BP terms that passed the filtering criteria were taken into 
account.
Human protein-protein interaction network

Protein-protein interaction data was assembled from 
the HPRD (Human Protein Reference Database) [58] and 
self-loop interactions were removed. The gene symbols 
for each interaction were mapped to corresponding Entrez 
gene identifiers. We extracted the maximum component of 
the whole protein interaction network, which contained 
35,865 interactions among 9,028 genes.

Methods

Overview of the construction of lncRNA-lncRNA 
functional synergistic network

A three-step model was proposed to construct 
lncRNA-lncRNA functional synergistic networks in cancer 
(Figure 1). First, for each lncRNA, a univariate linear 
regression model was used to identify lncRNA-expression 
correlated genes (LCGs). Then the functionally synergistic 
lncRNA pairs were identified as follows: for each lncRNA 
pair, we initially identified lncRNA pairs that significantly 
share the LCGs. Second, the shared LCGs of a lncRNA pair 
were used to identify candidate functional modules, after 
which the candidate module sets were further filtered using 
two topological features in the protein interaction network. 
Here we defined a pair of lncRNAs as synergistic if they 
significantly co-regulated at least one functional module. 
Finally, all synergistic lncRNA pairs were assembled into 



Oncotarget25012www.impactjournals.com/oncotarget

a LFSN, where nodes represented lncRNAs and edges 
represented their functional synergistic interactions.
Identification of expression-correlated lncRNA genes

Although the function of most lncRNAs is unknown, 
a number of studies have shown that lncRNAs mainly carry 
out their functions via expression-correlated genes. As in 
earlier studies, we adopted a univariate linear regression 
model to identify the expression-correlated genes for 
specific lncRNAs. For each lncRNA, we assembled 
all mRNAs that were significantly associated with the 
expression of the lncRNA of interest at a significance level 
of 1.0E-10, which approximates the Bonferroni correction 
FDR = 0.05 (0.05/(10, 207*18,292).

Identification of lncRNA-lncRNA synergistic pairs

For a given pair of lincRNAs, A and B, we identified 
the common LCGs with which they co-correlated, and a 
subset of common LCGs was required to have at least three 
genes. The biological processes enriched by the common 
LCGs were then identified by hypergeometric distribution. 
The probability for the common LCGs for a GO term i was 
calculated according to

where N is the number of all genes, Ki is the number of 
genes annotated in the GO term i, M is the size of the 
common LCGs, x is the number of common LCGs 
also annotated to term i and I is the total number of 
GO terms we considered. At a given significance level, 
we not only obtained the enriched GO terms but also 
captured the subset of common LCGs annotated to each 
term, GAB. Namely, GAB is the set of candidate function 
modules. We next further filtered these candidate function 
modules using two topological features of the protein 
interaction network: (i) the minimum distance from every 
gene to others in the subset is no larger than 2; (ii) the 
characteristic path length (CPL) is significantly shorter 
than random. The significant p-value was calculated using 
the edge-switching method and was defined as the fraction 
of the CPL for the same subset in random networks that 
was shorter than that in the real network. We generated 
1,000 random networks using the software Mfinder [59]. 
After performing function enrichment and two topological 
restrictions in the network, lncRNAs A and B were 
considered to be synergistic if they co-regulated at least 
one functional module.

Construction of the lncRNA-lncRNA functional 
synergistic network

Finally, a LFSN was constructed for each cancer by 
assembling all significant lncRNA pairs identified above. 
A node represents a lncRNA, and two nodes are connected 
if they are functionally synergistic.

Topological measurements of the LFSN

In this study, we investigated several topological 
features of LFSN using the R package “igraph.” First, we 
evaluated whether the degree distribution of the synergistic 
network satisfied a power law model. The degree of 
connectivity of a node was defined as the total number of 
edges connecting the node, and the top 10% of the lncRNAs 
with the highest connectivity within the network were 
defined as hub nodes. Next, lncRNA functional synergistic 
modules, which were defined as cliques, were identified in 
each LFSN using the clique percolation clustering method. 
Cliques are all of the complete subgraphs, and all cliques 
in the LFSN were identified using igraph. Each module 
may overlap, allowing the same lncRNAs or the same 
interactions to occur in more than one module.
Collection of cancer-associated lncRNAs across cancers

We obtained experimentally validated disease 
lncRNAs from a previous study, including disease lncRNAs 
in the LncRNADisease database [60], and manually searched 
from the published literature by our group [61]. All of these 
known cancer-associated lncRNAs were mapped to the 
lncRNAs in a microarray based to their genomic positions, 
and lncRNAs that had at least 80% reciprocal overlap with 
the known lncRNAs were regarded as experimentally 
validated cancer lncRNAs. The chromosome locations 
of disease lncRNAs and 10,207 lncRNAs used here were 
checked for overlap using BEDTools (-f set to 0.8 here), 
which yielded 67 experimentally validated disease lncRNAs. 
There were 32 validated disease lncRNAs in GBM, 21 in 
OV and 18 in PCa. As the experimentally validated cancer 
lncRNAs were relatively limited, cancer-associated lncRNA 
sets were extended in two ways: prognosis-related lncRNAs 
in GBM and OV or differentially expressed lncRNAs in 
PCa. The cancer-associated lncRNAs with raw Wald P-
values < 0.05 generated from the univariate Cox regression 
model in GBM and OV were added. As clinical information 
about prostate cancer was not present on Synapse at the time 
of analysis, we identified the most differentially expressed 
ones as cancer-associated lncRNAs in PCa (FDR < 0.01, 
Student’s t-test with Bonferroni correction). With this 
approach, we identified 890 cancer-associated lncRNAs in 
GBM, 683 in OV and 991 in PCa.
Hub and module analysis of cancer associated lncRNAs

A Wilcoxon test was used to evaluate differences in 
the connectivity of disease lncRNAs and other lncRNAs 
within the whole network. Here we considered cliques 
as modules. For each cancer type, we used a Fisher’s 
exact test to assess the enrichment of cancer-associated 
lncRNAs in hub nodes and modules.
Cancer-associated hallmarks

A list of GO terms defined to be related to the 
hallmarks of cancer was obtained from a previous study 
[62]. Within the LFSNs, we selected the lncRNA pairs whose 
common correlated genes were significantly enriched in 
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cancer hallmark-related GO terms, then these lncRNA pairs 
were assembled into a cancer hallmark-related subnetwork. 
For each cancer hallmark, we calculated whether or not the 
cancer-associated hallmark was present in each LFSN. We 
considered it present when there was at least one enriched 
GO term also related to the cancer hallmark.
Identification of clinically related lncRNA modules

We used the Markov Clustering Algorithm (MCL) 
method to identify modules in each hallmark subnetwork. 
Then to assess the clinical relevance of these modules in 
GBM and OV, tumor samples were classified into clusters 
based on the expression of lncRNAs in modules using K 
means agglomerative clustering (K = 2). The prognostic 
modules were then identified by testing the correlations of 
sample clusters with patient survival (log-rank tests, P < 0.05).
Identification of genes co-localized and co-regulated 
with lncRNAs

The protein-coding genes within 5 kb of lncRNAs 
were regarded as being co-localized with the lncRNAs. 
In addition, we downloaded the TF-gene and TF-lncRNA 
regulations from the ChIPBase database [63] and then 
used linear regression to identify the active TF-gene and 
TF-lncRNA regulations in each cancer (FDR < 0.01, 
Supplementary Table S5). As in an earlier study [64], two 
overlap ratios were calculated for a protein coding gene 
A and a lncRNA B with different numbers of TFs: the 
proportion of TFs regulating A that were also regulating B 
(rAB), and the proportion of genes regulating B that were 
also regulating A (rBA). We chose the formula r = (rAB*rBA)0.5 
to describe the degree of coregulation. LncRNA-gene pairs 
with an r greater than 0.8 were regarded as co-regulated.
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