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AbstrAct
Retinoblastoma, a very aggressive cancer of the developing retina, initiatiates by 

the biallelic loss of RB1 gene, and progresses very quickly following RB1 inactivation. 
While its genome is stable, multiple pathways are deregulated, also epigenetically. 
After reviewing the main findings in relation with recently validated markers, we 
propose an integrative bioinformatics approach to include in the previous group 
new markers obtained from the analysis of a single cell line subject to epigenetic 
treatment. In particular, differentially expressed genes are identified from time 
course microarray experiments on the WERI-RB1 cell line treated with 5-Aza-2’-
deoxycytidine (decitabine; DAC). By inducing demethylation of CpG island in promoter 
genes that are involved in biological processes, for instance apoptosis, we performed 
the following main integrative analysis steps: i) Gene expression profiling at 48h, 
72h and 96h after DAC treatment; ii) Time differential gene co-expression networks 
and iii) Context-driven marker association (transcriptional factor regulated protein 
networks, master regulatory paths). The observed DAC-driven temporal profiles and 
regulatory connectivity patterns are obtained by the application of computational 
tools, with support from curated literature. It is worth emphasizing the capacity of 
networks to reconcile multi-type evidences, thus generating testable hypotheses 
made available by systems scale predictive inference power. Despite our small 
experimental setting, we propose through such integrations valuable impacts of 
epigenetic treatment in terms of gene expression measurements, and then validate 
evidenced apoptotic effects.

INtrODUctION

Retinoblastoma is classified as “a paediatric ocular 
tumor that continues to reveal much about the genetic 
basis of cancer development” [1]. The genetic basis of the 
disease is originally centered on the biallelic inactivation 
of the RB1 gene, which is relevant to all cases involving 
both the heritable form and most of the non-heritable 
cases. This mechanism confers limitless replicative 
potential to retinoblasts, thus implying that its loss leaves 
the cells without chromosomal stability. However, the 

same genomic instability does not seem to represent 
a hallmark in retinoblastoma as much as the epigenetic 
mechanisms do. The loss of expression of RB2, another 
member of the RB gene family, has been reported too, 
and it correlates with low apoptotic index and lesser 
differentiation in non-heritable cases [2].

A known player is MYCN through its amplification, 
and only for the non-heritable cases. MYCN encodes 
N-MYC, a transcription factor controlling the expression 
of cell cycle genes involved in promoting cell proliferation 
and regulating in particular the global chromatin structure 



Oncotarget23689www.impactjournals.com/oncotarget

through histone acetyltransferases (HAT), both in gene-
rich regions and at sites far from any known gene [3]. 
By modifying the expression of its target genes, MYC 
activation drives apoptosis (down-regulation of the 
Bcl2 family), differentiation, and stem cell self-renewal. 
Interaction with other proteins in cancer paths have been 
illustrated by [4].

Among other identified oncogenes and tumor 
suppressors, some have become targets motivating 
the search for novel therapeutic solutions. Candidate 
driver oncogenes that were recently emphasized in 
retinoblastoma studies include the following genes: 
MDM4, KIF14, DER (chromatic remodeling factor), 
E2F3, a transcription factor and a tumor suppressor, 
CDH11 (cadherin). These listed markers are collected in 
Table 1 of [1], with an assigned priority which is justified 
by the multiple evidences employed to validate them.

Relatively few studies have considered microarray-
based differential expression in retinoblastoma, thus 
reporting evidence for up- or down-regulated gene sets. 
An indication which is coming from case - control studies 
refers to functional enrichment of several groups, in 
particular the DNA damage response pathway [5]. Due to 
the relevance of analyses inspired by pan-omics principles 
(see Figure 2 in [1]), an initial retinoblastoma map can 
be available, even if it appears not much integrated as in 
other cancers. We consider the importance of progressing 
in such key direction – integration - and confined our 
analysis to epigenetic features observed from targeted 
experimental evidences. Onco-epigenetic mechanisms 
are widely studied and believed to provide insight on 
cancer development and progression. Therefore, a very 
important role in therapy can be expected, by leveraging 
on the reversible nature of epigenetically-induced changes 
altering gene expression [6-8]. By causing changes in 
gene expression, epigenetic influences on phenotypes are 
possible, independently from changes in DNA sequence. 
DNA methylation is among such epigenetics-driven 
changes, and motivates the identification of markers 
regulating gene expression. When associated in promoter 
regions, gene silencing [9] is the observed mechanism, 
although other mechanisms are not completely known. 
Even if regarded as a chemical modification of cytosine 
bases associated with transcriptional repression, 
observational evidence at the transcriptional start sites 
(TSS) revealed only correlation with lack of transcription, 
remaining thus unclear whether it is a lack of activation or 
sign of repression which occurs [10].

Methylation analysis has been covered in 
retinoblastoma literature. An interesting contribution 
appears in the highlights of [11], looking at the role of 
the mutated BCOR. The incidence of BCOR mutation is 
relatively high, and since BCOR increases the methylation 
of H3K4 and H3K36, it influences the activation 
of transcription. It is known that DNA methylation 
represents a sort of gene-silencing mechanism for turning 

off genes and thus functionally re-organize genome 
data, in particular maintaining genome integrity and 
contributing to tissue-specific gene expression. Interesting 
genes were revealed as differentially methylated (see 
Table 5 in [1]), such as RASSF1A (tumor suppressor 
involved in microtubule stability), MGMT, CDKN2 
(tumor suppressor). The study in [12] reported a list of 
hypermethylated genes, in particular for MSH6, CD44, 
PAX5, GATA5, TP53, VHL, GSTP1. Also, in a recent study 
[13], the retinoblastoma genome was found to exhibit 
stability, suggesting that pathway dysregulation may be 
epigenetically-driven. Notably, the differential behavior 
of tumor and normal retinoblasts appears to a larger 
extent from the epigenetic rather than the genetic profile. 
Especially with SYC kinase, which is required for tumor 
cell survival, its inhibition brings the degradation of MCL1 
and caspase-mediated cell death, something observed 
both in cell cultures and in vivo. Also, WGS analysis 
revealed that 104 genes including 15 known cancer genes 
are differentially expressed, pointing in several cases to 
epigenetic deregulation. Finally, the non-coding genome 
has gained enormous attention in the discussion about the 
role of the altered epigenome features (see for instance 
[14]). Genome-wide studies in human cells have revealed 
the presence of long non-coding RNAs in amounts 
comparable to protein-coding genes. In particular, 
hundreds of sequence variants found in intergenic non-
coding genomic regions have characterized a controversial 
field, the so-called “dark matter” [15-18], which might 
potentially be involved in regulation of gene transcription 
and epigenetic states. 

Our study involves time course microarray 
experiments with the Weri-RB1 cell line treated with 
5-Aza-2’-deoxycytidine (decitabine; DAC), a drug whose 
anti-tumorigenic effect regulates the epigenetic status 
of cells. Previously [19], the contribution of aberrant 
hypermethylation in retinoblastoma was demonstrated, 
suggesting that treatment with demethylating agents 
could represent a successful therapy. In particular, a tight 
correlation was observed between mutations located 
within a CpG-enriched region of the RB2 gene, prone to 
de novo methylation, and its expression level in primary 
non-hereditable retinoblastoma. Methylation analysis of 
the gene from DAC treatment of the Weri-Rb1 cell line 
induced the re-expression of RB2 and its related pro-
apoptotic E2F1, p73 and p53 genes, thus highlighting a 
crucial role of epigenetic events.

This demethylating agent acts towards the correction 
of epigenetic defects, including reactivation of tumor 
suppressor genes silenced by epigenetic mechanisms 
in tumor tissues. By inducing demethylation of CpG 
islands in promoter genes that are involved in apoptosis 
and related biological processes, we analyzed the gene 
expression profiles at 48h, 72h and 96h after DAC 
treatment. In order to reconcile these evidences with those 
representing the state-of-the-art in retinoblastoma studies 
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on markers, we designed a methodological approach 
centered on integrated bioinformatics tools. Aiming at 
integrability, evidence linkages only partially exist due 
to the heterogeneous multi-omic sources at play under 
different experimental conditions and various genomic 
scales. However, the evidenced gene profiles lead to 
further inference on functional enrichment and pathway 
annotations when integrated within regulatory contexts for 
our differentially expressed genes (DEG) and externally 
established markers, such as master regulatory (MR) 
gene paths and transcription factor (TF) driven protein 
networks.

rEsULts

DEG profiles measured at three times are presented 
in Figure 1-A, with Fold Change (FC) fluctuating values. 
Some analytics are then reported in Figure 2, with a Venn 
diagram of time-specific versus time-overlapping DEG 
(see the embedded table below). Then, up-/down-regulated 
transcript amounts (bottom-left plot) are displayed, 
showing that proportions reverse within the time course. 
Individual temporal gene patterns (right plot) are listed 
shown, with an average taken in case of multiple probes 

for the same gene. The summary of the distribution of 
DEG across times is reported in Figure 1-B.

The main annotations in terms of GO biological 
processes (first panel) and pathways (second panel) are 
reported in Table 1 and Table 2, respectively. Enrichment 
is provided in corrected form too, and is reported for 
the most significant values, thus emphasizing the role 
of regulation of cell death and programmed cell death 
at each time point. Pathways show similarly that the top 
enrichment is always for apoptosis (including modulation 
and signaling), with other more or less specific entries 
such as NF-KB (48h), p53 (all times), TNF alpha (48h, 
72h), Toll-like receptor (72h), plus other examples in part 
related to immune response.

Apoptosis pathway landscape

Apoptosis represents an intracellular cell death 
program that counterbalances cellular proliferation, 
and maintains cellular homeostasis, while abnormal 
suppression affects cancer development and resistance to 
chemotherapy [20]. For instance, BCL2 is an oncogene 
that suppresses cell death and antagonizes apoptosis by 
pro-survival proteins (so-called ‘guardians’) [21, 22]. The 
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pro-apoptotic effectors BAX (BCL2 associated) and BAK 
(BCL2 antagonist) can be regulated independently from 
BCL2 (say, from TP53), or by the BCL-2 family [21]. 

Interestingly, Figure 3 displays the apoptosis 
pathway landscape over which our DEG are mapped. 
Apoptosis induces multiple activations and regulations 
[23], and is mediated by intrinsic (triggered at intracellular 
level, say DNA damage, oncogene activation, etc.) and 
extrinsic (due to ligand binding at extracellular level) 
pathways. Clearly visible, the emphasis goes on the 
activation of caspase cascades. In particular, we evidenced 
that after DAC treatment the apoptotic signaling starts 
early with FAS and caspase 8 activation (48h and 72h after 
treatment, respectively), triggers caspase 3 and caspase6 
extrinsic pathways, and also Bik and Bax mitochondrial 
intrinsic pathways (96h after DAC treatment), thus 
interfering with anti-apoptotic and pro-survival NF-

kB and BCL2 intrinsic signals. These time-dependent 
patterns can be further elucidated graphically, by looking 
at the topology induced by such co-expressed genes. 
Since apoptosis evasion is considered a cancer hallmark, 
anticancer treatments mediate the cell death process 
through the apoptotic program whose interactome has a 
complex topological configuration. 

Apoptosis co-expressed sub-networks

The sub-networks in Figure 4 report evidence 
snapshots of the time-dependent co-expression dynamics 
involved in apoptosis, with reference to only DEG sets. 
Connected as well as disconnected entities are displayed, 
and discussed below in detail. The interactome complexity 
results quite simplified by looking separately at each 

Figure 1: A (top panel). Barplot indicating gene-wide FC variation across times. b (bottom panel). Down-regulated and up-regulated 
DEG across times.
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table 1: Annotated GO-bP. The list is a selection from SM Table 1. 

table 2: Annotated clueGO pathways. The list is a selection from SM Table 2. 
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time. Thus, at 48h a densely connected down-regulated 
module is found, except from the up-regulated FAS, still 
centrally connected and known to play a central role in 
the physiological regulation of programmed cell death. 
At 72h, a small motif is observed, centered on down-
regulated IRAK1 (Interleukin-1 receptor-associated kinase 
1) and linked to the down-regulated pro-apoptotic BAK1, 
thus decelerating programmed cell death (it is known to 
bind to and antagonize the anti-apoptotic action of BCL2) 

and the up-regulated pro-apoptotic BIK (likely target of 
anti-apoptotic proteins, and whose function is to accelerate 
programmed cell death). Caspase-8 and FOS appear up-
regulated too, again with FAS. Finally, at 96h, the up-
regulated module is revealed, including FAS and the 
transcription factor NFKB-related genes, the latter being 
aberrantly activated in various cancers [24].

More in detail, the FAS-mediated module appearing 
at 48h is up-regulated and combined with i) Inhibition of 

Figure 2: top-left: Venn Diagram of DEG in time course (48h, 72h, and 96h). Mid-left table: DEG directionality in relation 
with intersecting genes; Bottom-left plot: barplot showing proportions of up- and down- regulated DEG across times; Right plot: log2(FC) 
DEG profiles heatmap. Only genes differentially expressed at least at 2 times appear. 
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anti-apoptotic activity exerted by IKBKG, TRAF2, TRADD 
ii) Inhibition of tumor suppressor activity exerted by TP53 
and CDKN2A, and iii) Inhibition of anti-apoptotic activity 
in BCL2L1, co-expressed with the connected BAK1 and 
BAX. Interestingly, FOS (down-regulated) is implicated 
in cell transformation, but also associated with apoptotic 
cell death. At 72h, the down-regulated IRAK1 appears as 
the only hub gene, the rest of them remaining singletons. 
Recruited to the IL-1 receptor complex by TOLLIP. 
IRAK1 is a key mediator in the pathway IL-1R, initiating a 
cascade of signaling events which induce gene expression 
of inflammatory targets, and partially responsible for IL1-
induced up-regulation of the transcription factor NFkB. 
Notably, BAK1 and BIK are showing different regulation, 
suggesting variable acceleration of programmed cell death 

(i.e. only BIK increases its apoptosis-inducing activity), 
while also FOS is in active state of signal transduction, 
with likely effects on cell proliferation and differentiation. 

At 96h, the two caspases responsible for apoptosis 
execution are activated, and the mediator of apoptosis 
MCL1 connects to CASP3, likewise to BCL2L1 via both 
NFKB1 and NFKBIA. Such dynamics involve BIK, which 
induces apoptosis by accelerating cell death, and BIRC5, 
member of the inhibitor of apoptosis (IAP) gene family, 
which encodes negative regulatory proteins that prevent 
apoptotic cell death. In particular, MCL1 encodes an anti-
apoptotic protein, which is a member of the BCL2 family, 
and mediates its effects by interactions with a number of 
other regulators of apoptosis. Since alternative splicing 
results in multiple transcript variants, MCL1 is regulated 

Figure 3: Apoptosis pathway landscape. Red (up-) and green (down-regulated) DEG mapped from the different time profiles 
(gradient in the colored boxes is divided in 3 blocks, one per time point, from 48h to 96h). Annotation Source: Wikipathways; Graphical 
Tool: Pathvisio.
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in multiple ways involved in the regulation of apoptosis 
versus cell survival, and in the maintenance of viability 
but not of proliferation. Therefore, the interest in targeting 
its regulation is high, especially for development aspects, 
sustained growth and therapeutic resistance (observed in 
various cancers) [21].

Concerning the last sub-network, a special note is 
for TNF [25]. This is an important cytokine that plays a 
role in cancer, with two protein families implicated in 
the signaling mediated by the TNF receptor: 1) death-
domain proteins, such as TRADD, FADD, TNFR1, RIP; 
and 2) TRAF domain-containing proteins, such as TNFR2, 
CD40, TRAF1, TRAF6. We only in part observed these 
patterns. TRADD recruits from the first group of proteins 
to activate signaling mediating NFkB and apoptosis. Other 
central signaling pathways are modeled by the interleukin 

receptor, for instance, and regulate NFKB activity (say, 
TNFR1-TRADD-TRAF2-RIP). Apoptosis is a critical 
function involved in the TNF pathway (say, TRADD-RIP-
FADD-TRAF2-CASP8), and we can partially observe such 
signs (TRADD-TRAF2 in the previous group, and TRADD- 
TRAF2-CASP8 in the last group). In our experimental 
setting, the sequential activation of downstream caspases 
(at 96h) expected to be central to the execution of cell 
apoptosis, follows activation of CASP8 (at 72h), which 
is involved in the programmed cell death induced by FAS 
and various apoptotic stimuli. 

Overall, a network can be broken down into 
modules, or groups of co-expressed genes, the function 
of which can be separated from that of other modules. 
The displayed sub-networks represent time varying 
network signatures of apoptosis which are reconstructed 

Figure 4: Apoptosis co-expression sub-networks as from DEG profiles at 48h (top left), 72h (top right) and 96h 
(bottom). Green/red nodes indicate down-/up-regulated DEG, respectively.
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by only considering co-expression associations between 
our DEG. However, an interesting aspect is what they 
display, e.g. topological configurations that depend on 
treatment-induced dynamics. Therefore, these networks 
may be seen as potential fingerprints of particular disease 
phenotypes or treatment effects. More comprehensive 
co-expression maps will be illustrated in the next section 
through networks which are extended to all the computed 
DEG, and then integrated with other known markers 
(Figure 5), which are external to our experimental setting. 
Further differentiation of our regulatory maps will be 
finally provided, with the inclusion of transcription factors 
(Figure 6), and hierarchical paths (Figure 7). This way 
we aim to present a spectrum of network configurations 
elucidating relationships between evidences and 
supporting biological interpretation.

Integrative marker analysis

The inference principle of integration is applied 
by first collecting evidences of marker genes which have 
been identified as candidate drivers of retinoblastoma 
progression [1]. In-depth analysis and review allow to 
build a reference knowledge base for linking our network-
centered DAC-induced associations. The operation is 
repeated at all times to monitor possible changes in these 
associations in a co-expression context enriched also with 
interactors linking the two sets of markers genes (our DEG 
and externally evidenced). 

co-expression networks

Two co-expressed network maps (Figure 5) involve 
DEG and reference marker/driver genes, together with 
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predicted interactors inserted by the tool GeneMania [26] 
when direct links among nodes cannot be established. 
The top panel displays the connectivity map at 48h, in 
which the bridge node between the two sub-networks (one 
referred to DEG and the other to the reference markers) is 
BCL2. In particular, the E2F3 and MDM4 markers link to 
BCL2, which in turn links to NFKBIA, MALT1 (strongly 
up-regulated), BBC3 (strongly down-regulated), TNIP1 
(strongly down-regulated). At 72h, the network counts 
less DEG, and the marker TM2D1 links the two sub-
networks through both CDH11 and OTUD6B (strongly 
up-regulated) link. This map can be found in SM Figure 
1. At 96h, three bridge marker genes are found, BCL2 (as 
in 48h), TM2D1 (as in 72h), and the new entry MYCN, not 
directly linked to any marker, while some interconnected 
paths can be observed in the denser web region populated 
by highly expressed genes (CASP3, PARP1, MCL1, 
MAPK6, BCL2L1, NFKB1, FAS, et al.). Overall, the 
limitation of this type of analysis is well-known: co-
expression interactions may or may not imply co-
regulation dynamics. In order to consider regulation, we 
recover TFs and MRs associated to our DEG and markers, 
thus building protein-protein interaction networks (PIN) 
and hierarchical paths.

regulation maps

tf-driven

Consideration of gene targets of TFs involves 
regulation activity that is quite complex to decipher, and 
also redundant. A common idea is to study the connectivity 
patterns between regulating and regulated entities, which 
in our case involve DEG. Assuming that the TFs may play 
important roles in retinoblastoma, and in the presence of 
epigenetic influences, the idea is to check what regulation 
patterns might be underlying our data. The potential of this 
analysis is huge, due to the fact that mammalian genomes 
encode about 1400 TFs [27]. However, the limitation is 
that the DNA sequence counterparts are known for just 
a fraction of them, and even less evidence is available 
for an assessment of the sensitivity to DNA methylation. 
Methylation can directly interfere with TF-DNA binding 
[9]. One possible reason is the presence of indirect 
repression mediated by methylated CpG binding proteins. 
In general, without this type of contextual evidence, it 
remains limited our understanding of regulation, including 
whether DNA methylation changes occur down or 
upstream of gene regulatory events [10]. We thus designed 
at each observational time point the same type of map 
represented as a PIN built from the tool StringDB [28], 

Figure 5: co-expression networks at time 48h (top) and 96h (bottom). Networks from DEG (up-/down-regulated in red and 
green gradients, respectively) are interlinked with known marker genes (represented in hexagonal light blue frames) retrieved from the 
literature. Genes highlighted in grey squares with yellow border are directly linked to the bridge nodes, while generated interactors appear 
in grey squares. 
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by selecting two confidence levels, and using the types 
of evidences available in the embedded knowledgebase to 
establish interactions between the proteins encoded by our 
DEG lists, the reference marker set, and with selected TFs. 

Integrated TF and promoter analysis were performed 
using both the Pscan web tool [29] and the GeneXplain 
web platform (http://www.genexplain.com/), with the 
latter including a free version of Transfac [30] (release 
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2014.3; http://genexplain.com/transfac-1). In Pscan we 
analyzed our DEG list to detect over-represented TF 
binding site motifs at corresponding gene promoters, also 
considering all Refseq transcripts. Jaspar [31] profiles 
(http://jaspar.genereg.net) were used from a window 
bases width (-950,+50), with respect to the transcription 
start site (TSS). We analyzed 163 gene promoters 
covering 62 genes at 48h, 67 gene promoters covering 
30 genes at 72h, and 210 gene promoters covering 97 
genes at 96h. Pscan also uses a free Transfac version 
as descriptor, but we conveniently used Transfac from 
the GeneXplain web platform (public domain and more 
updated). Therefore, Transfac data were used from a 
workflow named “Identify enriched motifs in promoters 
(GTRD)” by using default input values and a promoter 
window bases width (-1000,+100), within TSS. We then 
considered a merged list of TF from both analyses (Pscan/
Jaspar and GeneXplain/Transfac) and built an interaction 
network with String-DB at various confidence levels. The 
networks were exported in Cytoscape [32] for mapping 
the DEG list and the other markers. We illustrate below 
these scenarios, one for each of the 3 times at the highest 
confidence level 0.7, while the other maps computed 
at lower confidence level (0.4) are available from SM 
Figures 2-4. An interesting aspect is the coupling between 
DEG and known markers in these networks, offering 
the possibility to verify their joint regulation under the 
identified TF. We highlight examples of interesting paths 

of associations involving TF-target proteins.
Evidence at 48h

We discuss a couple of paths involving the bridge 
TF MYC, a multifunctional, nuclear phosphoprotein 
that plays a role in cell cycle progression, apoptosis and 
cellular transformation, and activates the transcription 
of growth-related genes, and the down-regulated DEG 
RELA, whose protein is involved in NFKB heterodimer 
formation, nuclear translocation and activation, known 
to modulate immune responses, and whose activation is 
positively associated with multiple cancers. MYC connects 
with down-regulated DEG TP53 (tumor suppressor), TP73 
(participating in the apoptotic response to DNA damage), 
FOS (having an important role in signal transduction, cell 
proliferation and differentiation) and CDKN2A (inducing 
cell cycle arrest in G1-G2 phases, and acting as a tumor 
suppressor), among others.
Evidence at 72h

Very similar maps are obtained at the two 
confidence levels here considered. It is worth looking 
at the connectivity of the moderately up-regulated 
FOS regulating cell proliferation, differentiation, and 
transformation, and also associated with apoptotic cell 
death, with two TF groups: i) the group ELK1 (linked 
with the strongly down-regulated IRAK1), CREB1 
(involved in different cellular processes), ETS1 (and 

Figure 6: TF-regulated PIN (confidence level 0.7) at time 48h (top panel), 72h (middle panel), 96h (bottom panel). TFs 
appear as diamonds, while the other symbols remain as before.
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then ZEB1 and PAX5, for which alterations in the 
expression of their genes are thought to contribute to 
neoplastic transformation); ii) the group E2F, via the 
moderately up-regulated MDM2, linked in turn to down-
regulated (TRIM28, mediating transcriptional control by 
interaction with the Kruppel-associated box repression 
domain found in many TFs), TP73 (participating in 
the apoptotic response to DNA damage), and RASSF1 
(potential tumor suppressor, required for death receptor-

dependent apoptosis). FOS then links to three strongly 
down-regulated DEG, MAPK11, MAPK12, among the p38 
MAPKs with an important role in the cascades of cellular 
responses evoked by extracellular stimuli such as pro-
inflammatory cytokines or physical stress leading to direct 
activation of ELK1, and JUNB, involved in regulating 
gene activity following the primary growth factor 
response, together with the up-regulated PPM1D, member 
of the PP2C family of Ser/Thr protein phosphatases, 

Figure 7: Mr hierarchical path examples at 48h 
(top), 72h (middle) and 96h (bottom); these are the top-3 
regulative graphs retrieved from curated knowledgebase in the 
GeneXplain web platform. Other examples have been made 
available in Supplementary Material..
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negative regulators of cell stress response pathways. 
Evidence at 96h

The association of the protein PARP1 encoded by 
our strongly up-regulated DEG and involved in the base 
excision repair (BER) pathway, therefore in detection/
signaling pathway leading to the reparation of DNA strand 
breaks, is with CTCF (chromatin binding factor involved 
in transcriptional regulation), a repressor, and STAT3, 
signal transducer and transcription activator mediating 
cellular responses to interleukin and growth factors. The 
latter link is established only via ZEB1, transcriptional 
repressor of interleukin 2 which connects with ETS1, 
this latter controlling the expression of cytokine and 
chemokine genes in many different cellular contexts, the 
differentiation, survival and proliferation of lymphoid 
cells, and regulating angiogenesis through regulation of 
expression of genes controlling endothelial cell migration 
and invasion. Other connections involve BAX, CASP3, 
NFKB1, pleiotropic and present in many cell types, 
and involved in signal transduction events related to 
inflammation, immunity, differentiation, cell growth, 
tumorigenesis and apoptosis. 

The second example is leading to a multi-component 
path. The up-regulated DEG CDKN1A participates to TP53 
mediation, thus inhibiting cellular proliferation in response 
to DNA damage. Connectivity patterns then involve: a) 
ELK1, a nuclear target for the RAS-RAF-MAPK signaling 
cascade; b) STAT1, a moderately up-regulated DEG signal 
transducer and transcription activator mediating cellular 
responses to interferons (IFNs); c) STAT3; d) BAX, 
strongly up-regulated DEG antagonizing the apoptosis 
repressor BCL2, and promoting activation of CASP3 
(and thereby apoptosis); e) PARP1, strongly up-regulated 
and CASP3, moderately up-regulated and involved 
in the activation cascade of caspases responsible for 
apoptosis execution; f) HRAS, slightly up-regulated and 
functioning in signal transduction pathways by binding 
GTP and GDP; g) E2F1, belonging to the E2F family, 
controlling cell cycle and tumor suppressor proteins, 
and mediating cell proliferation and TP53-dependent 
apoptosis; h) MDM4 (not a DEG, but an external marker) 
which inhibits TP53- and TP73-mediated cell cycle arrest 
and apoptosis by binding its transcriptional activation 
domain (also inhibiting degradation of MDM2); i) E2F4, 
controlling cell-cycle progression from G1 to S phase, 
and also possibly binding to RB1; l) BCL2L1, known 
potent inhibitor of cell death and inhibiting activation of 
caspases. 
Mr hierarchical paths

We used the GeneXplain web platform, and 
selected the workflow “Find master regulators in 
networks (GeneWays)” [33], an open integrated system 
combining molecular interactions from multiple sources 
of information and inferring a consensus network view. 
In particular, the tool tries to combine each gene into a 

hierarchical map through the mechanisms of regulation 
which are retrieved from a dataset of 479 distinct 
interaction modes, derived from a corpus of abstracts 
by using text mining and Natural Language Processing, 
and including a total of >6 ml interactions among 1,7 ml 
nodes (i.e. genes). We are looking at literature-curated 
regulations from mechanistic interactions. The workflow 
was adapted to our scopes by analyzing master regulatory 
molecules upstream of our DEG genes, with default input 
settings. The embedded gene network db is generated by 
computational text mining of >360,000 full text papers, 
and >8 ml publication abstracts, creating a hierarchical 
network of interactions among genes of interest and db 
ones. The hierarchical networks created in the master 
regulator analysis were exported as graphml files destined 
to Cytoscape for mapping the DEG values and for 
rebuilding the network with hierarchical layout, as in the 
initial tool, and with proper visualization of the selected 
DEG, and of the time-specific cascade relationships.

In the first of the three partial regulation paths (top 
plot), measured at 48h, we observe quite an abundance 
of detected DEG signals. At the top there is FADD - 
FAS-associated death domain – encoding an adaptor 
protein interacting with various cell surface receptors and 
mediating cell apoptotic signals. For instance, it binds 
to FAS (up-regulated), recruits and activates the initiator 
Caspase 8, which appears not expressed at 48h. Also 
proteins including DAXX (down-regulated) have been 
found to bind to FAS [19] (i.e. overexpression of DAXX 
enhances FAS-mediated apoptosis and activates the Jun 
N-terminal kinase (JNK) pathway). The DAXX apoptotic 
pathway is sensitive to both BCL2 and dominant-negative 
JNK pathway components and acts cooperatively with 
FADD [21]. Additionally, the disruption of the MDM2–
DAXX interaction may be important for p53 activation 
in response to DNA damage. DAXX represses p53 target 
promoters, and its co-expression with MDM2 leads to 
further repression. DAXX can suppress cell death induced 
by p53 overexpression and p53-dependent stress response, 
and is to be considered a negative regulator of p53 [21]). 
The suppressor p53 induces apoptosis or cell-cycle arrest 
in response to stresses.

In the second example, we report a master regulator 
path at 72h, centered on TOLLIP, a component of the 
signaling pathway of IL-1 and Toll-like receptors, and 
the encoded protein regulates inflammatory signaling. 
The closest DEG we have in an associated path is IRAK-
1, encoding the interleukin-1 receptor-associated kinase 
1. This gene is partially responsible for IL1-induced up-
regulation of the TF NFKB. Notably, Caspase 8 appears 
now expressed at 72h. Finally, in the third example we 
report BIK-centered regulation paths. Together with other 
death-promoting proteins, such as BID, BAK, BAD and 
BAX, BIK has pro-apoptotic activity, and interacts with 
anti-apoptotic members of the BCL2 family. Its activity is 
suppressed in the presence of survival-promoting proteins. 
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Finally, with reference to 96h, we find a good match 
with the evidences from the time-corresponding apoptosis 
sub-network, in which the interaction mode is different 
(i.e. co-expression). In the path of interest we can observe 
BIC-BCL2L1-NFKB1 which is up-regulated, likewise the 
close path BIK-BAX-CASP3-BIRC5(or)LIG4(or)CASP6, 
which is again up-regulated. 

Validation

The signaling of apoptosis was considered for 
further validation, and both qRT-PCR and methylation-
specific PCR (MSP) were employed to produce evidences. 
Given the multilevel regulation characterizing this death-
inducing signaling complex, focus was on a few main 
entities, such as FAS, BIK, Caspase-8, whose mapping 
onto the MR hierarchical paths revealed significant 
modulation after treatment. For instance, Caspase-8 
directly cleaves downstream caspases such as Caspase-3, 
or indirectly starts the activation of the intrinsic pathway of 
apoptosis. Caspase-8 represents a typical target for cancer 
therapy by acting though the Aza-induced restoration 
of its expression, and its silencing has been reported in 
neuroblastoma e medulloblastoma, for instance [34]. 

Epigenetic silencing is the designed strategy to 
induce Caspase-8 re-expression; through demethylation 
of the regulatory sequence of Caspase-8, the Aza agent 
induces transcriptional activation and sensitization 
to apoptosis [35-37]. Similar rationale for epigenetic 
silencing applies to our pro-apoptotic master regulators in 
order to induce their re-expression. In particular, validation 
with qRT-PCR for FAS, FADD, Tollip, Caspase 8, BIK and 
BAX has confirmed the signals obtained from microarray 
analysis (see evidences from SM qRT-PCR file) Also, 
the effect of DAC treatment on the patterns of promoter 
methylation has been further investigated for selected 
genes, i.e. FAS, Caspase-8 and BIK, thus providing further 
validation. As a result, methylation-specific PCR (MSP) 
indicates that FAS is not methylated in the Wery Rb1 cell 
line, thus leading to the conclusion that its up-regulation 
is not induced by treatment, but to indirect effects. Instead, 
Caspase-8 and BIK are methylated in the Wery Rb1 cell 
line, thus implying that up-regulation is due to a direct 
effect of the agent on the genes (SM MSP Wery cells file), 
and justifying transcriptional activation and sensitization 
to apoptosis of retinoblastoma cells. 

DIscUssION

Our analyses refer to the assessment of temporal 
effects of DAC treatment on a retinoblastoma cell line. 
Weri-Rb1 is one of the few available cell lines (the other 
popular one being Y79) for this type of cancer, and 
remains important for the investigation of demethylation 
effects induced by treatment. Initially, we aimed to relate 

our findings to other evidences addressing genomic signals 
which were detected at different conditions and scales and 
thus containing distinct information. Networks are the best 
tool for this task. Since genomic signals appear correlated 
also on such scales [38], the associative dynamics between 
gene expression and DNA methylation can be influenced 
by scales, which in turn implies that it might not be 
possible to detect them under any particularly observable 
scale, maybe dependent on specific experiments, or 
we may lack measurements that allow to assess scale 
correlations. Under such general limitations, we measured 
demethylation effects at gene expression levels and built 
co-expression maps embedding various types of signals, 
from our DEG to other established markers, predicted 
interactors of the previous two entities, and then regulative 
entities too, such as TF and MR, all contributing to a map 
of connectivity patterns from which we aimed to analyze 
some interesting relationships. 

Our time course analysis approach is relevant in two 
regards, at least: A) Profiles are available to assess whether 
the effect of epigenetic treatment is inducing particular 
effects not only through specific DEG sets, but also owing 
to some observed variation in expression levels in time 
which shapes co-expression network configurations; 
B) The integration of landmark entities obtained at 
different cellular states and experimental conditions, 
including epigenetic ones through our DEG, allows to 
measure wide-spectrum regulation effects, again in a 
network context. The role played by some genes is finally 
emphasized together with interlinked sub-networks, as 
these connectors or modulators of specific network activity 
involve regulation dynamics and build from observational 
evidence and predictions the integrative contexts for DEG 
and marker signals of special interest in retinoblastoma.

At a methodological level, integrative cancer 
inference from networks is becoming increasingly popular 
[39-46], and advances in computational and visualization 
tools [45] make it feasible (no need of a model) and 
effective (ability to establish relationships). In our case, 
the data diversity in terms of experimental sources and 
conditions are not preventing both maps and charts to 
be displayed, thus driving our inference approach. Since 
our generated evidenced are then validated to pinpoint 
the capacity of the proposed approach to produce valid 
testable hypotheses, we are confident that our application 
setting may turn out to be relevant for research in 
retinoblastoma, in particular owing to translational power 
linked to evidences at ensemble marker scale, which 
enables better elucidation of relevant aspects of epigenetic 
treatment with regard to complex multifaceted apoptotic 
signaling. 

In conclusion, network analysis is an inference 
tool inherently able to describe associations that would 
not be predicted otherwise, to confirm through expected 
interactions relevant pathway cross-talks, and to identify 
unexpected correlative or causal relationships as a result 
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of non-canonical gene interplay, due to disease. Biological 
systems contain complex relationships, including 
nonlinearities, which networks capture generally well, and 
since in such cases the presence of reference examples is 
crucial, the integration of evidenced markers from several 
experimental data sources and re-used data presents not 
only difficulties but also advantages, in particular when 
RNA expressions are complemented by methylation states 
information in order to decipher gene regulation.

MAtErIALs AND MEtHODs

culture cell line and 5-Aza-2’-deoxycytidine 
treatment

Retinoblastoma has been studied in vitro by the 
cell line Weri-RB1 treated with DAC (versus untreated 
one as control) in a time course experiment designed to 
analyze gene expression profiles at 3 specific times from 
treatment, i.e. after 48, 72 and 96 hours. Weri-Rb1 cells 
(ATCC, Rockinville, MD) were maintained in RPMI1640 
medium supplemented with 10% foetal bovine serum 
and 2 mM L-glutamine, at split ratio of 1:2 once a 
weak. For treatments, cells were seeded at a density of 
1 x 106 cells/100-mm tissue culture dish. After 24 hours 
incubation, 2.5 μM 5-Aza-2’-deoxycytidine (Sigma-
Aldrich) was added to the culture medium up to 96 hours.

cell viability and FAcs analysis

Quantitative cell viability was measured by 
colorimetric assay using a cell proliferation kit (MTT) 
(Roche Molecular Biochemicals). Treated and untreated 
Weri-Rb1 cells were grown in microtiter plates (96-
well) in a final volume of 100 μl culture medium. Cells 
were incubated for 48, 72 and 96 hours in the presence 
or absence of the 2.5 μM 5-Aza-2’-deoxycytidine. 
Cell viability was expressed as the percentage of the 
absorbance of drug-treated and untreated cells relative to 
that of the untreated at 0 hours. FACS analysis (Becton–
Dickinson FACScan) was carried out on treated cells and 
compared to those untreated after 48, 72 and 96 hours of 
culture.

rNA preparation

Total RNA samples were isolated from treated 
and untreated Weri-Rb1 cells after 48, 72 and 96h of 
cell cultures using TRIZOL reagent (Invitrogen, CA, 
USA) according to the manufacturer’s instructions. 
Concentration of purified RNA samples were determined 
by A260 measurement and the quality was checked by 
Lab-on-a-chip analysis (total RNA nanobiosizing assay, 

Agilent) with the Agilent 2100 Bioanalyzer.

cDNA microarray experiments

RNAs isolated from treated and untreated Weri-
Rb1, and transcribed in cDNAs, were used to carry out 
the microarray analysis using a microarray chip from 
Miltenyi Biotech named PIQORTM Cell Death Human 
Sense Microarrays which contain 200-mer oligo-probes 
covering 494 human genes. In some cases, multiple 
probes are present, possibly allowing isoform detection. 
Interpretation of gene expression microarrays requires a 
mapping from probe set to gene. A given gene may be 
detected by multiple probe sets, thus leading to some 
inconsistency of measurement. When microarrays are used 
to identify DEG associated with a biological phenotype, 
a probe set with an expression pattern of interest can be 
mapped to a particular gene or set of transcripts. A usual 
way to estimate a single expression value for a particular 
gene is through the average expression value of all probe 
sets that map to the gene. Spots flagged as low quality 
were excluded from further analysis. Hybridisation, 
scanning and data analysis were performed as described 
in detail (1). Briefly, image capture of hybridised 
PIQORTM microarrays were done with the laser scanner 
ScanArrayTM Lite (PerkinElmer Life Sciences); mean 
signal and mean local background intensities were 
obtained for each spot of the microarray images using the 
ImaGeneTM software (Biodiscovery).

Microarray analyses

Detection of the expression levels of transcripts 
in the 3 time profiles was achieved by using a Cy5/Cy3 
custom platform designed PIQOR from Miltenyi Biotech 
and containing almost 500 genes related to apoptosis, cell 
death and inflammation. Local background was subtracted 
from the signal to obtain the net signal intensity and the 
ratio of Cy5/Cy3 was calculated. Subsequently, the mean 
of the ratios of the four corresponding spots representing 
the same cDNA was computed. The ratios were 
normalized using the Median and the Lowess methods. 
As an additional quality filtering step, only spots/genes 
were taken into account for the calculation of the Cy5/Cy3 
ratio that have at least in one channel a signal intensity that 
was at least 2-fold higher than the mean background. We 
considered the selection of down-regulated based on genes 
with an expression ratio below 0.58, while up-regulated 
genes have values over 1.70. The microarray chip from 
Miltenyi contained 4 technical replicates and a quality 
control implemented in the analysis taking into account 
the coefficient of variation (CV = σ/μ) as a parameter 
referring to the quality of replicated spots, expressed as 
a percentage and complementing the information from 
expression ratios (see SM Table 3 for details). 
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DEG, pathways and networks

From the DEG profiles analyzed as individual gene 
sets, we considered as an important aspect their connected 
representations. GeneMania was used to generate the 
networks, showing co-expression dynamics among the 
connected genes. When launching the web application, 
the input settings in default mode were selected from 
GeneMania to build the interactomes. In the Networks 
section, the available Co-expression, Co-localization, 
Genetic interactions, Pathway, Physical interactions, 
Predicted and Shared protein domains were used with 
default setting. In the Network Weighting section the 
automatically selected weighting method was used. In 
the Number of gene results, choice was for display of 
20 related genes and at most 10 related attributes. These 
results were imported into Cytoscape to build the maps 
for display. GeneMania allowed to assess interactions 
occurring at co-expression level for the DEG sets in 
all the measured time course profiles, and the network 
configurations were built from the log expression ratio 
values. 

Functional enrichment analysis was obtained by the 
David [47] (http://david.abcc.ncifcrf.gov/) and PantherDB 
(http://www.pantherdb.org/) [48] tools for GO enrichment 
and pathway mapping, respectively. Pathway analysis was 
performed using ClueGo (http://apps.cytoscape.org/apps/
cluego) [49] in Cytoscape 3.1, and by selecting standard 
tools for annotation such as Wikipathways (http://www.
wikipathways.org/index.php/WikiPathways) [50], KEGG 
(http://www.genome.jp/kegg/) [51], and Reactome (http://
www.reactome.org/) [52] as pathway knowledge basis. In 
particular, the Apoptosis pathway map was downloaded 
from Wikipathways (http://www.wikipathways.org/index.
php/WikiPathways) and then imported in PathVisio (http://
www.pathvisio.org/) [53] in which the expression ratios 
corresponding temporal gene profiles were mapped. The 
ClueGO settings for pathway analysis included 3 genes/
min and 4% genes in the advanced term option, with kappa 
score set at 0.4. The statistical analysis settings included 
right sided hypergeometric test for the enrichment with 
Benjaimini-Hochberg p-value correction. Integrated 
transcription factor and promoter analysis were performed 
using both the Pscan web tool (among other explored, 
such as Opossum (http://opossum.cisreg.ca/oPOSSUM3/), 
etc. [54]) and the GeneXplain platform. The transcription 
factor networks were built using String-DB at various 
confidence levels (the highest set at 0.7). The networks 
were exported on Cytoscape for mapping the DEG. 
Master regulator networks were built inside GeneXplain 
web platform by using TransPath knowledge base 
(http://genexplain.com/transpath-1) [55]. The Geneways 
knowledge base available from the tool was selected 
with default values for input analysis. The hierarchical 
networks created in the master regulator analysis were 
exported as graphml files in order to be handled within 

Cytoscape for mapping DEG values and rebuilding the 
network with hierarchical layout, as in the main analysis, 
and with proper visualization highlighting selected DEG 
and cascade relationships along all the profiles. 

Other related information is available from SM 
Tables 4-5 (interactions in co-expression networks), SM 
Tables 6-7 (selection of TFs), and SM MR folder (top 3 
regulation paths selected at each time). 

Quantitative rt-Pcr experiments

qRT-PCR was performed to quantify mRNA levels 
in some of the relationships evidenced in particular by 
regulatory paths governed by master regulators. Total 
RNA was extracted from Weri-Rb1 cells using NucleoSpin 
RNA isolation kit (Macherey-Nagel) according to the 
manufacturer’s instructions. RNA concentration and 
purity was determined by Picodrop spectrophotometer. For 
each sample, 1 mg (micro) of total RNA was reversely 
transcribed using the Maxima H Minus First Strand cDNA 
Synthesis Kit (Thermo Scientific). Gene expression was 
determined by DyNAmo Flash SYBR Green qPCR Kit 
(Thermo Scientific), using the PikoReal Real-Time PCR 
System (Thermo Scientific). All samples were analysed 
in triplicate. 
Primers used

b-ACTIN: sense 5’-TGCGTGACATTAAGG 
AGAAG-3’, reverse 5’-GCTCGTAGCTCTTCTCCA-3’;

FAS: sense 5’-AAAGCTAGGGACTGC 
ACAGTCA-3’, reverse 5’-GTCCGGGTGCAGTTTAT 
TTCCA-3’;

BAX: sense 5’-TTTTCCGAGTGGCAGC 
TGACAT-3’, reverse 5’- TTCTGATCAGTTCCGGCA 
CCTT-3’;

BIK: sense 5’-TGGAGGTTCTTGGCATGA CTGA-
3’, reverse 5’-ACTGCCCTCCATGCATTCCAAA-3’;

TOLLIP: sense 5’-TGGCCAAGAATTACGGC 
ATGAC-3’, reverse 5’- ACCGTGCAGTGGATGAC 
CTTAT-3’;

FADD: sense 5’-CAGAGAAGGAGAACGCA 
ACAGT-3’, reverse 5’-AGGTAGATGCGTCTGAGT 
TCCA-3’; 

CASP8: sense 5’-TTTCTGCCTACAGGGTCA 
TGC-3’, reverse 5’-TGTCCAACTTTCCTTCTCCCA-3’,
One-way ANOVA

Amplification conditions were: 7 minutes at 95°C 
followed by 40 cycles of 10 seconds at 95°C, 20 seconds 
at 60°C and 20 seconds at 72°C. The experiments were 
performed in triplicate. The relative expression of target 
genes was evaluated using the comparative cycle threshold 
method, with b-actin used for normalization. For the 
significance of gene expression values, the statistical 
analysis of ΔCt values was based on ANOVA (p < 0.05; 
mean ± sem), reported in SM qRT-PCR file.
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Methylation-specific PCR (MSP)

DNA methylation patterns in the CpG islands of 
FAS, CASP8 and BIK were assessed by MSP, on the 
basis of the sequence differences between methylated and 
un-methylated DNA after sodium bisulfite modification. 
Genomic DNA was extracted from Weri-Rb1 cells 
and subjected to bisulfite modification by the Thermo 
Scientific EpiJET Bisulfite Conversion Kit. Successively, 
the modified DNA was used for MSP reactions. The primer 
pairs specific for methylated (M) and un-methylated (U) 
sequences were the following:

FAS:
M sense 5’-AGTTTCGGCGTTTTTCGGAGATTA 

TTGC-3’
M antisense 5’-CACCCGCGCCGAAACGAACC-3’
U sense 5’-GGTAGTTTTGGTGTTTTTTGGAGA 

TTATTGT-3’
U antisense 5’-CACCCACACCAAAACAAACCTT 

TAAC-3’
CASP8:
M sense: 5’-GTT GGT TTT ATT TAG TTC GGC-3’
M antisense: 5’-CCC TAT CGA TAA CAA ATA 

ATA TAC-3’
U sense: 5’-GTT GGT TTT ATT TAG TTT GGT-3’
U antisense: 5’-CCC TAT CAA TAA CAA ATA ATA 

TAC-3’
BIK:
M sense 5’ -GGGAGTCGTGTTTAGGTTTTATC-3’
M antisense 5’-GAACAAAAAAAATACGTTTCG 

AA-3’
U sense 5’-GGGGAGTTGTGTTTAGGTT 

TTATT-3’ 
U antisense 5’-CAAACAAAAAAAATACATTTC 

AAA-3’ 
PCR products were separated on a 2,2% agarose 

gel containing ethidium bromide and visualized under 
ultraviolet illumination.

AckNOwLEDGMENts

The FM, CC and EC thank IFC-CNR for support. 
FM, NZ, EB and EC would like to acknowledge the 
support provided by the Office of the Deputy Vice 
Chancellor for Research and Graduate Studies (National 
Research Foundation Grant Ref. N. 31T046), United Arab 
Emirates University (UAEU). We are surely grateful to 
three referees, as their comments motivated us to complete 
the work, refine the interpretation of the methodological 
parts, and establish validated evidences. 

rEFErENcEs

1. Theriault BL, Dimaras H, Gallie BL, and Corson TW. 
The genomic landscape of retinoblastoma: a review. Clin 

Experim Ophtal 2014; 42, 33-52. 
2. Bellan C, De Falco G, Tosi GM, Lazzi S, Ferrari F, Morbini 

G, Bartolomei S, Toti P, Mangiavacchi P, Cevenini G, 
Trimarchi C, Cinti C, Giordano A, Leoncini L,Tosi P, 
Cottier H. Missing expression of pRb2/p130 in human 
retinoblastomas is associated with reduced apoptosis and 
lesser differentiation. Invest Ophthalmol Vis Sci. 2002;43, 
3602-8.

3. Cotterman R, Jin VX, Krig SR, Lemen JM, Wey A, 
Farnham PJ, Knoepfler PS. N-Myc regulates a widespread 
euchromatic program in the human genome partially 
independent of its role as a classical transcription factor. 
Cancer Res. 2008;68, 9654-62. 

4. Dang CV. MYC on the path to cancer. Cell, 2012; 149, 22-
35.

5. Ganguly A and Shields CL. Differential gene expression 
profile of retinoblastoma compared to normal retina. Molec 
Vis 2010; 16, 1292-1303. 

6. Wilting RH and Dannenberg JH. Epigenetic mechanisms in 
tumorigenesis, tumor cell heterogeneity and drug resistance. 
Drug Resist Updat 2012; 15, 21-38.

7. Baylin SB and Herman JG. DNA hypermethylation in 
tumorigenesis: epigenetics joins genetics. Trends Genet 
2000; 16, 168-174.

8. Patel DJ and Wang Z. Readout of epigenetic modifications. 
Annu Rev Biochem 2013; 82, 81-118.

9. Spruijt CG and Vermeulen M. DNA methylation: old dog, 
new tricks? Nat Struct Mol Biol 2014; 21, 949-954.

10. Baubec T and Schubeler D. Genomic patterns and context 
specific interpretation of DNA methylation. Curr Opin in 
Genet & Develop. 2014; 25:85-92. 

11. Murphree AL and Triche TJ. An epigenomic mechanism in 
retinoblastoma: the end of the story? Gen Med 2012; 4:15. 

12. Livide G, Epistolato MC, Amenduni M, Disciglio V, 
et al. Epigenetic and copy number variation analysis in 
retinoblastoma by MS-MLPA. Pathol Oncol Res 2012; 18, 
703-712.

13. Zhang J, Benavente CA, McEvoy J, Flores-Otero J, et al. A 
novel retinoblastoma therapy from genomic and epigenetic 
analyses. Nature 2012; 481, 329-334. 

14. Cao J. The functional role of llong non-coding RNAs and 
epigenetics. Biol Proc Online 2014; 16:11. 

15. Clark MB, Amaral PP, Schlesinger Fj, Dinger ME, et al. 
The reality of pervasive transcription. PLoS Biol 2011; 9, 
e10000625. 

16. Gutschner T and Diederichs S. The hallmarks of cancer. A 
long non-coding RNA point of view. RNA Biol 2012; 9, 
703-719. 

17. Cheetham SW, Gruhl F, Mattick JS and Dinger ME. Long 
noncoding RNAs and the genetics of cancer. Brit J Can 
2013; 108, 2419-2425.

18. Huarte M and Rinn JL. Large non-coding RNAs: missing 
links in cancer? Hum Mol Genet 2010; 19(R2), R152-61. 



Oncotarget23706www.impactjournals.com/oncotarget

19. Tosi GM, Trimarchi C, Macaluso M, La Sala D, Ciccodicola 
A, Lazzi S, Massaro-Giordano M, Caporossi A, Giordano 
A, Cinti C. Genetic and epigenetic alterations of RB2/p130 
tumor suppressor gene in human sporadic retinoblastoma: 
implications for pathogenesis and therapeutic approach. 
Oncogene,2005, 24:5827-36.

20. Volkmann N, Marassi FM, Newmeyer DD and Hanein D. 
The rheostat in the membrane: BCL-2 family proteins and 
apoptosis. Cell Death Diff 2014; 21, 206-215. 

21. Czabotar PE, Lessene G, Strasser A and Adams JM. Control 
of apoptosis by the BCL-2 protein family: implications for 
physiology and therapy. Nat Rev 2014; 15, 49-63.

22. Westphal D, Kluck RM and Dewson G. Building blocks 
of the apoptotic pore: how Bax and Bak are activated and 
oligomerize during apoptosis. Cell Death Diff 2014; 21, 
196-205.

23. Hengartner MO. The biochemistry of apoptosis. Nature 
2000; 407, 770-776.

24. Lin Y, Bai L, Chen W, Xu S. The NF-kappaB activation 
pathways, emerging molecular targets for cancer prevention 
and therapy. Expp Opin Ther Targets 2010; 14:45-55.

25. Yang SK, Wang YC, Chao CC, Chuang YJ, Lan CY and 
Chen BS. Dynamic cross-talk analysis among TNF-R, 
TLR-4 and IL-1R signaling in TNFα-induced inflammatory 
responses. BMC Med Genom 2010; 3:19.

26. Mostafavi S, Ray D, Warde-Farley D, Grouios C et al. 
GeneMANIA: a real-time multiple association network 
integration algorithm for predicting gene function. Gen 
Biol. 2008; 9: S4.

27. Vaquerizas JM, Kummerfeld SK, Teichmann SA, 
Luscombe NM. A census of of human transcription factors: 
function, expression and evolution. Nat Rev Genet. 2009; 
10, 252-263.

28. Franceschini A, Szklarczyk D, Frankild S, Kuhn M et al. 
STRING v9.1: protein-protein interaction networks, with 
increased coverage and integration. NAR. 2013; 41: D808-
15. 

29. Zambelli F, Pesole G, Pavesi G. Pscan: Finding Over-
represented Transcription Factor Binding Site Motifs in 
Sequences from Co-Regulated or Co-Expressed Genes. 
NAR 2009; 37: W247-W252.

30. Matys V, Fricke E, Geffers R, Gössling E et al. 
TRANSFAC: transcriptional regulation, from patterns to 
profiles. NAR 2003; 31, 374-378.

31. Mathelier A1, Zhao X, Zhang AW, Parcy F, Worsley-Hunt 
R, Arenillas DJ, Buchman S, Chen CY, Chou A, Ienasescu 
H, Lim J, Shyr C, Tan G, Zhou M,Lenhard B, Sandelin A, 
Wasserman WW. JASPAR 2014: an extensively expanded 
and updated open-access database of transcription factor 
binding profiles. NAR 2014;42(Database issue):D142-7.

32. Cline MS, Smoot M, Cerami E, Kuchinsky A, et al. 
Integration of biological networks and gene expression data 
using Cytoscape. Nat Prot 2007; 2, 2366-2382. 

33. Rzhetsky A., Iossifov I, Koike T, Krauthammer M, et al. 

GeneWays: a system for extracting, analyzing, visualizing, 
and integrating molecular pathway data. J Biomed 
Inform.2004; 37:43-53.

34. Fulda S. Targeting for anticancer theray. Sem Canc Biol 
2015; 31: 84-88.

35. Teitz T, Wei T, Valentine MB, Vanin EF et al. Caspase-8 
is deleted or silenced preferentially in childhood 
neurablastoma with amplification of MYCN. Nat Med 
2000; 6: 529-535.

36. Fulda S, Kuter MU, Meyer E, van Valen F, et al. 
Sensitization for death receptor or drug-induced apoptosis 
by re-expression of caspase-8 through demethylation or 
gene transfer. Oncogene 2001; 20:5965-5877.

37. Hopkins –Donaldson S, Bodmer JL, Bourloud KB, 
Brognara CB, et al. Loss of caspase-8 expression in highly 
malignant human neuroblastoma cells correlates with 
reistance to tumor necrosis factor related apoptosis inducing 
ligand-induced apoptosis. Cancer Res 2000; 60: 4315-4319.

38. Knijnenburg TA, Ramsey SA, Berman BP, Kennedy KA, et 
al. Multiscale representation of genomic signals. Nat Meth 
2014; 11, 689–694. 

39. Mora A, Taranta M, Zaki N, Badidi E, Cinti C, 
Capobianco E. Ensemble Inference by Integrative Cancer 
Networks. Front Genet 2014; 5(00059) DOI=10.3389/
fgene.2014.00059. 

40. Mora A, Taranta M, Zaki N, Cinti C, Capobianco E. 
Epigenetically-driven Network Cooperativity: Meta-
analysis in Multi-drug Resistant Osteosarcoma. Journal of 
Complex Networks 2015, in press.

41. Kristensen VN, Lingjærde OC, Russnes HG, Vollan HK et 
al. Principles and methods of integrative genomic analyses 
in cancer. Nat Rev Cancer. 2014; 14:299-313. 

42. Wilson JL, Hemann MT, Fraenkel E, Lauffenburger DA. 
Integrated network analyses for functional genomic studies 
in cancer. Semin Cancer Biol 2013; 23; 213-218.

43. Bertrand D, Chng KR, Sherbaf FG, Kiesel A. et al. Patient-
specific driver gene prediction and risk assessment through 
integrated network analysis of cancer omics profiles. 
Nucleic Acids Res. 2015;43:e44. 

44. Dominietto M, Tsinoremas N, Capobianco E. Integrative 
analysis of cancer imaging readouts by networks. Mol 
Oncol. 2015; 9(1):1-16. 

45. Bonnet E, Calzone L, Michoel T. Integrative Multi-omics 
Module Network Infernece with Lemon-Tree. PLOS 
Computat Biol 2015; 11: e1003983. 

46. Gao J, Aksoy BA, Dogrusoz U, Dresdner G. et al. 
Integrative Analysis of Complex Cancer Genomics and 
Clinical Profiles Using the cBioPortal. Sc Sci. Signal., 
2013; 6, p. pl1. 

47. Glynn Dennis Jr., Brad T. Sherman, Douglas A. Hosack, 
Jun Yang, Michael W. Baseler, H. Clifford Lane, 
Richard A. Lempicki. DAVID: Database for Annotation, 
Visualization, and Integrated Discovery. Gen Biol 2003; 4, 
P3. 



Oncotarget23707www.impactjournals.com/oncotarget

48. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: 
modeling the evolution of gene function, and other gene 
attributes, in the context of phylogenetic trees. NAR 2013; 
41: D377-86. 

49. Bindea G, Mlecnik B, Hackl H, Charoentong P, et al. 
ClueGO: a Cytoscape plug-in to decipher functionally 
grouped gene ontology annotation networks. Bioinformat 
2009; 25, 1091-1093.

50. Kelder T, van Iersel MP, Hanspers K, Kutmon M, et al. 
WikiPathways: building research communities on biological 
pathways. NAR 2011; 40, D1,: D1301–D1307.

51. Kanehisa M and Goto S. KEGG: kyoto encyclopedia of 
genes and genomes. NAR 2000; 28, 27-30. 

52. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P et al. 
Reactome: a knowledgebase of biological pathways. NAR 
2005; 33, D428-32.

53. Iersel MP van, Kelder T, Pico AR, Hanspers K, et al. 
Presenting and exploring biological pathways with 
PathVisio. BMC Bioinformat 2008; 9:399.

54. Kwon AT, Arenillas DJ, Worsley Hunt R. et al. 
oPOSSUM-3: advanced analysis of regulatory motif over-
representation across genes or ChIP-Seq datasets. G3 
(Bethesda). 2012; 2, 987-1002.

55. Krull M, Pistor S, Voss N, Kel A, et al. TRANSPATH: An 
Information Resource for Storing and Visualizing Signaling 
Pathways and their Pathological Aberrations” NAR. 2006; 
34, D546-D551


