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ABSTRACT

Background: In this study, we established patient-derived tumor cell (PDC) 
models using tissues collected from patients with metastatic cancer and assessed 
whether these models could be used as a tool for genome-based cancer treatment.

Methods: PDCs were isolated and cultured from malignant effusions including 
ascites and pleural fluid. Pathological examination, immunohistochemical analysis, 
and genomic profiling were performed to compare the histological and genomic 
features of primary tumors, PDCs. An exploratory gene expression profiling assay 
was performed to further characterize PDCs.

Results: From January 2012 to May 2013, 176 samples from patients with metastatic 
cancer were collected. PDC models were successfully established in 130 (73.6%) samples. 
The median time from specimen collection to passage 1 (P1) was 3 weeks (range,  
0.5–4 weeks), while that from P1 to P2 was 2.5 weeks (range, 0.5–5 weeks). Sixteen 
paired samples of genomic alterations were highly concordant between each primary 
tumor and progeny PDCs, with an average variant allele frequency (VAF) correlation of 
0.878. We compared genomic profiles of the primary tumor (P0), P1 cells, P2 cells, and 
patient-derived xenografts (PDXs) derived from P2 cells and found that three samples (P0, 
P1, and P2 cells) were highly correlated (0.99–1.00). Moreover, PDXs showed more than 
100 variants, with correlations of only 0.6–0.8 for the other samples. Drug responses of 
PDCs were reflective of the clinical response to targeted agents in selected patient PDC lines.

Conclusion(s): Our results provided evidence that our PDC model was a promising 
model for preclinical experiments and closely resembled the patient tumor genome 
and clinical response.
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INTRODUCTION

With rapid advances in molecular oncology, the 
availability of preclinical in vitro cell models and in vivo 
animal models with specific genomic aberrations is 
critical for improved prediction of clinical outcomes in 
cancer patients. One of the most widely used preclinical 
models is conventional cell lines, such as the NCI-60 
panel of cell lines [1]; these cell lines are widely used 
in preclinical testing for novel targeted drugs, partially 
owing to the low expense and reduced labor associated 
with cell culture compared with other preclinical models, 
such as animal xenografts. However, recent studies 
have shown that accumulation of genetic aberrations in 
cancer cell lines occurs with increasing passage number. 
These models also lack the heterogeneity of tumors and 
do not exhibit a proper microenvironment, highlighting 
the limitations of cell-based models [2–5]. Consistent 
with this, Johnson et al. demonstrated that in vivo 
activities of the cell lines within the NCI-60 panel 
did not closely correlate with corresponding human 
cancers [6].

Therefore, to better preserve the genomic integrity 
and tumor heterogeneity observed in patients, patient-
derived xenograft (PDX) models are being used 
more frequently [7–9]. PDX is generated by directly 
transplanting freshly resected patient tumors into 
immunocompromised murine hosts with or without an 
intermediate in vitro culture step [10]. This PDX model 
is an improvement over cell lines because it can provide 
both an appropriate tumor microenvironment and 
heterogeneity of tumor cells. However, the engraftment 
success rates and growth rates of implanted tumors 
are highly variable depending on the tumor type, 
possibly due to insufficient numbers of hematopoietic 
cells and/or ineffective microenvironmental cues in 
the mouse stroma [11, 12]. The extent to which tumor 
cells from freshly resected tumors are able to withstand 
mechanical stresses and xenotransplantation barriers is 
also unclear [13]. Furthermore, the use of PDX models 
for application in clinical oncology is limited owing to 
the time required for PDX establishment (> 4 months) 
since most patients with refractory cancer live less than 
1 year. Recently, PDC line models have been suggested 
as an alternative preclinical model [14] to be used as a 
prediction tool for preclinical drug sensitivity.

Therefore, in this study, we aimed to overcome 
these potential barriers of pre-existing models by 
examining the capacity of PDC line models to 
recapitulate the histological and genomic features 
of primary patient tumors. In selected cases, we 
screened drug sensitivity in vitro using PDC lines and 
compared the results with real-life clinical treatment 
outcomes.

MATERIALS AND METHODS

Patient consent and study inclusion

Between April 2012 and August 2014, patients with 
metastatic cancer were enrolled in the SMC Oncology 
Biomarker study (NCT#01831609,http://clinicaltrials.gov). 
Briefly, the inclusion criteria were as follows: age ≥ 18 
years; pathologically confirmed solid cancer; presence of 
metastatic lesion(s) not amenable to surgical treatment and 
having malignant effusion in the body cavity which needed 
to be drained by percutaneous methods for therapeutic 
purpose. Effusions were obtained for therapeutic 
purposes after obtaining written informed consent, and 
all procedures were carried out according to guidelines 
from the Declaration of Helsinki. The Institutional 
Review Board at the Samsung Medical Center approved 
the protocol. Of the 200 patients who had given written 
informed consent, 24 patients retracted their consent during 
the course of the study. Thus, the processes described 
below were performed for the remaining 176 patients.

Primary cultures of human effusions

Malignant ascites, pleural effusions, or pericardial 
effusions were collected from patients with metastatic 
cancer. Collected effusions (1–5 L) were divided into 
50-mL tubes, centrifuged at 1500 rpm for 10 min, and 
washed twice with PBS. Cell pellets were resuspended 
in culture medium and plated into 75-cm2 culture flasks. 
Cells were grown in RPMI 1640 supplemented with 
10% fetal bovine serum (FBS; Gibco BRL, Paisley, UK) 
and 1% antibiotic-anti-mycotic solution (Gibco BRL). 
The medium was changed every 3 days, and cells were 
maintained at 37°C in a humidified 5% CO2 incubator. 
PDCs were passaged using TrypLE Express (Gibco BRL) 
to detach cells when the cells reached 80–90% confluence.

Cryopreservation of PDCs

Cells at 80–90% confluence were washed, detached 
using TrypLE Express, and incubated for 3 min at 37°C 
with 5% CO2. Following detachment, 4 mL of complete 
culture media was added to block trypsin activity, and 
cells were transferred to a 15-mL sterile centrifuge tube. 
After centrifugation, cells were resuspended in 1 mL of 
freezing medium (Cellbanker, Zenoaq, Japan), transferred 
into cryovials (Nalge Nunc, Naperville, IL, USA), and 
frozen at –80°C overnight.

DNA/RNA extractions

Cultured primary human cells (passage 1 to 4, 
Supplementary Table 1) were harvested with TrypLE 
Express. Genomic DNA was isolated using a QIAamp 
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DNA Mini Kit (Qiagen, GmBH, Hilden, Germany), 
and total RNA was isolated with an RNeasy Mini Kit 
(Qiagen) according to the manufacturer’s instructions. The 
concentrations of genomic DNA and RNA were measured 
using a NanoDrop ND-100 (Nano Drop Technologies, 
Wilmington, DE, USA). Genomic DNA and RNA were 
stored at –80°C.

Ion AmpliSeq Cancer Panel v2

We used the Ion AmpliSeq Cancer Panel v2 (Life 
Technologies, USA) to detect common somatic mutations 
as previously described [15]. This panel was used to assay 
2, 855 mutations in 50 commonly mutated oncogenes 
and tumor suppressor genes (Supplementary Table 2). 
DNA samples were subjected to single-tube, multiplex 
polymerase chain reaction (PCR) amplification using the 
Ion AmpliSeqCancer Primer Pool and Ion AmpliSeqKit 
reagents (Life Technologies). Treatment of the resulting 
amplicons with the FuPa Reagent partially digested 
the primers and phosphorylated the amplicons. The 
phosphorylated amplicons were ligated to Ion Adapters and 
purified. For barcoded library preparation, we substituted 
barcoded adapters from the Ion Xpress Barcode Adapters 
1–96 Kit for the non-barcoded adapter mix supplied in the 
Ion AmpliSeq Library Kit. Ligated DNA was subjected 
to nick-translation and amplification to complete the 
linkage between adapters and amplicons and to generate 
a sufficient material for downstream template preparation. 
Two rounds of Agencourt AMPure XP Reagent binding 
at 0.6 and 1.2 bead-to-sample volume ratios were used to 
remove input DNA and unincorporated primers from the 
amplicon-containing solution. The final size of the library 
molecules was approximately 125–300 bp. We transferred 
the libraries to the Ion OneTouch System for automated 
template preparation. Sequencing was performed on 
an Ion PGM sequencer according to the manufacturer’s 
instructions. We used IonTorrent Software for automated 
data analysis.

A new pipeline was designed for highly sensitive 
identification of Single nucleotide variations (SNVs) for 
passages 0, 1, and 2 (P0, P1, and P2, respectively) and 
xenografts. Varscan2 SNP calling was performed with the 
following options: min-coverage, 50; min-var-freq, 0.01; 
and p-value, 0.1. Variants around the insertions/deletions 
(InDels) were filtered out [16]. Variants were annotated 
using Oncotator [17].

Targeted sequencing

In order to genomically compare PDCs to primary 
tumor specimens, we performed targeted deep sequencing 
in 16 primary tumor-PDC paired samples. Genomic DNA 
was extracted, and a SureSelect customized kit (Agilent 
Technologies, Santa Clara, CA, USA) was used for 
capturing 381 cancer-related genes. Illumina HiSeq 2500 
was used for sequencing with 100 bp paired-end reads. 

The sequencing reads were aligned to the human genome 
reference sequence (hg19) using BWA-mem (v0.7.5), 
SAMTOOLS (v0.1.18), Picard (v1.93), and GATK 
(v3.1.1) for sorting SAM/BAM files, duplicate marking, 
and local realignment, respectively. Local realignment and 
base recalibration were carried out based on dbSNP137, 
Mills indels, HapMap, and Omni. SNVs and InDels were 
identified using Mutect (v1.1.4) and Pindel (v0.2.4), 
respectively. ANNOVAR was used to annotate the 
detected variants. Only variants with over 1% of allele 
frequency were included in the results. The correlation 
coefficient was calculated based on variants that were 
detected in both cells.

nCounter Copy Number Variation CodeSets

For detection of copy number variations (CNVs), 
300 ng of purified genomic DNA extracted from PDCs 
was analyzed using nCounter Copy Number Variation 
CodeSets. DNA was fragmented by AluI digestion and 
denatured at 95°C. Fragmented DNA was hybridized with 
the codeset of 86 genes in the nCounter Cancer CN Assay 
Kit (Nanostring Technologies, Seattle, WA, USA) for 18 h 
at 65°C and processed according to the manufacturer’s 
instructions. An nCounter Digital Analyzer was used to 
detect and tabulate the signals of the reporter probes. 
Average count numbers of greater than 3 were called and 
confirmed by immunohistochemistry (IHC), fluorescent in 
situ hybridization (FISH), or real-time PCR. Validation of 
nCounter results has been published previously [15].

NanoString 522-kinase panel

The nCounter GX Human Kinase Kit (NanoString 
Technologies) was used for targeted gene expression 
analyses of PDCs. Purified RNA (100 ng) was hybridized 
with the available 522 gene code set for 18 h at 65°C and 
processed according to the manufacturer’s instructions [18].

PDX models established from PDCs

PDCs were transferred to OncoTest, Germany as 
frozen vials. On site, the cells were thawed, the freezing 
medium was removed, and the cells were resuspended 
and transferred into T75 flasks. Cells were grown for 
3–7 days in RPMI/10% FBS until the culture reached 
around 80% confluence. Cells were collected and counted, 
and 5,106 cells were injected into the hind flanks of NOD 
scid gamma (NSG) mice (Jackson Laboratories). Tumors 
developed within 25–85 days after injection; these tumors 
were explanted, and viable portions of the tumors were 
cut into pieces and implanted subcutaneously into female 
NMRI nu/nu mice (Harlan Laboratories). This process 
was repeated in order to serially passage the respective 
models. From each passage, formalin-fixed, paraffin-
embedded (FFPE) blocks were prepared, and tumor 
slices were stained with hematoxylin and eosin (H&E). 
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Slides were scanned with a Hamamatsu slide scanner, and 
images were extracted using the Nanozoomer program 
from Hamamatsu. All animal handling and experiments 
with animals were in accordance with the guidelines set 
by the Samsung Biological Research Institute.

Statistical analysis

Statistical analysis was designed to reduce the 
potential for false-positive calls from the mutation analysis 
by the Ion AmpliSeq Cancer Panel v2. The variants were 
filtered by coverage (>100×), quality score (>30), and 
variant frequency of each sample (>1%). We also discarded 
germline variants specific to Koreans, such as rs1042522 
in TP53 and rs1870377 in KDR. Nonsynonymous and 
frame shift mutations were included for further analysis. 
We used the MyCancerGenome database (http://www 
.mycancergenome.org/) and Therapeutic Target Database 
(http://bidd.nus.edu.sg/group/TTD/ttd.asp) to address 
clinically actionable mutations.

For expression analysis, high-throughput gene 
expression analyses were carried out for TCGA gastric 
cancer (GC; N = 307), ACRG (N = 300), and our 
PDCs (N = 109) [19, 20]. The TCGA STAD dataset 
was analyzed using gene reads per kilobase per million 
mapped reads (RPKM) estimated by the TCGA pipeline 
with the Illumina GA and HiSeq 2000 platforms. ACRG 
was analyzed using the log10-transformed RMA signal 
intensity with the Affymetrix Human Genome U133 
Plus 2.0 Array. Before integrating multiple datasets, our 
PDC gene expression data were normalized by nSolver 
and adjusted for removing outliers using the R package 
‘outliers’ (http://cran.r-project.org/web/packages/outliers/
index. html). Next, platform effects of the three datasets 
were eliminated by meta-analysis using ComBat [21]. 
Finally, a gene expression matrix of 485 genes and 
716 samples was used for future analysis.

In order to investigate gene expression concordance 
in PDCs, we performed correlation analyses between 
different cohorts, PCA analysis, sample hierarchical 
clustering (Euclidean distance and average method), and 
Turkey’s honest significant difference test for interesting 
genes and five groups. All future analysis was performed 
using R language.

RESULTS

Patient characteristics

From January 2012 to May 2013, 176 patient 
samples were collected for this study, and PDC models 
were successfully established in 130 (73.6%) of these 
samples. Successful PDCs were defined as those cells that 
were cytologically confirmed by a designated pathologist 
(M.H. or I.D.) and those that maintained growth following 

two passages. Cells from all patients were stained with 
either H&E or Papanicolaou, and micrographs were 
prospectively stored in our internal database. The most 
common reasons for culture failure were bacterial 
contamination (26 cases, 56.5%; Figure 1), followed 
by failure of the cells to grow in culture (16 cases, 
34.8%); in 4 cases (8.7%), no cells were found in the 
collected effusion. Of 130 PDC models, 14 cases that 
were inadequate for genomic profiling were excluded. 
Therefore, genomic analyses, including Ion Ampliseq, 
nCounter CNV Assay, and Nanostring-based targeted 
gene expression profiling were performed in 116 cases 
(Supplementary Table 1).

Table 1 summarizes the baseline characteristics of 
the patients (N = 116). The most common cancer type 
was GC (N = 58; 50.0%), followed by colorectal cancer 
(N = 25; 21.6%) and then hepatocellular carcinoma (N = 8; 
6.9%). PDCs were collected most commonly from ascites 
(N = 101; 87.1%), followed by pleural effusions (N = 12; 
10.3%), pericardial effusion (N = 1; 0.9%), and other 
sources (Table 1). The maximum passage number of cells 
was 10 (range, 6–14), and passage numbers at the time 
of analysis ranged from 1 to 4 (Supplementary Table 1). 
All PDCs were grown in flasks as attached monolayers. 
Details of growth properties of established PDCs are 
described in Supplementary Table 1. With our culture 
conditions, the median time between primary tumors and 
P2 for this model was 4 weeks (average 28.6 days). In all 
cells, the median time from specimen collection to P1 was 
3 weeks (range, 0.5–4 weeks), while that for growth from 
P1 to P2 was 2.5 weeks (range, 0.5–5 weeks). The median 
doubling time was 119.5 h.

Genomic landscape of the PDCs

Of the 130 PDCs, we successfully obtained 
genomic profiling in 116 PDCs. We identified 
181 mutations in 50 genes using Ion Ampliseq 2.0; 
most of these mutations were nonsynonymous point 
mutations. In addition to the point mutations, one 
truncation mutation was found in APC, and two and 
one frameshift mutations were found in TP53 and VHL, 
respectively. The most commonly detected molecular 
aberrations were found in HRAS, SMARCB1, STK11, 
PTEN, CDKN2A, TP53, MLH1, PIK3CA, BRAF, EGFR, 
and KRAS (Figure 2). We used the MyCancerGenome 
database (http://www.mycancergenome.org/) and 
Therapeutic Target Database (http://bidd.nus.edu.sg/
group/TTD/ttd.asp) to evaluate clinically actionable 
mutations. Actionable mutations were identified in 76 of 
116 PDCs screened in this study. Using CNV assays, we 
identified 16 amplifications in 11 genes: three in MCL1; 
two each in BRACA2, MET, and RAS; and one each in 
ZNF217, FGFR1, CDKN1A, AURKA, CRKL, CCND1, 
and WHSC1L1 (Figure 2).
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PDCs were reflective of genomic alterations 
in parent tumors and clinical phenotypes in 
response to targeted agents

Next, we evaluated whether PDCs maintained the 
genetic and histological features of their parent tumors in 
16 pairs of PDCs and primary tumors from synchronous 
patients with metastatic cancer. Synchronous samples 
were defined as those collected less than 6 months apart 
based on the date of the primary tumor procurement. Deep 
sequencing of 16 paired samples revealed that genomic 
alterations were highly concordant between primary 
tumors and the progeny PDCs (Figure 3 and Table 2), with 
an average VAF correlation of 0.878.

Next, we examined whether the drug response 
profiles of PDCs were reflective of the clinical response 
to targeted agents in selected patients who had such 
information available. PDC#001 was generated from 
the sample collected from a patient with GC who was 
sensitive to lapatinib treatment, which was reflected in 
the corresponding PDC, with a half-maximal inhibitory 
concentration (IC50) of 1.1 μM (Table 3). PDC#014 
was generated from the sample collected from a patient 
with BRAFV600E (+) melanoma, who was resistant 

to vemurafenib. The clinical response to vemurafenib 
(resistance) and sensitivity of PDCs generated from this 
patient correlated very well, with an IC50 of more than 
10 μM for vemurafenib. PDC#042 was generated from 
the sample collected from a patient with HCC, who was 
resistant to sorafenib and had an IC50 for vemurafenib of 
more than 2.0 μM. PDC#51 and PCD#74 were generated 
from samples collected before sorafenib treatment in 
patients with HCC who later showed stable disease after 
sorafenib treatment for more than 4 months. The IC50 values 
for sorafenib in these two HCC PDCs were below 2.0 μM, 
although a larger cohort will be needed to define the cut-off 
value for prediction of the actual clinical response.

Major genomic alterations were retained 
in PDCs and PDXs

As a proof-of-concept study, we characterized 
ascite-derived PDCs from a patient with RAS-amplified 
GC. Primary tumor cells and PDCs generated from 
ascites maintained histologic features in H&E, CK7, 
and CK20 staining (Figure 4A). We implanted these 
PDCs in NSG mice to evaluate whether PDCs could 
be converted to a PDX model. This PDC-PDX model 

Figure 1: Workflow for establishing PDC models.
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exhibited histological features and IHC findings 
similar to those of the primary tumor (Figure 4B). 
To confirm the genomic features of various tumor 
cells, we compared variant allele frequency results of 
the primary tumor (P0), P1 cells, P2 cells, and PDXs 
derived from P2 cells (Supplementary Table 3). Three 
samples (P0, P1, and P2) were highly correlated 
(0.99–1), and the numbers of identified variants were 
similar (from 20 to 27). PDXs showed many variants 
(over 100), and low correlation was observed with the 
other samples (0.6–0.8; Figure 4C). All 14 positions 
shown in Figure 4D from the intersection of four 
samples were known positions of dbSNPs, and the mean 
allele frequency was 0.77. The number of intersection 
variants from P0 to P2 was 17. CDKN2B, PTEN1, and 
SMARCB1 were also included with genes of 14 variants. 

BRAF, PDGFA, and ZHX2 were detected in only P0. 
A dbSNP (rs55932048) was detected in ZHX2, with a 
frequency of 0.6. BRAF harbored an intronic variant 
(chr7. hg19:g.140481514A>G) discovered in COSMIC 
(stomach = 11, large intestine = 6953), and PDGFA 
possessed a missense mutation (p.I670V) in COSMIC 
(stomach = 32, large intestine = 26). As presented in 
Figure 4E, variants of BRAF and PDGFA had low 
allele frequencies (approximately 0.15), making them 
difficult to identify. Additionally, when investigating the 
position status of BRAF and PDGFA for all samples, 
variant allele frequencies seemed to be lower in P2 than 
in P0 (Figure 4E). For instance, PDGFA p.I670V, which 
was present in P0, was not identified in P2. Moreover, 
variants in BRAF and PDGFA were not identified 
in PDXs.

Table 1: Baseline patient characteristics (N = 116)
Variable Patients (N = 116) %

Age-year

 Median 55

 Range 21–80

Sex

 Male 61 52.6

 Female 55 47.4

Cancer Types 

 Gastric cancer 58 50.0

 Colorectal cancer 25 21.6

 Hepatocellular carcinoma 8 6.9

 Pancreatic cancer 6 5.2

 Cholangiocarcinoma 3 2.6

 Sarcoma 4 3.4

 Non-small cell lung cancer 3 2.6

 Neuroendocrine tumor 3 2.6

 Melanoma 2 1.7

 Renal cell carcinoma 1 0.9

 Esophageal squamous cell 1 0.9

 Gall bladder cancer 1 0.9

 Genitourinary cancer 1 0.9

Source of PDCs

 Ascites 101 87.1

 Pleural effusion 12 10.3

 Pericardial effusion 1 0.9

 Others 2 1.7
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Figure 2: Mutational analysis of the patient-derived cell (PDC) cohort. Overall genetic alterations in PDCs were identified by 
Ion Ampliseq (red) and nCounter Copy number variation assay (blue).

Figure 3: A. Venn diagram showing the variants detected in the primary tumor and patient-derived cells (PDCs). 
Among 695 genomic alterations from 32 samples, 402 were commonly detected from both types of cells. B. Correlations of variant allele 
frequencies (VAFs) between primary tumor PDCs. The plot shows VAFs of commonly identified SNVs and InDels from 32 samples. The 
Pearson correlation coefficient between the variants from primary tumor cells and PDCs was 0.801.
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Comparison of gene expression between GC 
PDC and the TCGA/ACRG cohort

In order to investigate the relevance of changes in 
gene expression in PDCs, we integrated three different 
datasets (TCGA GC, Asian Cancer Research Group 
[ACRG] GC, and our PDC cohort) [19, 20]. ACRG and 
GC PDC samples were from Korean patients, while 
samples in the TCGA dataset were collected from 
multiple ethnic groups. TCGA was the only dataset to 
include normal samples (N = 33). For cross-platform gene 
expression comparison, meta-analysis was performed 
using the workflow shown in Figure 5A. Between-tumor 
cohort similarity was inferred from sample correlations 
between different cohorts. Correlation distributions are 
shown in Figure 5B. All sample correlations between 
cohorts were quite similar. The mean correlation between 
ACRG and TCGA was 0.69, while that between ACRG 
and PDC GC was 0.73 and that between ACRG and PDC 
except GC was 0.7. Heterogeneity of GC was present in 
TCGA GC samples (Figure 5C). PDC GC samples were 
clustered well with both TCGA GC and ACRG GC cohorts 
(Figure 5D). Korean patient samples of ACRG and PDC 
GC were centralized in the PDC plot core and seemed to 
be less diverse than the TCGA cohort. When investigating 

differential expression of four major known oncogenes in 
GC, we found that MET (p = 0.00) and ERBB2 (p = 0.00) 
were differentially expressed between normal and tumor 
tissues (Figure 5E). Taken together, gene expression 
profiling of the GC PDC cohort correlated well with the 
large genome cohorts TCGA and ACRG.

DISCUSSION

Accurate prediction of antitumor efficacy for targeted 
agents before clinical trial design and implementation in 
patients with metastatic cancer is essential to improve 
treatment outcomes. Ideal preclinical models should 
closely resemble actual tumors in terms of molecular 
profiles and clinical behaviors. In this study, we developed 
a PDC model that exhibited histological features, genomic 
profiles, and functional behaviors similar to those of real 
tumors in patients with metastatic cancer. To the best of 
our knowledge, this is the first study to demonstrate a high 
success rate of PDC establishment from a large number of 
samples from patients with cancer. In addition, we showed 
that the most useful source of PDCs was malignant ascites. 
The median time from specimen collection to P1 was 
3 weeks (range, 0.5–4 weeks), and that from P1 to P2 was 
2.5 weeks (range, 0.5–5 weeks). The targeted sequencing 

Table 2: Genetic correlation of primary tumors and the corresponding patient-derived cells using 
targeted sequencing

Case # VAF correlation(>=0.1) Intersection

S-1 0.978 20

S-2 0.988 26

S-3 0.954 36

S-4 0.961 24

S-5 0.903 27

S-6 0.952 29

S-7 0.969 25

S-8 0.979 28

S-9 0.779 22

S-10 0.802 35

S-11 0.699 33

S-12 0.992 17

S-13 0.855 30

S-14 0.848 4

S-15 0.756 27

S-16 0.633 19

Average/total 0.878 402

Total SD 0.11439697 7.83049594
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Table 3: Correlation between drug sensitivity profile and the actual response to targeted agents

PDC# Diagnosis Doubling 
time (hr)

Analysis/
stock passage

Maximum 
passage

Treatment 
outcome to 

targeted agents
IC50

Highlight 
genomic 

alteration

Clinical 
response

001 Gastric cancer 85.92 2 7 Lapatinib 1.1 SMARCB1, 
HER2 Sensitive

009 Hepatocellular 
carcinoma 72 3 9 Sorafenib 2.2 Resistant

011 Hepatocellular 
carcinoma 116.4 2 7 Sorafenib 2.3 HRAS Resistant

014 Melanoma 57.6 2 12 Vemurafenib > 10
BRAF, FGFR1, 

CDKN1A, 
MCL1

Resistant

042 Hepatocellular 
carcinoma 115.6 2 9 Sorafenib 2.1 Resistant

045 Hepatocellular 
carcinoma 65.02 3 13 Sorafenib 2.1 HRAS, STK11 Resistant

051 Hepatocellular 
carcinoma 57.8 2 12 Sorafenib 1.6 MLH1 Sensitive

076 Hepatocellular 
carcinoma 57.8 3 11 Sorafenib 1.5 Sensitive

081 Hepatocellular 
carcinoma 65.02 2 9 Sorafenib 4.7 HRAS Resistant

114 Melanoma 144.4 2 9 Vemurafenib > 10 NRAS Resistant

Figure 4: Generation and validation of patient-derived cell (PDC) models. A. Micrographs of tissue sections and 
immunohistochemical analysis of PDCs and their corresponding primary tumors (40×). B. Comparison of PDC xenografts according 
to passage number. C. Paired comparisons of four samples. The left bottom panel shows dot plots of allele frequencies for two samples. 
The diagonal line shows the allele frequency histogram for four samples. The right top panel shows the number of intersections and allele 
frequency correlations of variants. D. Venn diagram of the identified variants and intersection of genes from the four samples. E. BRAF 
(red) and PDGFA (blue) allele frequency in P0, P1, and P2.
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results of paired primary tumor/PDCs were highly 
concordant. Thus, these data have important implications 
in the development of appropriate model systems for drug 
discovery and screening.

We profiled the genomes of 116 PDCs using 
next-generation sequencing (NGS), targeted gene 
expression profiling, and nCounter CNV assays. 
Given the current widespread use of NGS to identify 
rare genetic aberrations that can also be targeted with 
specific drugs, there is a great need to increase the 
availability to preclinical models for genomic profiling. 
Several molecules that directly target cancer driver 
genes have been shown to have unprecedented activities 
in preclinical studies; however, many compounds fall 
short of their expectations once tested in clinical trials 
[6]. To improve the relevance of preclinical models, 
several factors must be considered, including faithful 
reproduction of the biological features and clinical 
courses of patients’ primary tumors, the ability to rapidly 
establish a disease model, affordability, and simplified 
handling methods. While conventional cell lines 
are convenient and easy to use, they often have poor 

predictive power [22]. Although PDX models retain 
important biological properties that are also observed 
in primary tumors, these models are time consuming 
and difficult to generate [23, 24]. Furthermore, PDX 
models are limited by their cost, labor requirements, 
and ethical issues concerning research using animals 
[25]. Considering these limitations, we attempted to 
demonstrate the advantages of our PDC model in this 
study. First, we found that PDC models faithfully 
recapitulated primary patient tumors, retaining the 
molecular and gross phenotypic characteristics of the 
primary tumor. Second, the median time from specimen 
collection to PDC P1 was only 3 weeks, which is more 
feasible for clinical application than PDX models, which 
take more than 3–4 months. Third, the success rate was 
very high (>70% of attempted cases), and the maximum 
passage number was 10. Fourth, although tested in 
selected cases only, we demonstrated that PDCs could 
be successfully engrafted into immunocompromised 
mice; thus, PDCs can be used both in vitro and as a cell 
source for further in vivo analyses. The variant calling 
allele frequencies of P0–P2 were concordant; however, 

Figure 5: Gene expression analysis of multiple gastric cancer cohorts and PDCs. A. Gene expression analysis work flow 
for integration of three different datasets. B. All-pair sample correlations of TCGA GC samples with ACRG, PDC PC, and PDC others 
(samples excluding gastric cancer). C. Two-dimensional plot of three dataset samples using principal component analysis. Samples including 
TCGA GC, TCGA normal, ACRG, PDC GC, and PDC others are indicated in the key. D. Sample hierarchical clustering of gene expression 
(485 genes and 716 samples) after meta-analysis. The color of the bottom bar indicates the sample type: blue, cluster-enriched normal 
samples; red, cluster-enriched tumor samples. E. Case studies of the differential expression of oncogenes (i.e., MET and ERBB2). Bar plots 
show the expression levels of these genes in five different groups. Differences were plotted by HSD tests among five groups with 95% family-
wise confidence level. Red indicates the comparison of normal and tumor samples, and black indicates comparisons between tumor samples.
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PDXs varied more from the primary tumor in terms of 
genomics and were less concordant with the primary 
tumor when compared with the concordance rates 
of P0–P2 cells. Thus, these data supported that PDC 
lines may be a valid alternative model to PDXs to 
test the efficacy of preclinical compounds for specific 
molecular targets. However, more extensive study using 
conversion of PDCs to PDXs should be performed to 
assess the accurate take-rate of cultured PDCs in animal 
models. In addition, direct comparison experiments of 
antitumor efficacy of molecularly targeted agents in 
PDCs versus PDXs are currently underway.

As an exploratory analysis, we tested whether 
the drug response profiles of PDCs were concordant 
with the actual clinical responses to targeted agents in 
selected cases. Based on our previous work, genomically 
characterized PDCs can be used as a useful tool to 
demonstrate antitumor efficacy of specific targeted agents, 
such as CCNE1-amplified (+) PDCs [26], HER2 (+) 
MET (+) GC PDCs [27], and MerTK (+) GC PDCs [28]. 
In this study, we demonstrated that GC PDCs derived from 
a patient with lapatinib-sensitive cancer were sensitive 
to lapatinib in vitro. Similarly, PDCs generated from 
pleural fluid in a patient with vemurafenib resistance were 
resistant to vemurafenib in vitro. We plan to generate more 
extensive data integrating genomic, PDC-sensitivity, and 
clinical outcome results. This integrative genome/PDC 
sensitivity/clinical outcome mapping may greatly enhance 
our knowledge to better predict clinical outcomes at the 
preclinical stage.

There are several limitations to the current study. 
Because PDC models do not reflect all aspects of the 
tumor environment, such as the presence of immunocytes 
and mesenchymal cells, this model may not reflect the 
actual treatment scenario in patients who are treated with 
a specific agent [29, 30]. In order to overcome this pitfall, 
we are currently modifying the two-dimensional PDC 
culture method to three-dimensional organoid cultures, 
with or without matrices.

In conclusion, we described a PDC model that 
could be applied as a useful tool for the identification 
of rational therapeutic strategies to be tested in clinical 
trials. This model is expected to aid in the discovery of 
additional therapeutic approaches and the identification of 
biomarkers in response to therapy.
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