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ABSTRACT
Small bowel accounts for only 0.5% of cancer cases in the US but incidence 

rates have been rising at 2.4% per year over the past decade. One-third of these are 
adenocarcinomas but little is known about their molecular pathology and no molecular 
markers are available for clinical use.

Using a retrospective 28 patient matched normal-tumor cohort, next-generation 
sequencing, gene expression arrays and CpG methylation arrays were used for 
molecular profiling.

Next-generation sequencing identified novel mutations in IDH1, CDH1, KIT, 
FGFR2, FLT3, NPM1, PTEN, MET, AKT1, RET, NOTCH1 and ERBB4. Array data revealed 
17% of CpGs and 5% of RNA transcripts assayed to be differentially methylated and 
expressed respectively (p < 0.01). Merging gene expression and DNA methylation data 
revealed CHN2 as consistently hypermethylated and downregulated in this disease 
(Spearman –0.71, p < 0.001). Mutations in TP53 which were found in more than half 
of the cohort (15/28) and Kazald1 hypomethylation were both were indicative of poor 
survival (p = 0.03, HR = 3.2 and p = 0.01, HR = 4.9 respectively).

By integrating high-throughput mutational, gene expression and DNA methylation 
data, this study reveals for the first time the distinct molecular profile of small bowel 
adenocarcinoma and highlights potential clinically exploitable markers.

INTRODUCTION

The small bowel constitutes 80% of the length and 99% 
of the absorptive area of the gastrointestinal (GI) tract [1]. 
Despite this, tumors of the small bowel are rare, accounting 
for only 5% of all GI tract malignancies and are 50 times 
less common than large bowel tumors [1, 2]. Incidence rates 
however have been on the rise at a rate of 2.4% per year for 

the past ten years. There will be an estimated ~9000 cases 
(a third of which will be adenocarcinomas) diagnosed this 
year in the US [3]. Risk factors include Crohn’s disease, 
coeliac disease, Lynch syndrome, familial adenomatous 
polyposis (FAP) and Peutz-Jeghers syndrome (PJS), many of 
which are also shared by large bowel cancers [4].

Improvements in imaging and endoscopic techni-
ques have led to improved detection of small bowel 
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tumors. However, most small bowel adenocarcinomas 
(SBA) are still diagnosed at an advanced stage. Five 
year survival rates vary from 55% for stage I tumors to a 
dismal 5% for stage IV tumors [5]. Management of SBA 
also remains challenging and the role and type of adjuvant 
chemotherapy is not well defined at present [6, 7]. With 
current treatments there has been no change in survival 
rates over the last 20 years [8].

Compared to colorectal and gastric cancers our 
knowledge of the molecular pathology of SBA is limited 
and so there is a relative dearth of diagnostic, predictive 
and prognostic biomarkers. This has meant that the goal 
of personalized medicine for the treatment of SBA is yet 
to be achieved. KRAS and TP53 mutations have been 
reported along with a low frequency of Her2 expression 
and BRAF V600E mutations [9]. Although SBA shares 
some histomorphological and molecular features with 
colorectal cancer, differences exist. For example, APC 
mutations are reported at a much lower frequency in 
SBA (5%) compared to colorectal cancer (80%) [1]. 
Aberrant expression of β-catenin, SMAD4 mutations 
and loss of DCC are also reported at a lower frequency 
to that of colorectal cancer [1, 2, 9]. Accordingly, it 
is clear that data derived from the study of colorectal 
cancer cannot be extrapolated to inform management 
decisions for SBA.

To date most studies on the molecular characteristics 
in SBA have used a candidate based approach examining 
known biomarkers in other malignancies. The aim of this 
study was to perform a comprehensive high throughput 
analysis of the genetic, epigenetic and transcriptomic 
alterations that occur in this disease using a cohort 
of surgically resected cases in our institution. This 
has allowed us to identify novel candidate genes and 
molecular pathways that may have a significant role in the 
pathogenesis of SBA.

RESULTS

Next-generation sequencing

We detected by our pipeline previously unknown 
mutations in SBA namely IDH1, CDH1, KIT, FGFR2, 
FLT3, NPM1, PTEN, MET, AKT1, RET, NOTCH1 
and ERBB4 (Supplementary Table S2, NGS data 
can be accessed online at NCBI-SRA accession: 
PRJNA261313). The frequency of mutations in TP53 
and KRAS observed in our cohort were similar to 
those described previously [10]. Along with clinical 
and pathological data, we also matched mutational 
information against variance filtered gene expression 
and methylation data in Figure 1A and 2A. Our next-
generation sequencing approach has been validated 
on hotspot mutations in KRAS, BRAF, TP53, ERBB2, 
IDH1 and KIT with Sanger sequencing assays (data not 
supplied).

TP53 mutational information conferred a significant 
survival advantage for TP53 wild-type patients,  
p = 0.0345 and HR = 3.2 (Figure 4A). We did not see 
survival advantage in MSI, PIK3CA, KRAS or any other 
stratified groups (Figures not supplied).

Gene expression

Good quality data was obtained from 20 normals 
and 25 tumors and can be accessed online at NCBI GEO 
accession GSE61465 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?token=gtqzsscmdlkjfqn&acc=GSE61465). 
A list of the most differentially expressed genes between 
tumor and normal are supplied in Supplementary Table 
S3A. The volcano plot depicted in Figure 1B, annotates 
the top 30 most differentially expressed probes. The top 
25% of the most variable probes as hierarchically clustered 
by flashClust and with mutational/trait overlay describes 
a variable dataset in the tumor only samples, which may 
have an (auto)immune component due to the Crohn’s and 
Coeliac disease background of these cases (enclosed in 
red, Figure 1A). In order to generate a classification of 
tumor versus normal; a random forest signature (n = 20) 
was able to classify the training set with only one false 
positive, also evidenced in the MDS plot (Supplementary 
Figure S4A). Applying this signature to our test set 
(n = 11), we were able to call all cases (5 ‘tumors’ and 
6 ‘normals’) accurately (Supplementary Table S2G). The 
signature of the top 100 gene list clustered by kmeans 
and ranked by variable importance is depicted in Figure 
1C. WGCNA analysis identified 10 modules for the gene 
expression data, where we focused on module 5 which 
was strongly correlated with PIK3CA (p = 0.04) of which, 
the largest connected complex is depicted by the NetBioV 
R package in Figure 1D (for other modules and final 
data used in trait relationship see Supplementary Figure 
S1, Supplementary Figure S3IIA and SIIIA). DAVID 
functional annotation clustering mapped 75IDs of the 
79IDs and revealed 27 clusters which can be found in 
Supplementary Table S2I.

DNA methylation

According to RnBeads; hypermethylation was found 
to be much more prevalent than hypomethylation (11% 
vs 6%, p < 0.01). The remaining 83% of probes remained 
unaffected. CpG sites associated with genes bodies, 
promoters and CpG islands all exhibited higher levels of 
hypermethylation compared to hypomethylation (12% vs 
7%, 20% vs 1% and 12% vs 6% respectively p < 0.01). DNA 
methylation trends are detailed in Supplementary Table S3b–
S3f and array data can be accessed online at NCBI GEO 
accession GSE61467 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?token=sbqdmggqtjsrbqj&acc=GSE61467).

Good quality data was obtained for all samples. 
RnBeads analysis of the raw idat files allowed us to analyze 
the differential methylation across normal vs tumor and 
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across tumor only stratifying by mutations. The differential 
‘gene’ region methylation is depicted in Figure 2B: volcano 
plot, with the top 30 genes, by combined rank, annotated 
by their Ensembl ids (Lists of differentially methylated 
analyses are supplied in Supplementary Table S3B to S3F). 
The WGCNA flashClust hierarchical clustering of the tumor 
gene regions depicts two groupings, with underlying clinical 
and mutational information (Figure 2A). These groupings 
were also somewhat conserved in the RnBeads PCA plots, 
but with a strong separation between tumor and normal 
(Supplementary Figure S4B for sites, Supplementary Figure 
S4C for genes and 4D for promoters), and fluctuate slightly 
when examined by RnBeads top 1000 most variant genomic 
regions’ heat map (CpG islands, tilling and promoters) and 
across sites (Figures not supplied). WGCNA network analysis 
identified 6 modules for the gene region methylation data of 
which module 3 became a focus as it was found to have a 
strong correlative trend with KRAS mutation status (0.1 with 
Kendall correlation, originally significant with Pearson, for 

other modules and final data used in trait relationship see 
Supplementary Figure S2, Supplementary Figure S3IIB and 
SIIIB). DAVID functional annotation clustering mapped 172 
IDs of the 265 in module 3′s largest complex and revealed 
80 clusters which can be found in Supplementary Table S3J.

Finally, we analyzed the gene regions of the 
methylation data by random forest to extract a signature 
that could best encapsulate tumor vs normal with a minimal 
classification error. Following the same protocol as gene 
expression and described below, the 20 gene signature 
was able to classify all tumors accurately with one normal 
and one tumor misclassified (The 100 gene signature is 
depicted in Figure 2D, 20 gene performance and list is 
given in Supplementary Table S3G). Applying this to the 
test set (n = 17) the signature was able to accurately predict 
the disease type of all samples (8 normals, 9 tumors). Here 
we also found a candidate of interest; Kazald1, which not 
only demonstrated utility in the robust classifier to partition 
tumor versus normal samples, but within tumor variation, 

Figure 1: A. Gene expression of the tumor top 25% most variant probes overlain with associated clinical and mutational information 
using WGCNA. Clusters containing Crohn’s and coeliac disease cases are outlined in red. B. Limma volcano plot of differential expression 
(non-variance filtered) with the top 30 probes annotated. C. Random forest classification on 75% of samples utilizing kmeans to offer 
data reduction of probe numbers for utility in validation machines of lower complexity. Top ranked variable importance in each kmeans 
group used in final n = 20 signature. D. WGCNA analysis revealed module ‘5’ had a strong correlation with PIK3CA mutation by Kendall 
correlation. Depicted here is the most strongly correlated network within the module, filtered across a bonferroni corrected all-possible-
correlations threshold of p < 0.001 and visualized by NetBioV.
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Figure 2: A. ‘Gene’ region methylation expression of the top 25% most variant probes overlain with associated clinical and mutational 
information. B. Volcano plot of differential expression (non-variance filtered) with the top 30 probes annotated, ranked by ‘combined rank’ 
in RnBeads. C. random forest classification on 75% of samples ‘gene’ regions utilizing kmeans to offer data reduction of numbers for 
utility in validation machines of lower complexity. Top ranked variable importance in each kmeans group used in final n = 20 signature. 
D. WGCNA analysis revealed module ‘3’ had a strong correlation with KRAS mutation by Kendall correlation. Depicted here is the most 
strongly correlated network within the module, filtered across a bonferroni corrected all-possible-correlations threshold of p < 0.001 and 
visualized by NetBioV.

Figure 3: Correlation between DNA methylation and gene expression. A–E. Inverse correlation for the top 5 genes from 
array data, n = 45 (primary axis – methylation, secondary axis – expression). F. Inverse correlation between pyrosequencing and 
immunohistochemistry for CHN2, n = 56.
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when stratified on the median methylation proffered 
prognostic significance (p = 0.0079, HR = 4.9), with worse 
prognosis for lower methylation (see Figure 4B).

DNA methylation and gene expression 
correlation

GenomeStudio was used to correlate gene 
expression with DNA methylation and targets were 
ranked according to the Spearman correlation coefficient. 
There were 486 combinations (for 266 unique 
transcripts) with a Spearman correlation coefficient 
≤ –0.5 with 70% hypermethylated (downregulated) 

and 30% hypomethylated (upregulated) in tumor vs 
normal. Data for the top 5 genes are plotted in Figure 
3A–3E. With 9 methylation array probes all correlating 
with two gene expression probes below a Spearman 
correlation coefficient of –0.5, CHN2 was selected 
for validation. Validation for DNA methylation was 
done using pyrosequencing and gene expression using 
immunohistochemistry (see Figure 3F).

MSI

Six out of the 28 cases (~20%) showed high MSI 
defined as two or more markers affected.

Figure 4: A. Kaplan–Meier curve showing survival advantage for wild-type p53 cases, n = 27. B. Kaplan–Meier curve showing survival 
disadvantage for cases with Kazald1 hypomethylation, n = 26.
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Immunohistochemistry

p53 extreme positive staining as shown in Figure 5B 
was observed in nine cases (32%) [11]. All these cases were 
also mutant for TP53. Extreme negative staining is shown in 
Figure 5A. Scoring for CHN2 was done using the formula 
‘percent area of core staining positive X intensity of staining 
(ranging from 0–3)’. A representative tumor and normal 
core can be seen in Figure 5C and 5D respectively and as 
shown in Figure 3F, tumors consistently scored lower than 
normals. Based on the recommendations by Wolff et al., 

2013, only three cases showed Her2 positivity (Figure 5F). 
For comparison a representative Her2 negative core can be 
seen in Figure 5E [12].

DISCUSSION

The present NGS analysis has confirmed 
previously reported mutations and their respective 
frequencies in SBA [10], and coupled with this we report 
novel mutations in multiple genes; namely IDH1, CDH1, 
KIT, FGFR2, FLT3, NPM1, PTEN, MET, AKT1, RET, 

Figure 5: Immunohistochemistry. A. p53 wild type tumor showing no staining (extreme negative). B. p53 mutant tumor showing 
extreme positive staining. The C > T substitution can be seen as confirmed by Sanger sequencing C. No CHN2 protein expression in tumor. 
A low T and high C peak show a highly methylated CpG D. CHN2 protein expression in normal small bowel. A high T and low C peak show 
an unmethylated CpG E. Tumor with no Her2 expression. F. Tumor with a Her2  c.2329G > T (Substitution) mutation expressing the protein.

E
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NOTCH1 and ERBB4 (Figure 1A and 2A show mutations 
in relations to gene expression and DNA methylation). 
On average, patients in our cohort demonstrated 2.6 
mutations with eight patients having only one mutation 
to a single patient having seven.

TP53 mutations were found in over 50% of the 
sample cohort (15/28 cases). This is concordant with 
the ~40% frequency reported previously [10, 13], when 
relative study sizes are considered. Apart from two cases 
which harbored mutations in exon 10, most TP53 mutations 
were identified in exons 5 to 8 (exon 5 – 2 cases (14%), 
exon 6 – 1 case (7%), exon 7 – 4 cases (29%) and exon 
8 – 7 cases (50%)). One case had three TP53 mutations: 
two in exon 8 and one in exon 10. As shown previously, 
TP53 mutations were also indicative of poor survival in 
our cohort (Figure 4A) [10]. KRAS mutations were found 
in 12 cases (42%) out of which 9 (32%) were in exons 
12/13. This is also consistent with the ~40% frequency 
reported by Rashid et al., 1997 and Aparicio et al., 2013 
[9, 13]. The three remaining cases harbored a mutation 
in codon 14, 117 and 146. To our knowledge mutations 
in codon 14 and 117 have not been reported previously 
in SBA. c.351A > C (substitution) in codon 117 just like 
c.436G > C (Substitution) has therapeutic implications in 
colorectal cancer and is known confer reduced sensitivity 
to anti-EGFR antibodies like cetuximab/panitumumab 
[14]. APC mutations which are characteristic of colorectal 
cancer were only found in two patients. Also there was 
one additional case with a novel mutation (c.4744G > C 
(substitution - missense) aa1582 alanine to proline – exon 
15). We also observed mutations in ERBB2 not reported 
previously in SBA (Supplementary Table S1). Out of these 
we found c.2329G > T (Substitution - Missense p.V777L) 
to also correlate with Her2 expression (Figure 5F). We also 
found two novel mutations XM_005257139.1:c.2476C > 
G (leucine to valine) and M_005257139.1:c.2272G > A 
(valine to methionine). Three cases (~10%) were positive 
for Her2 expression, which in theory can benefit from anti-
ERBB2 therapy and is similar to what has been reported 
previously [10].

Only one patient had a BRAF V600E mutation 
which is in line with the low frequency of BRAF 
mutations reported previously in SBA [9, 15]. However 
there were another two cases; one with a mutation in 
exon 15 (alongside a mutant KRAS) the other in exon 
11. All three mutations however lie in the kinase domain 
where they are known to be activating and potentially 
transforming [16]. Mutations in BRAF are known to 
negatively impact anti-EGFR therapy in colorectal cancer 
but have a beneficial effect in melanoma in response to the 
use of BRAF/MEK inhibitors [17, 18]. IDH1 mutations, 
which are commonly observed in gliomas and leukemias, 
were found in two cases of our cohort. This may have 
therapeutic consequences in SBA as recently it has been 
shown that mutant IDH1 can be targeted with anti-tumor 
vaccines [19].

To our knowledge gene expression and DNA 
methylation changes have never been studied in SBA. 
From the gene expression data almost 5% of the ~25000 
RNA transcripts were observed to be dysregulated. Of 
these 40% were upregulated and 60% downregulated in 
tumor tissue compared to normal (Supplementary Table 
S3A). We also observed that cases in which there was a 
history of Crohn’s and coeliac disease depicted greater 
dissimilarities and distances in the dendogram when 
tumors were clustered based on the most variable probes 
(Figure 1A). From the methylation arrays our study 
found 17% of the CpGs assayed to show statistically 
significant changes in methylation between normal and 
tumor tissue (Supplementary Table S3B). This is equal 
to 68, 592 individual CpGs. No changes in methylation 
were observed for MLH1 or other CIMP genes as reported 
previously [15]. Our analysis returned 266 genes (RNA 
transcripts) which had an inverse correlation between 
expression and methylation on an associated CpG. One of 
the top ranked candidates, CHN2, was selected for further 
validation. It has been linked to progression in malignant 
gliomas and has also been shown to be downregulated 
in breast cancer and breast cancer cell lines. Restoring 
CHN2 expression in MCF7 cell line using adenoviral 
delivery leads to cell cycle arrest and an inhibition of 
proliferation [20] [21]. Our analysis demonstrates that 
CHN2 expression in SBA may be controlled by DNA 
methylation as DNA hypermethylation accompanies its 
downregulation. As this trend was observed in all normal-
tumor pairs, CHN2 methylation has potential to act as a 
biomarker for SBA screening in blood/stool samples.

Data classification by random forest methodology 
allowed us to implement a process to generate succinct 
lists that can best characterize tumor against normal in the 
expression data [22]. The 100 gene lists (Figure 1C and 
2C) depict the utility of the test classifier to separate tumor 
vs normal samples with kmeans (k = 20), partitioning the 
lists into 20 clusters ranked by their variable importance. 
k = 20 was chosen to allow for succinct lists that could 
be used in validation platforms with lower complexity 
as well as proffering succinct divergent candidates that 
could become potential biomarkers. CHN2 is one such 
candidate that performed well in n = 100 gene expression 
classifier (ID: ILMN_2403237) and was retained in the 
robust n = 20 list. In the methylation data the candidate 
of interest Kazal-type serine peptidase inhibitor domain 1 
(Kazald1) has been shown to demonstrate a shorter overall 
survival for patients with hypomethylation in gliomas and 
is suggested to promote progression through invasion and 
proliferation [23].

In the network analysis correlating the module 
eigengene’s significance with sample traits (clinicopa-
thological and mutational data) allowed us to measure 
the association of the modules-trait relationship. 
Significant associations of interest were Module 5′s 
eigengene correlation with PIK3CA (gene expression 
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data) and KRAS (methylation ‘gene’ region data). 
The largest connected component of these modules 
was visualized using NetBioV to reveal insight into 
their connectivity (Figure 1D and 2D). Measuring 
gene significance with module membership allowed 
us to measure their central players. To validate their 
performance key genes were rechecked to a limma 
differential expression using PIK3CA (gene expression) 
and KRAS (methylation) mutational stratification (data 
not supplied). The key gene significance candidates 
to the specific modules were strongly evidenced in 
these lists supporting their strong differential as well 
as their inter-activity. DAVID functional analysis of 
the largest interconnected complex annotations are 
supplied in Supplementary Table S3I and S3J where 
the gene expression analysis in the top three DAVID 
clusters detail splicing, mRNA processing along 
with transmembrane transporter activity and GTPase 
binding. Of note, was cluster five depicting vasculature 
development and angiogenesis as key functions. The 
methylation top three DAVID clusters list, among other 
functions, homeobox, regulation of transcription and 
neuron development.

In summary, this study has for the first time 
highlighted the extent of molecular changes associated 
with SBA. Our data convergence study utilizing 
high-throughput technologies has elucidated key 
mutations, RNA and methylation drivers in SBA. 
The clinical potential of TP53 mutations and Kazald1 

hypomethylation as prognostic biomarkers and CHN2 
as a diagnostic biomarker are focus areas for further 
research by our group.

MATERIALS AND METHODS

Patient clinical and pathological data

Ethical permission for the study was given by 
the Northern Ireland Biobank (Ethics: 11/NI/0013/
NIB13–0067). Twenty-eight patients who underwent 
surgical resection of SBAs between 2002 and 2013 were 
identified from the pathology archives of the Belfast 
Health and Social Care Trust (BHSCT). Relevant patient 
demographics and clinical data were reviewed and 
recorded (summarized in Table 1).

Formalin-fixed, paraffin-embedded (FFPE) 
blocks and slides were obtained for each of the cases. 
A full histopathology review was undertaken by a 
GI pathologist (PK) to confirm that each of the cases 
represented primary SBA. Patients who had ampullary/
periampullary adenocarcinomas were not included in 
the study cohort. The histopathological parameters 
relevant to staging and prognosis according to the 
American Joint Committee on Cancer (AJCC) were 
also reviewed and verified [24]. Representative tumor 
and normal blocks were selected from each case for 
further immunohistochemical and molecular analysis 
(see below).

Table 1: Patient demographics and clinical data
No of patients 28 - Collected b/w 2002–13

Gender 16 female (57%), 12 male (43%)

Age
Average 61y

Range 32–85

Tumor size
Average 4.5 cm

Range 2–12 cm

Tumor location

6 Duodenum

2 DJ flexure

8 Jejunum

7 Ileum

5 Small intestine NOS

Differentiation
7 poor (25%)

21 moderate (75%)

Risk factors 8 (including both Crohn’s and coeliac disease)

T stage 16 T4, 12 T3

N stage 6 N0, 17 N1, 2N2, 3Nx

M Stage 6M1, 21Mx, 1 unknown
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Nucleic acid extraction and TMA 
(tissue microarray) construction

Additional hematoxylin and eosin stained sections of 
normal and tumor were prepared from the selected FFPE 
blocks and annotated by a GI pathologist (PK) for DNA/
RNA extraction and TMA construction. For both DNA and 
RNA extractions, 6 × 5 micron blank sections were cut 
from each block and dewaxed in xylene and alcohol. Under 
direct visualization using magnifying glass annotated 
areas were scrapped off using a scalpel blade into 1.5 ml 
tubes. Maxwell 16 FFPE Plus LEV DNA Purification Kit 
(Promega, UK) was used for DNA extraction and RNeasy 
FFPE Kit (Qiagen, UK) for RNA extraction. Elution was 
in a volume of 50 ul. TMAs were constructed using 1 mm 
cores from tumors in triplicate and normals in duplicate 
on a Beecher MTA1 (Beecher Instruments Inc., WI), 
following international standards [25].

Next-generation sequencing

Next-generation sequencing was carried out 
according to manufacturer’s instructions on the Ion PGM™ 
System using Ion AmpliSeq Cancer Hotspot Panel v2 (Life 
Technologies, UK). 50 ng of DNA was used. Libraries 
were prepared using Ion AmpliSeq Library Kit 2.0 and 
quantified using the Agilent 2100 Bioanalyzer system 
(Agilent Technologies, UK). The Ion OneTouch 2 System 
was used to generate template-positive sphere particles for 
sequencing. Normals were run once and tumors in duplicate 
on Ion 318 chips (Life Technologies, UK).

Gene expression

Whole-Genome DASL HT Assay was used for 
gene-expression profiling according to manufacturer’s 
instructions. 100ng of RNA was used. The resulting 
PCR products were hybridized onto the HumanHT-12 v4 
BeadChip and scanned using iScan Microarray Scanner 
(Illumina Inc., UK).

DNA methylation

The Infinium HumanMethylation450 BeadChip 
kit (Illumina Inc., UK) was used on 200 ng of DNA 
which was restored according to the manufacturer’s 
instructions. EZ Methylation Kit and ZR-96 DNA Clean 
& Concentrator-5 (Zymo Reseach, CA) were used for 
bisulfite conversion. Chips were scanned using iScan 
Microarray Scanner.

Sanger sequencing

Sanger sequencing was carried out using BigDye 
Terminator v3.1 Cycle Sequencing Kit on ABI 3500XL 
genetic analyzer using manufacturer’s instructions. 
Primers were either obtained from the Northern Ireland 

Biobank or designed using NCBI primer design tool 
with M13 overhangs (Supplementary Table S1). PCR 
was carried out using AmpliTaq Gold 360 Master Mix 
(Applied Biosystems, UK) and clean-up using ExoSAP-IT 
(Affymetrix, UK). All mutations were confirmed manually 
using Finch TV version 1.4.0 (Geospiza Inc., WA).

Pyrosequencing

Pyrosequencing assays were designed 
using PyroMark assay design software v2.0.1.15 
(Supplementary Table S1) and run with PyroMark 
Q24 v2.0.5 software (Qiagen, UK) on a PyroMark 
Q24 (PyroMark, Sweden) according to manufacturer’s 
instructions. 200ng of DNA was bi-sulfite converted 
using EZ DNA Methylation Kit (Zymo Research, USA) 
into an elution volume of 30ul. PCR was performed using 
ImmoMix (Bioline, UK).

Immunohistochemistry

3 micron TMA sections were used for all 
immunohistochemistry (IHC). CHN2 and p53 IHC was 
carried out on a fully automated Leica BOND-MAX 
(Leica Microsystems, UK). Anti-CHN2 HPA018989-
100UL (Sigma, UK) was used at a 1:25 dilution. Heat 
assisted antigen retrieval was used for 20 min. Anti-p53 
M7001 (Dako, UK) was used at a 1:100 dilution and 
heat assisted antigen retrieval for 30 min. ERBB2 IHC 
was performed on a Ventana Benchmark XT platform 
using ultraView Universal DAB Detection Kit and 
PATHWAY anti-HER-2/neu (4B5) Rabbit Monoclonal 
Primary Antibody (Ventana Medical Systems, UK). 
Antigen retrieval was with Cell Conditioning 1 solution 
for 16 min.

Microsatellite instability analysis

MSI analysis was performed on a MSI Analysis 
System, Version 1.2 (Promega, UK) according to 
manufacturer’s instructions. The five mononucleotide 
repeat markers tested (BAT-25, BAT-26, NR-21, NR-24 
and MONO-27) were co-amplified using fluorescently 
labelled primers and analyzed on an ABI 3500XL genetic 
analyzer.

Data analysis

Next-generation sequencing

Data analysis was carried out in tandem 
between CLC genomics Workbench 6.5 (CLC GW) 
and confirmed with Ion Torrent’s variantCaller 
(v4.0-r76860) using default selection commands. 
These were read into CLC using the default clipping 
and trimming functions. Calls identified from CLC GW 
were sorted by coverage (>20) and frequency (>5%) and 
verified with variantCaller.
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Gene expression

Data were read using the limma package for R 
statistical environment [26, 27]. Background correction 
followed by quantile normalization was performed using 
limma’s neqc function and control probe information, and 
the intensities were log2 transformed. This was followed 
by an unsupervised hierarchical clustering analysis using 
pvclust [28] and resultant heatmaps were generated 
by heatmap.plus [29]. Differential expression was also 
performed using the limma package. Probes expressed in at 
least one quarter of the arrays to a detection p-value of ≤ 
0.05 were retained. Subsequent differential expression lists, 
MDS plots and volcano plots were generated through limma 
package functions.
DNA methylation

After initial QC using GenomeStudio, the raw idat 
files were utilized in the RnBeads software package for 
unsupervised analysis and differential methylation. The 
pipeline was run with the removal of sex linked sites 
followed by methylumi background correction and bmiq 
normalization [30, 31]. All samples were run in a pipeline 
depicting the tumor vs normal samples, and wild-type vs 
mutant in mutations of high frequency (n > 3). From here 
the tumor samples were extracted to create a tumor only 
RnBead set for downstream analysis.

Gene expression and DNA methylation
Random forest

Classification on normal vs tumor samples was 
performed on methylation gene region and gene expression 
filtered data using the package randomForest [32] where an 
approach similar to Griffith et al., 2013 was adopted [22]. 
The resultant output was utilized to derive a list of the top 
100 by variable importance (Gini). kmeans clustering (k = 
20) was used to alleviate data redundancy in the generated 
list. Top 100 list and top 20 analyzed are supplied in Figure 
1C and 2C. (Random forest analysis: Supplementary Table 
S3G–S3H and 20 gene signature bootstrap: Supplementary 
Figure S3IA and SIB).

WGCNA (weighted gene correlation network analysis)

Tumor only data (gene regions for methylation) 
was first filtered by taking the top 25% most variant 
probes using genefilter’s varFilter function. The Scale 
Free Topology plot was used either selecting the lowest 
power where the curve flattens out or the scale free R^2 
> 0.8 (value equated to 6 in gene expression and 12 in 
methylation). Associations to traits/mutations were 
identified using the module eigengene’s correlation with 
the external trait information, which were set stringently 
(Supplementary Figure S3 IIA and S IIB). Module 
visualization was performed using NetBioV where, a filter 
was applied on the distribution of all possible correlations 
among the modules by a bonferoni corrected p-value 

≤ 0.001 [33]. The largest connected complex in each 
module was selected for NetBioV. All modules’ largest 
connected complexes not selected for main manuscript 
(Figure 1D and 2D) are supplied as Supplementary Data 
(Supplementary Figure S1 and S2), where any connected 
hubs above 10 vertices other than the main complex, 
denoted by the specific module plus ‘B’, ‘C’ etc. have also 
been included. DAVID functional annotation analysis was 
then used on the key largest connected complexes [34, 35].
Survival

Kaplan-Meier overall survival analysis was performed 
on the cohort defined as from the date of resection to the 
date of death or date last seen, and given in months. The 
p-value used is that of the log-rank test and analysis was 
performed using Graphpad Prism 5 v5.03. Gene expression 
or methylation values threshold was pre-defined to be 
dichotomized on the median value for survival purposes.
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