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Networking in metabolism and human disease

Leif Väremo and Jens Nielsen

A nexus of many complex human diseases and 
conditions, including type 2 diabetes (T2D), obesity, and 
cancer, is an altered cellular metabolism. Deviations in 
metabolism from a healthy phenotype often influence 
the metabolic network on a global level, rather than 
exclusively affecting specific pathways. The apparent 
complexity makes it challenging to study these diseases 
and require a combination of genome-wide data and 
innovative holistic analysis approaches [1]. 

Metabolites are connected to each other through the 
chemical reaction network and the reactions are connected 
to their corresponding enzymes, providing a bridge 
between metabolism and the genome. This structure allows 
for constructing computer models of metabolism, enabling 
study of human disease and metabolism at the global 
level. These models are termed genome-scale metabolic 
models (GEMs) and can be used for high throughput 
simulation, contextual data analysis and interpretation, 
as well as network based analysis and comparison, and 
are fundamental for the study of metabolism in the area 
of systems biology [2]. Besides being comprehensive 
network representations of metabolism, GEMs also 
contain the stoichiometric information about each reaction 
so that the system is mass-balanced. Several methods have 
been developed for using GEMs to simulate and quantify 
reaction fluxes under different conditions. Furthermore, 
the inherent metabolite-reaction-gene topology makes 
these models optimal for integrative analysis of gene 
expression data, in the context of transcriptional regulation 
of metabolism [3, 4].

T2D, as a complex metabolic disease, has been 
studied using GEMs [5]. A central feature of T2D is 
the development of insulin resistance in several tissues, 
including liver, adipose and skeletal muscle, thus leading 
to high glucose levels in the blood. Muscle in particular 
is important in this context since it is the major site for 
glucose disposal. Insights into the transcriptional and 
metabolic changes in diabetic skeletal myocytes are thus 
important in order to fully understand the pathology 
of T2D. However, until now there was no available 
comprehensive myocyte GEM to allow for analysis and 
contextualization of diabetic muscle transcription data. 
In a recent study, published in Cell Reports, we therefore 
set out to reconstruct the skeletal myocyte GEM [6]. By 
generating and integrating genome wide expression data 
at both the transcript and protein level we were able to 
determine, for each enzyme, if it is present or absent in 
skeletal myocytes and thus infer the presence of each 

corresponding metabolic reaction. This information could 
then be translated into a GEM, representing the metabolic 
capability of myocytes, covering 5590 reactions, 2396 
metabolites and 2419 genes. 

With the aim to characterize the metabolic effects 
of T2D on skeletal muscle, we connected the results 
from multiple studies by performing a meta-analysis of 
six published datasets on T2D muscle gene expression. 
By integrating all of these condensed data with the 
myocyte GEM, a metabolic subnetwork emerged that was 
significantly affected by transcriptional regulation. Using 
the genes underlying this metabolic signature of T2D, 
we were able to predict the disease state of individual 
samples from each separate study, confirming the impact 
of these genes. In particular, the signature included down-
regulation of genes associated with pyruvate oxidation, 
tetrahydrofolate (THF) metabolism and branched-chain 
amino acid (BCAA) catabolism.

The patterns for BCAA catabolism and pyruvate 
oxidation is in line with previous results, but little has 
been reported about THF metabolism in connection to 
T2D. Our observation of down-regulated THF metabolism 
coincided with the results from a pathway analysis, 
showing transcriptional down-regulation of methionine 
and nucleotide metabolism, both parts of the metabolism 
involving THF derivatives. Interestingly, in contrast, the 
gene FTCD was up-regulated pointing to a flow from 
histidine catabolism to THF metabolism. Histidine has 
been shown to have positive effects on T2D [7] and it 
is intriguing to speculate whether increased histidine 
catabolism in myocytes is associated with the negative 
effects seen in T2D.

The amount of available data and information in 
life science is growing and it is essential to exploit and 
connect data from different sources in order to be able 
to unravel the biology behind complex diseases. This 
includes connecting genome-wide data from multiple 
levels (e.g. proteomics and transcriptomics), connecting 
analysis results with available gene-level annotation 
and information (e.g. provided through high-quality 
GEMs), and connecting and consolidating data from 
multiple studies. Furthermore, GEMs have the ability to 
contextualize big data, which often can be hypothesis 
generating. This is a natural part of systems biology 
where high-throughput large-scale analyses can pinpoint 
likely targets of interest, worthwhile to study in more 
depth. It is therefore also necessary to connect the output 
from systems biology research with research in molecular 
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biology. With good experimental design, proper data, and 
analysis approaches that can connect multiple sources of 
information, successful studies can result in increased 
mechanistic and molecular understanding of complex 
diseases, discrimination between causes and effects, and 
identification of potential biomarkers and novel drug 
targets.
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