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ABSTRACT

microRNA (miRNA) expression profiles varied greatly among current studies due
to different technological platforms and small sample size. Systematic and integrative
analysis of published datesets that compared the miRNA expression profiles between
hepatocellular carcinoma (HCC) tissue and paired adjacent noncancerous liver tissue
was performed to determine candidate HCC associated miRNAs. Moreover, we further
validated the confirmed miRNAs in a clinical setting using qRT-PCR and Tumor Cancer
Genome Atlas (TCGA) dataset. A miRNA integrated-signature of 5 upregulated and
8 downregulated miRNAs was identified from 26 published datesets in HCC using
robust rank aggregation method. qRT-PCR demonstrated that miR-93-5p, miR-224-5p,
miR-221-3p and miR-21-5p was increased, whereas the expression of miR-214-3p,
miR-199a-3p, miR-195-5p, miR-150-5p and miR-145-5p was decreased in the HCC
tissues, which was also validated on TCGA dataset. A miRNA based score using LASSO
regression model provided a high accuracy for identifying HCC tissue (AUC = 0.982):
HCC risk score = 0.180E_miR-221 + 0.0262E_miR-21 - 0.007E_miR-223 - 0.185E__
miR-130a. E_miR-n = Log 2 (expression of microRNA n). Furthermore, expression
of 5 miRNAs (miR-222, miR-221, miR-21 miR-214 and miR-130a) correlated with
pathological tumor grade. Cox regression analysis showed that miR-21 was related
with 3-year survival (hazard ratio [HR]: 1.509, 95%CI: 1.079-2.112, P = 0.016)
and 5-year survival (HR: 1.416, 95%CI: 1.057-1.897, P = 0.020). However, none of
the deregulated miRNAs was related with microscopic vascular invasion. This study
provides a basis for further clinical application of miRNAs in HCC.

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the
most common cancers worldwide and the third most
common cause of cancer-related death worldwide [1]. The
prognosis of HCC is very poor, with a median survival
of 6 to 20 months and less than 5% of symptomatic
patients surviving more than 2 years. Identification of
new biomarkers for the early detection of HCC is critical
for the patients to receive proper therapeutic treatment as
early as possible.

MicroRNA (miRNA), as a class of short noncoding
RNA molecules, controlling approximate one third of the
protein-coding genes by posttranscriptional regulation of
gene expression can directly or indirectly affect almost all
cellular pathways [2]. Recent years, the number of miRNA
profiling studies has increased rapidly. Specific miRNA
aberrations involved in cancer development and progression
have been identified by high-throughput technologies across
different normal and cancer tissues [3—5]. Therefore, many
miRNAs are proposed as promising biomarkers for early
detection of HCC and accurate predictions of prognosis,
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as well as targets for treatment [6, 7]. Unfortunately, the
common drawback of miRNA expression profiling studies
is a lack of agreement due to many factors including
application of different technological platforms, small
sample size, inconsistent annotation, ongoing discovery
of novel miRNAs, and use of different methods for data
processing and analysis [8—10].

To overcome these limitations, we need to
integrate their results in an unbiased manner. Robust
rank aggregation (RRA) approach has been specifically
designed for comparison of several ranked gene lists
[11]. The tool looks at how each item is positioned in the
ranked lists and compares this to the baseline case where
all the preference lists are randomly shuffled. As a result, a
P-value would be assigned for all items, showing how
much better it was positioned in the ranked lists than
expected by chance. This P-value is used both for re-
ranking the items and deciding their significance. RRA
is a suitable and effective solution for identification of
statistically significant miRNA integrated-signature and is
particularly useful when input experiments are performed
by different technological platforms cover different sets
of genes and full rankings of miRNAs are not available.

Herein, we would use this integrated bioinformatics
approach to obtain a consistent miRNA expression signature
as well as novel miRNA-regulated molecular pathways that
contribute to the pathogenesis of HCC, which would help to

miR-222-3p

miR'224'5K miR-221-3P

I Illl Irlllf llIIII#IlT
1
]
K

miR-93-5P

/

IIII TII 1 I"I
1 I III r 1

. il 1
| I;
:

Up-regulated

III IIIIIII III-"II IIII I
IIIII 1
II-III

'||'|'|'

n Inl I II II1I:-I

rﬁ ||-'!-.-'.'"'. -I.

l

Down-regulated

IIII

. . |.|.'.'I

miR-223- 3p
miR-214- 3p miR-
miR-199a-5p

miR-21-5p
b

il'"'.'

] llI lII II lllIIIITI

) :'-h

prioritize the putative targets for further experimental studies
of HCC development. Moreover, we further validated the
most dysregulated miRNAs in a clinical setting.

RESULTS

Characteristics of the datasets

According to the inclusion criteria, 26 independent
full-text studies retrieved from public databases (GEO,
ISI Web of Science, and ArrayExpress) were used to build
the 26 HCC miRNA expression profiling datasets. Of the
26 HCC miRNA expression profiling datasets, 1 profiling
datasets were re-analyzed in GEO DataSets [12], while
the others were extracted from the published studies
directly. The description of the studies was provided in
Supplementary Table 1.

Our integrated dataset included a total of 1250 pairs
tumor and adjacent noncancerous tissues. The number of
samples investigated ranged from 8 to 241 pairs (median
21) across the studies. Various microarray platforms
were used in the studies (either commercial or custom)
and the median number of miRNA probes assayed was
384 (ranging from 114 to 208818). Distribution of HCC-
specific miRNA alterations as reported by primary studies
was shown in Figure 1, which reflected the expansion of
studied miRnome from 2006 to 2013.
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Figure 1: Distribution of miRNA alterations in HCC as reported in 26 miRNA profiles datasets. Upregulated and
downregulated miRNAs were shown as short red and blue vertical bars, respectively. miRNAs are aligned according to miRBase release
21. The number of miRNAs in each study is graphically depicted on the right. The positions of HCC imtegrated-signature miRNAs were

marked. HCC, hepatocellular carcinoma; miRNA, microRNA.
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In total, 278 significantly up-regulated miRNAs
and 231 significantly down-regulated miRNAs were
reported in at least one study, respectively. In addition, 39
discordant alteration miRNAs were reported, indicating
that they both up-regulated and down-regulated across the
different studies. The number of significantly dysregulated
miRNAs varies greatly across the studies. At least two
upregulated or downregulated miRNAs were reported
in each study, with the exception of GL, 2007 [13], in
which only one up-regulated miRNA was reported.
The deregulated miRNA lists varies across the studies
(Supplementary Figure 1). Finally, the rank matrixes of
normalized upregulated and downregulated miRNAs lists
were separate constructed (Table 1).

HCC associated microRNA expression signature

A P-value was assigned for each miRNA using RRA.
Five upregulated (miR-93-5p, miR-224-5p, miR-222-3p,
miR-221-3p, and miR-21-5p) and eight downregulated
(miR-223-3p, miR-214-3p, miR-199a-5p, miR-199a-3p,

miR-195-5p, miR-150-5p, miR-145-5p, and miR-130a-
3p) miRNAs in HCC samples compared to matched
non-tumor liver tissue were identified. All integrated-
signature miRNAs reached statistical significance after
Bonferroni correction and were reported by at least 1/3
datasets. Among these integrated-signature miRNAs, miR-
199a, was represented by both its “major” (miR-199a-3p)
and “minor” (miR-199a-5p) forms. Seven of the most
significantly dysregulated miRNAs, miR-221-3p, miR-
21-5p, miR-214-3p, miR-199a-5p, miR-199a-3p, miR-
195-5p and miR-145-5p, were reported by 1/2 datasets
(Table 1). The expression change of integrated-signature
miRNAs was consistent across corresponding studies.
Corrected p-value of integrated-signature miRNAs ranged
from 6.17E-14 to 6.55E-04. Most integrated-signature
miRNAs belonged to the broadly conserved seed families
(conserved across most vertebrates, usually to zebrafish),
while miR-224-5p was sorted as conserved seed families
(conserved across most mammals, but usually not beyond
placental mammals), and miR-199a-3p was from poorly
conserved seed families.

Table 1: Hepatocellular carcinoma associated microRNAs

microRNA Chromosome Permutation Corrected No. of Seed family microRNA
p-value p-value  Studies Cluster
Upregulated
miR-17/17-5p/20ab/20b- . .
miR-93-5p 7922.1 1.55E-10 | 3.23E-05 12 |5p/93/106ab/427/518a- miR-25/miR-
3p/519d 93/miR-106

. . miR-224/
miR-224-5p Xq28 5.85E-14 1.22E-08 12 |miR-224 miR452
miR-222-3p Xpll.3 5.81E-14 1.21E-08 12 |miR-221/222/222ab/1928 m¥R—221/

miR-222
miR-221-3p Xpll.3 7.10E-17 1.48E-11 16 |miR-221/222/222ab/1928 m¥R—22 i
miR-222
miR-21-5p 17q23.1 3.65E-12 7.63E-07 15 |miR-21/miR-590-5p -
Downregulated
miR-223-3p Xql2 2.59E-09 5.40E-04 9 miR-223 -

. . miR-199/
miR-214-3p 1q24.3 1.01E-13 2.11E-08 13 |miR-214/761/3619-5p miR214
miR-199a-5p | 19p13.2/1q24.3 | 2.95E-19 6.17E-14 14  [miR-199a-5p -
miR-199a-3p | 19p13.2/1q24.3 1.20E-16 2.52E-11 15 | miR-199ab-3p/3129-5p -

. miR-15abc/16/16a miR-195/
miR-195-5p 17pl3.1 I8E-I1 1 3.86E-06 M 0c/195/322/424/497/1907 | miR-497
miR-150-5p 19q13.33 2.60E-09 5.44E-04 10 |miR-150/5127 -

. . miR-143/
miR-145-5p 5932 4.90E-12 1.02E-06 13 |miR-145 miR-145

. miR-130/

. miR-130ac/301ab/301b/301b-| .

miR-130a-3p 11q12.1 3.13E-09 6.55E-04 9 3p/454/721/4295/3666 m¥R—301/
miR-454
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A cluster of miRNAs was defined as that miRNAs
were located at a distance of less than 50 kb, were
transcribed in the same direction and were not separated
by a transcription unit or a miRNA in the opposite
orientation. Therefore, 8 integrated-signature miRNAs
belong to the cluster of two or more miRNAs.

In the integrated datasets, 8 studies were focused
only on hepatitis B virus (HBV) related HCC [10, 14—
20], and one study included only hepatitis C virus (HCV)
infection patients [21], whereas most of the studies were
not focused on any specific etiology related HCC [3-9, 12,
13, 22-29]. Therefore, we reanalyzed subsets of datasets
derived from HBYV related HCC samples. Analysis of
studies which consisted of samples with HBV infection
only, showed that miR-222-3p (Bonferroni-corrected p-
value = 1.74E-05), miR-21-5p (Bonferroni-corrected p-
value = 4.69E-04), and miR-221-3p (Bonferroni-corrected
p-value = 1.71E-02) reached statistical significance
in upregulated gene lists. In addition, miR-199a-5p
(Bonferroni-corrected p-value = 6.33E-05), miR-145-5p
(Bonferroni-corrected p-value = 5.50E-03), and miR-
199a-3p (Bonferroni-corrected p-value = 2.31E-02) were
significantly downregulated in HBV related HCC.

Experimental validation of expression of the
integrated-signature miRNAs in patients with
HCC and clinical significance

The 13 most deregulated miRNAs from the
integrated bioinformatics analysis were determined by
qRT-PCR analysis. The results showed that the expression
levels of miR-93-5p, miR-224-5p, miR-221-3p and miR-
21-5p were increased more than 2 folds (Figure 2, P <
0.05), whereas the levels of miR-214-3p, miR-199a-3p,
miR-195-5p, miR-150-5p and miR-145-5p were decreased
more than 2 folds in the HCC tissues (Figure 3, P < 0.05).
Consistent with our initial analysis, 11 miRNAs were found
to be significantly dysregulated in HCC tissues in Tumor
Cancer Genome Atlas (TCGA) data base (49 pairs of
tumorous and adjacent nontumorous liver tissues) (Figure
4A, Figure 4B), except miR-199a-5p and miR-199a-3p
which were not listed. However, the expressions changed
more than 2-fold were found in miR-224-5p, miR-222-3p,
miR-221-3p, miR-21-5p, miR-223-3p, miR-214-3p, miR-
145-5p and miR-130a-3p. In addition, the performances
of these 8§ validated miRNAs in HCC tissue classification
were estimated using receiver operating characteristic
(ROC) curve analysis. Each miRNA had a good predictive
performance. The combined miRNAs panel using LASSO
regression model provided a high classification accuracy
of HCC tissue (AUC = 0.982) [30, 31]: HCC risk score
= 0.180E_miR-221 + 0.0262E miR-21 - 0.007E_miR-
223 - 0.185E miR-130a (Figure 4C). E miR-n = Log 2
(expression of microRNA n). The TCGA results showed
that comparing to well-differentiated tumor grade, miR-
93-5p, miR-224-5p, miR-222-3p, miR-221-3p and

miR-21-5p were significantly increased, whereas miR-
214-3p significantly decreased in the moderately/poorly
differentiated tumor grade (Supplementary Figure 2A, 2B).
However, none of the miRNAs had 2-fold changes. The
Grade score combined miRNAs using LASSO regression
model had a relative good performance: 0.0427E_miR-222
+0.0030E_miR-221 + 0.0763E_miR-21 - 0.0184E_miR-
214-3p + 0.0098E_miR-130a (Supplementary Figure
2C). The predictive power of the single miRNA was low.
However, none of the 13 most deregulated miRNAs was
related with MVI in TCGA data (Supplementary Figure 3).

Furthermore, we used Cox regression analysis to
build a prognostic classifier, by which only miR-21 was
selected: miR-21 (hazard ratio [HR]: 1.509, 95%CI:
1.079-2.112, P = 0.016) for 3-year survival and miR-21
(HR: 1.416, 95%CI: 1.057-1.897, P = 0.020) for 5-year
survival, respectively. X-tile and K-M survival analysis
also showed the miR-21 could predict the clinical outcome
of TCGA (Figure 5).

Targets prediction and functional enrichment

The high-stringency target prediction for validated
miRNAs was conducted. Target genes were obtained from
both prediction algorithms and experimentally supported
databases. The counts of predicted targets, experimentally
validated targets, prediction based consensus targets, and
consensus targets were summarized in Supplementary
Figure 4. miR-21-5p, miR-195-5p, and miR-214-3p
had highest number of consensus targets, whereas miR-
199a-3p were the miRNAs with smallest number of
consensus targets. In addtion, we performed enrichment
analyses to elucidate the biological function of miRNA
integrated-signature using target genes. Finally, 72 Panther
pathways, 143 KEGG pathways, and 857 GO processes
were enriched with the miRNAs targets.

The top enriched panther pathways maps regulated
by the miRNAs converge on apoptosis signaling pathway,
interleukin signaling pathway, angiogenesis, PDGF
signaling pathway, PI3 kinase pathway, p53 pathway
feedback loops 2, and Ras Pathway, most of which are
known to play an important role in carcinogentics (Figure 6).
KEGG pathways that were significantly enriched with the
miRNAs targets were mainly associated with cancer, e.g.
pathways in cancer, chronic myeloid leukemia, pancreatic
cancer, colorectal cancer, prostate cancer, and MAPK
signaling pathway (Supplementary Figure 5). The miRNAs
target genes are statistically enriched in GO processes of
regulation of transcription. Ten pathways and GO processes
most strongly enriched by integrated-signature miRNA
targets were shown in Supplementary Table 2.

Furthermore, to evaluate association between these
pathways and HCC, the published papers which described
HCC related constituent objects in the pathways were
searched in PubMed. The pathway maps in which the
constituent objects were supported in previous literature
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Figure 2: RT-PCR analysis of upregulated miRNAs expression in the HCC tissues and the adjacent noncancerous liver

tissues. HCC, hepatocellular carcinoma; miRNA, microRNA.

were considered to be HCC-related. After text mining, 39
Panther and 71 KEGG pathways pathways were found
to be HCC-related. To visualize the most significantly
enriched pathways, volcano plots were constructed by
plotting the -log10 of p-value versus gene enrichment ratio
on the y- and x-axes, respectively. Finally, 12 out of the 39
Panther pathways and 16 out of the 71 KEGG pathways
were highly saturated with HCC (enrichment ratio > 0.15,
p-value <0.0001) (Figure 7, Table 2).

DISCUSSION

miRNA profiling efforts have often led to
inconsistent results between the studies. Systematic
review or meta-analysis has been done previously to

determine differentially expressed genes in cancer at the
gene level [32, 33]. However, such rigorous approach
is often not possible due to the lack of cross-platform
standardization of miRNA profiling technologies or the
unavailability of raw data. In current study, we overcame
the drawback of lack of agreement among miRNA
expression profiling studies in HCC using RRA method
which directly analyzed 26 prioritized miRNA lists
detected from a total of 1250 paired HCC tissues and
adjacent noncancerous tissues. The miRNAs would be re-
ranked and their significance would be re-decided. A true
combined P value were calculated for each miRNA. In
addition, we determined the overlap among many studies
using different platforms and observe which miRNAs
are consistently reported as differentially expressed.
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Figure 3: qRT-PCR analysis of downregulated miRNAs expression in the HCC tissues and the adjacent noncancerous

liver tissues. HCC, hepatocellular carcinoma; miRNA, microRNA.

Finally, an integrated-signature of 5 upregulated and
8 downregulated miRNAs was identified. The miRNAs
from every dataset matched at least one of the integrated-
signature miRNAs. These integrated-signiture miRNAs
likely showed biological relevance to the tumorigenesis
of HCC, as opposed to sporadically reported genes.

Futhermore, we attempted to divide the patients into
smaller subgroups according to etilogies of HCC. Most
cases of HCC were secondary to either a viral hepatitis
infection (hepatitis B or C) or cirrhosis (alcoholism being
the most common cause of hepatic cirrhosis). However,
in the included datasets, 8 datasets derived from HBV
related HCC samples, 1 from samples with HCV infection,
while the others were muti-etiologies. Therefore, the
only subset of datasets derived from HBV related HCC
samples was reanalyzed. The results showed that 6 aberant
miRNAs involving only HBV related HCC samples
were included in the integrated-signature miRNAs with
overall HCC datasets. This indicated that miRNA profile
of the HBV related and non-HBV-related HCC might
not be fundamentally different and the most significant
aberrations probably reflect the mechanisms that are
common to all subtypes of the disease.

Most integrated-signature miRNAs were known
to be functionally associated with cancer development.
miR-93 has been identified as a potential biomarker for
detection of many cancers [34, 35]. Downregulation of

miR-93 expression could reduce cell proliferation and
clonogenicity of HepG2 cells. Furthermore, it is shown
to directly target some tumor-suppressors [36, 37]. Many
of validated targets of miR-93 were notably associated
with the regulation of angiogenesis, apoptosis, and cell
cycle regulation [38, 39]. Previous evidence has shown
that miR-224 and miR-222 may function as an onco-
miRNA in HCC cells by activating AKT signaling
[15, 40]. Furthermore, miR-224, miR-222 and miR-
221 were increased in HCC tissues and might be an
independent poor prognostic factor [41, 42]. miR-21 has
been validated as specific biomarker for many cancers,
including HCC [43, 44]. miR-223, miR-199a, miR-145,
miR-195 and miR-130a are commonly repressed in
hepatocellular carcinoma. Downregulation of miR-214
contributes to HCC via activation of the HDGF paracrine
pathway for tumor angiogenesis [8]. miR-214 could
inhibit the tumorigenesis of HCC through suppression
of B-catenin. miR-195 may exert its tumor suppressive
function by decreasing the expression of multiple NF-
kB downstream effectors by way of the direct targeting
of IKKa and TAB3 in HCC. miR-150 is not extensively
studied in HCC, but it functions as a tumour suppressor in
human colorectal cancer by targeting c-Myb, an important
pro-invasive molecule [45]. In addition, the results showed
that corrected p-values of integrated-signature miRNAs
were less than 1.0E-03 (Table 1). Interestingly, miR-122,

www.impactjournals.com/oncotarget

Oncotarget



>

P <0.001
4=
P <0.001 °
P <0.001
—~ P<0001
S 3+ -
E P <0.001
[=%
o~
~—
Sh 2-
o
—

T T T T T
miR-93 miR-224 miR-222 miR-221 miR-21
miRNA

P <0.001

P<0 01
P £0.001
3 | P <0.001 F‘<0001
* P <0.001 ?

Log2 (RPMM)

T T T T T T
miR-223 miR-214 miR-195 miR-150 miR-145 miR-130a
miRNA

‘ normal
- tumor

C

o
O. -
=
0
l\. -
o
2
>
c O
Q
%)
0
C\! -
o
o
Q -
o T T T T
0.00 0.25 0.50 0.75 1.00
1-Specificity
—e— HCCrisk score: 0.982 —@— miR-221: 0.8126
—e— miR-21: 0.8405 —e— miR-223: 0.8509
- normal —e— miR-130a: 0.96 —e— miR-224: 0.7468
—o— miR-222: 0.7638 miR-214: 0.8559
- tumor
—e— miR-145: 0.8626

Figure 4: Validation of miRNAs expression in HCC on the TCGA dataset. A. Upregulated miRNAs expression.
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using LASSO regression model by R software: 0.180E_miR-221 + 0.0262E_miR-21 - 0.007E_miR-223 - 0.185E_miR-130a. E miR-n =
Log 2 (expression of microRNA n). HCC, hepatocellular carcinoma; miRNA, microRNA; TCGA, Tumor Cancer Genome Atlas.

as the most frequent miRNA in the liver, and a central
player in liver biology and disease, was not part of HCC
integrated- miRNA signature. miR-122 has been shown
to be an essential regulator in the development of HCC
[46]. miR-122 was found among downregulated miRNAs
(4 studies), but did not reach the statistical significance in
our integrated-analysis.

To determine whether these 13 miRNAs have been
previously validated to have diagnostic/prognostic values
as biomarkers in HCC, we also performed a validation
experiment, and our data confirmed that miR-93-5p, miR-
224-5p, miR-221-3p and miR-21-5p were up-regulated
and miR-214-3p, miR-199a-3p, miR-195-5p, miR-150-
5p and miR-145-5p were down-regulated in HCC tissues,
which further supported the findings obtained in the present
integrated bioinformatics analysis. Consistent with our
initial analysis, 11 miRNAs were found to be significantly
dysregulated in HCC tissues in TCGA data base, except miR-
199a-5p and miR-199a-3p which were not listed. In current

study, as was validated by qRT-PCR, the miRNAs were all
expressed in liver tissues. Therefore, this miRNA panel might
be novel potential biomarkers for the diagnosis of HCC. The
miRNA based score using LASSO regression model provided
a high classification accuracy of HCC tissue. Further studies
could be performed to evaluate the diagnostic value of the
miRNA expression signature in HCC. In addition, the target
genes enrichment analysis suggested that the validated
miRNAs were key regulatory drivers of the oncogenic
process, which indicated very strong impact on several
pathways related to signaling, regulation of transcription
and tumor development. Therefore, these miRNAs may be
good candidate biomarkers for diagnosing or monitoring
remission during postoperative follow-up in HCC. In current
study, tumor grades were also identified by some of the 13
miRNAs (miR-93-5p, miR-222-3p, miR-221-3p, miR-21-5p
and miR-214-3p). Using LASSO regression, the signature
can separate patients into well-differentiated and moderately/
poorly differentiated tumor grades and may have clinical
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utility for decisions on patient management. However, none
of the 13 most deregulated miRNAs was related with MVI
in our initial analysis and TCGA data. Furthermore, we used
Cox regression analysis to build a prognostic classifier, by
which only miR-21 was selected.

The biological function of each validated miRNA
were thoroughly investigated in our study. A single
miRNA may target multiple target genes, and a specific
mRNA may be regulated by many different miRNAs,
which allow the miRNAs to induce changes in various
pathways and processes and to present a further
level of mechanism via which HCC may be induced.
Supplementary Table 2 listed the ten most strongly
enriched pathways and GO processes. The most significant

pathways enriched in KEGG and Panther pathway by
targets of rank aggregation miRNAs were pathways in
cancer and apoptosis signaling pathway respectively,
which highlighted the essential roles of miRNAs in cancer
development. Regulation of transcription, known as the
primary functions of miRNAs, was ranked first in the in
the GO processes list. In functional enrichment analysis,
when mapped to higher functional levels, inconsistent
microRNA lists could fall within the same functional
modules, pathways or networks and become more
consistent. A better understanding of the functions of the
miRNAs would advance their use in clinical settings. In
addition to the known pathways in HCC tumorigenesis,
we also performed text mining at pathway to evaluate
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Figure 6: Panther pathway enrichment of targets by validated miRNAs. The heatmap was constructed using the validated
targets and GeneCodis web tool, which showed the results of panther pathway enrichment analysis. The intensity of color represents the
FDR-corrected p-value. Clustering was performed using Pearson correlation and average linkage method. FDR, false discovery rate;

miRNA, microRNA.

the relevance of the enriched pathways in HCC. Sixteen
KEGG pathways and 12 Panther pathways were shighly
saturated with HCC (Figure 6).

Although our analysis was limited to comparison
and validation between tumor and noncancerous tissue
only, the 13 most significantly and consistently reported
differentially expressed miRNAs could be used as
potential diagnostic and/or prognostic biomarkers. In a
clinical setting, sufficient sensitivity and specificity of the
panel of miRNAs should be determined in the further well-
designed clinical studies. Furthermore, targets prediction
and functional enrichment analysis may provide a clue for

elucidating the role of miRNAs in tumorigenesis of HCC
and the precise underlying mechanisms. Taken together,
the findings of the current study may have substantial
clinical significance or implications.

In conclusion, a HCC associated microRNA
expression signature, consisting of 11 highly significant
and consistently dysregulated miRNAs, were identified in
our integrated bioinformatics analysis and experimental
validation study, which may be potential candidate
biomarkers for HCC. The rigorous evaluation of
integrated-miRNA signature and functional enrichment
analysis of their targets were promising them as candidates
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Figure 7: Volcano plot of pathways enriched with HCC-related genes. A. KEGG pathways; B. Panther pathways. The red points
indicate pathways of interest that display both large enrichment ratio (> 0.15, x-axis) as well as high statistical significance (P < 0.0001,

y-axis). HCC, hepatocellular carcinoma; miRNA, microRNA.

for diagnostic markers of HCC. Further clinical and
mechanistic studies focusing on these miRNAs are
required for their clinical significance and the underlying
mechanisms in tumorigenesis of HCC.

MATERIALS AND METHODS

Studies selection and datasets

Gene Expression Omnibus (GEO, www.ncbi.nlm.
nih.gov/geo/), ISI Web of Science (thomsonreuters.com/
web-of-science/), and ArrayExpress (www.ebi.ac.uk/
arrayexpress) were searched for hepatocellular carcinoma
miRNA expression profiling studies that had been published

prior to December 31%, 2013. The search strategy was based
on a combination of (mirna* OR microrna* OR mir-*) AND
profil* AND ((liver AND (cancer* OR tumor* OR tumour*
OR carcinoma)) OR (hepato* AND (cancer* OR tumor*
OR tumour* OR carcinoma)). Citations of retrieved articles
were also screened. Only original experimental articles
published in English language were included. Full text of
each study was carefully evaluated. The studies analyzed
miRNA expression between HCC and noncancerous liver
tissue in human were further analyzed. Expression studies
of individual preselected candidate genes or studies using
only cell lines were excluded. Studies that profiled different
histologic subtypes but did not include noncancerous tissue
were also excluded.
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Table 2: The hepatocellular carcinoma highly saturated pathways by targets of validated

microRNAs
Pathway Enrichment Ratio FDR
KEGG pathway
04060: Cytokine-cytokine receptor interaction 0.17 1.80E-18
05215: Prostate cancer 0.20 3.46E-12
05220: Chronic myeloid leukemia 0.22 1.92E-11
05211: Renal cell carcinoma 0.21 1.12E-10
04012: ErbB signaling pathway 0.18 2.03E-10
05214: Glioma 0.22 2.37E-10
05212: Pancreatic cancer 0.20 8.14E-10
05218: Melanoma 0.20 8.14E-10
04115: p53 signaling pathway 0.19 4.42E-9
05223: Non-small cell lung cancer 0.19 5.32E-7
04930: Type II diabetes mellitus 0.24 6.31E-7
05219: Bladder cancer 0.21 7.35E-7
05210: Colorectal cancer 0.16 1.96E-6
04150: mTOR signaling pathway 0.17 4.05E-6
05221: Acute myeloid leukemia 0.16 6.67E-6
05213: Endometrial cancer 0.15 2.74E-5
Panther pathway
P00002: Alpha adrenergic receptor signaling pathway 0.31 9.74E-22
P00032: Eilgziifeiiggzzz—mitogen activated protein kinase kinase/ 032 2 29E-21
P00023: General transcription regulation 0.22 1.22E-14
P00006: Apoptosis signaling pathway 0.20 1.32E-11
P00034: Integrin signalling pathway 0.29 3.02E-10
P00005: Angiogenesis 0.17 1.10E-8
P00038: JAK/STAT signaling pathway 0.45 2.30E-8
P00033: Insulin/IGF pathway-protein kinase B signaling cascade 0.22 1.30E-7
P00020: FAS signaling pathway 0.31 4.39E-6
P00025: Hedgehog signaling pathway 0.26 4.71E-6
P00045: Notch signaling pathway 0.27 8.13E-5
P00027: Heterotrimeric G-protein signaling pathway 0.18 8.38E-5

FDR, false discovery rate

Standardization of miRNA names

The lists of miRNAs with statistically significant
(less than 0.05 was considered significant) expression
changes between HCC and noncancerous liver tissue
were extracted from the included studies. Authors were
contacted for supplemental data, if the gene list was

not available in the publication. For a comprehensive
integrated analysis of miRNA expression, it is essential
that the miRNA names are comparable across the studies
and follow the same nomenclature. Because of the relative
novelty of the miRNA profiling fi eld and frequent updates
in the miRBase, miRNA nomenclature can vary depending
on when the study was conducted. Therefore, all miRNA
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names were standardized according to miRBase version
21 (http://www.mirbase.org/). Many traditional “major”
miRNA names throughout the main text were redesignated
according to miRBase database vesion 21. Viral miRNAs
and non-miRNA probes were excluded from the analysis.
Pre-miRNAs, reported in some of the studies, were used in
the analyses after the standardization of precursor names.

Datasets construction

The extracted miRNAs were ranked based on
statistical test fold changes where reported, and p-values
where old changes were not reported. The rank matrixes
of upregulated and downregulated miRNAs lists were
separate analyzed, which constructed the overall rank
matrix. Furthermore, the rank of miRNA from the analysis
of upregulated and downregulated miRNAs lists were both
normalized, which was the original rank divided by the
maximal possible rank in the study. In the normalized rank
matrixes, a value was given to each miRNA, which was
one minus normalized rank of miRNA from the analysis
of upregulated gene lists, or normalized rank from analysis
of downregulated gene lists. Value 0.5 means that this
miRNA was not reported in that study, value above 0.5
means it is upregulated and value below 0.5 means that
this miRNA is downregulated in that study.

Statistical analysis

A novel RRA method implemented as an R package
RobustRankAggreg was used to identify miRNAs
that were ranked consistently better than expected by
chance [47]. This method detects genes that are ranked
consistently better than expected under null hypothesis of

Table 3: Characteristics of the patients

uncorrelated inputs and assigns a P-value for each gene.
To assess the stability of acquired p-values, the leave
one out cross-validation was applied on the robust rank
aggregation algorithm. Analyses were repeated 10,000
times, and one random gene list was excluded from the
analysis each time. Acquired P-values from each round
for each miRNA were then averaged. All integrated-
signature miRNAs that reached statistical significance
after Bonferroni correction and were reported by at least
1/3 datasets were selected.

Validation of the integrated-signature miRNAs
using quantitative real-time PCR

To validate the results of integrated bioinformatics
analysis, 11 pairs of fresh HCC and adjacent noncancerous
liver tissues were obtained from 11 patients by experienced
surgeons and examined by experienced pathologists
at the the First Affiliated Hospital of Wenzhou Medical
University between July and December, 2014. Written
informed consent was obtained from all patients or their
guardians. The samples were frozen immediately and
stored in liquid nitrogen after being surgically resected.
Clinical information was summarized in the Table 3.
Total RNA was extracted using the Qiagen RNeasy
Kit (QIAGEN GmbH, Germany) according to the
manufacturer’s instructions. First-strand complementary
DNA (cDNA) was synthesized from 2 pl of total RNA
using an oligo-dT primer and superscript II reverse
transcriptase (Invitrogen). Then, quantification of the
significantly up-regulated or down-regulated miRNAs was
performed by real-time PCR, using SYBRRPremix Ex Taq
TM (TakaRa). The primers of each dys-regulated miRNAs

No. gender Age (year) alpha-fetal etiology Cirrhosis Child- Tumor Tumor MVI
protein Pugh size (cm) grade
class
1 |female 63 12.28 HBV Present A 3 Gl Absent
2 |male 56 593.62 |HBV Present A 3.5 G3 Absent
3 [male 63 10.04 HBV/Alcohol Absent A 2 Gl Absent
4 |male 48 1.69 HBV Present B 7 Gl Absent
S5 |male 50 6.34 HBV/Alcohol Absent B 4 G4 Present
6 |male 42 1024.96 |HBV Present A 3 G3 Present
7 |female 64 87.05 HBV Present A 2 G3 Absent
8 |[male 55 450.72 | HBV/Alcohol Present B 12 G3 Present
9 |male 65 2.26 HBV Present A 13 G2 Present
10 |male 49 22663.00 |HBV/Alcohol Present A 9 G2 Present
11 |female 71 3.66 HBV Present A 4 Gl Absent
HBY, hepatitis B virus; MVI, microscopic vascular invasion
www.impactjournals.com/oncotarget 25104 Oncotarget



were listed in Supplementary Table 3. The primers for U6
were obtained from TakaRa. PCR was performed in a real-
time PCR system (Applied Biosystems 7500) as follows:
95°C for 3 min followed by 35 cycles of 95°C for 5 sec,
60°C for 20 sec and 72°C for 30 sec and then 94°C for
1 min, 60°C for 1 min, with addition of a cycle for every
0.5°C. Expression values were normalized to those for U6
as a control. Relative fold changes of miRNA expression
were calculated by the AACT method, and the values were
expressed as 24T, miRNAs with fold-change values > 2
or < 0.5 compared to adjacent noncancerous tissue were
considered to be deregulated miRNAs in HCC.

The paired test was used to examine the difference
of miRNA expression levels between tumor and
adjacent nontumor liver tissues. The prognosis of HCC
strongly depends upon nuclear grade and the presence
of microscopic vascular invasion (MVI). Therefore, the
difference of miRNA expression levels were also tested
in samples with or without MVI, different tumor grades
and survival. MVI was defined by the presence of tumour
emboli within either the central hepatic vein, the portal, or
the large capsular vessels [48]. Edmondson and Steiner's
nuclear grades were used to classify the tumor grade, in
which grades 1 and 2 were defined as well-differentiated,
and grades 3 and 4 as moderately/poorly differentiated [49].
The results were validated on the TCGA datasets. miRNA
expression data and corresponding clinical information for
HCC dataset were downloaded from TCGA data portal
in January 2015. TCGA data are classified by data type
(clinical, mutations, gene expression) and data level, to
allow structured access to this resource with appropriate
patient privacy protection (Supplementary Table 4).
This study meets the publication guidelines provided by
TCGA. The miRNA expression profiling was performed
using the Illumina HiSeq 2000 miRNA sequencing
platforms (Illumina Inc, San Diego, CA). The miRNA
expression level was demonstrated as reads per million
miRNA mapped data. The miRNA expression analyses
were performed using BRB-ArrayTools (version 4.4)
developed by Dr. Richard Simon and the BRB-ArrayTools
Development Team. In brief, the miRNAs with missing
data exceeded 10% of all subjects were excluded from the
dataset and the expression level of each individual miRNA
was log2-transformed for further analysis. The predicted
performances of the validated miRNAs for classifying
HCC, MVI, and tumour grade were estimated on the
TCGA datasets using ROC curve. The TCGA samples
were assessed using a LASSO penalized regression
analysis to predict HCC, M VI, tumor grade and survival
using microRNA expression with leave-one-out cross-
validation using R software (v3.1.2) and the Lars package
(v1.2) [50]. A risk score was generated using the sum of
microRNA expression values weighted by the coefficients
from the LASSO regression, as described. The statistical
analyses were performed using the SPSS 18.0 (SPSS Inc.).
Statistical significance was defined as p < 0.05.

For survival analysis, we used the Kaplan-Meier
method to analysis the correlation between overall
survival and the miRNAs, and the logrank test was used
to compare survival curves. The optimum cut-off value for
the miRNAs using X-tile plots based on the association
with mortality of the patients. X-tile plots provide a
single and intuitive method to assess the association
between variables and survival. The X-tile program can
automatically select the optimum data cut point according
to the highest y* value (minimum p value) defined by
Kaplan-Meier survival analysis and log-rank test [51].
We did the X-tile plots using the X-tile software version
3.6.1 (Yale University School of Medicine, New Haven,
CT, USA).

miRNA target prediction

The putative targets of integrated-signature miRNAs
were predicted using databases utilizing three different
target prediction algorithms: TargetScan v6.2 (http:/www.
targetscan.org/), RNA22 (https://cm.jefferson.edu/rna22v2/),
miRDB (http://www.mirdb.org/miRDB/), RNAhybrid (http://
bibiserv.techfak.uni-bielefeld.de/rnahybrid/) and DIANA-
microT-CDS Web Server v5.0 (http://diana.imis.athena-
innovation.gr/DianaTools/index.php?r=microT CDS/index).
DIANA algorithm predictions were performed using miTG
score threshold 0.7 (strict setting). Only genes with target
sites in 3'UTR were used. Validated targets were acquired
from TarBase v6.0 database (http://diana.imis.athena-
innovation.gr/DianaTools/index.php?r=tarbase/index) and
miRwalk  (http://www.umm.uni-heidelberg.de/apps/zmf/
mirwalk/mirnatargetpub.html). Consensus targets were
then defined as genes predicted by at least 4 algorithms plus
validated targets from TarBase and starBase.

Enrichment analysis

Enrichment analyses for Panther and KEGG
pathways and Gene Ontology terms were carried out with
GeneCodis web tool (http://genecodis.dacya.ucm.es/)
[52]. Predicted target genes for each miRNA were used as
input and false discovery rate (FDR)-corrected p-values
were visualized as a heatmap. Clustering of the heatmap
was based on Pearson correlation and average linkage.
Furthermore, the association between the pathways
affected by altered expression of miRNAs and HCC was
evaluated.
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