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ABSTRACT
microRNA (miRNA) expression profiles varied greatly among current studies due 

to different technological platforms and small sample size. Systematic and integrative 
analysis of published datesets that compared the miRNA expression profiles between 
hepatocellular carcinoma (HCC) tissue and paired adjacent noncancerous liver tissue 
was performed to determine candidate HCC associated miRNAs. Moreover, we further 
validated the confirmed miRNAs in a clinical setting using qRT-PCR and Tumor Cancer 
Genome Atlas (TCGA) dataset. A miRNA integrated-signature of 5 upregulated and 
8 downregulated miRNAs was identified from 26 published datesets in HCC using 
robust rank aggregation method. qRT-PCR demonstrated that miR-93-5p, miR-224-5p, 
miR-221-3p and miR-21-5p was increased, whereas the expression of miR-214-3p, 
miR-199a-3p, miR-195-5p, miR-150-5p and miR-145-5p was decreased in the HCC 
tissues, which was also validated on TCGA dataset. A miRNA based score using LASSO 
regression model provided a high accuracy for identifying HCC tissue (AUC = 0.982): 
HCC risk score = 0.180E_miR-221 + 0.0262E_miR-21 - 0.007E_miR-223 - 0.185E_
miR-130a. E_miR-n = Log 2 (expression of microRNA n). Furthermore, expression 
of 5 miRNAs (miR-222, miR-221, miR-21 miR-214 and miR-130a) correlated with 
pathological tumor grade. Cox regression analysis showed that miR-21 was related 
with 3-year survival (hazard ratio [HR]: 1.509, 95%CI: 1.079–2.112, P = 0.016) 
and 5-year survival (HR: 1.416, 95%CI: 1.057–1.897, P = 0.020). However, none of 
the deregulated miRNAs was related with microscopic vascular invasion. This study 
provides a basis for further clinical application of miRNAs in HCC.

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the 
most common cancers worldwide and the third most 
common cause of cancer-related death worldwide [1]. The 
prognosis of HCC is very poor, with a median survival 
of 6 to 20 months and less than 5% of symptomatic 
patients surviving more than 2 years. Identification of 
new biomarkers for the early detection of HCC is critical 
for the patients to receive proper therapeutic treatment as 
early as possible.

MicroRNA (miRNA), as a class of short noncoding 
RNA molecules, controlling approximate one third of the 
protein-coding genes by posttranscriptional regulation of 
gene expression can directly or indirectly affect almost all 
cellular pathways [2]. Recent years, the number of miRNA 
profiling studies has increased rapidly. Specific miRNA 
aberrations involved in cancer development and progression 
have been identified by high-throughput technologies across 
different normal and cancer tissues [3–5]. Therefore, many 
miRNAs are proposed as promising biomarkers for early 
detection of HCC and accurate predictions of prognosis, 
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as well as targets for treatment [6, 7]. Unfortunately, the 
common drawback of miRNA expression profiling studies 
is a lack of agreement due to many factors including 
application of different technological platforms, small 
sample size, inconsistent annotation, ongoing discovery 
of novel miRNAs, and use of different methods for data 
processing and analysis [8–10].

To overcome these limitations, we need to 
integrate their results in an unbiased manner. Robust 
rank aggregation (RRA) approach has been specifically 
designed for comparison of several ranked gene lists 
[11]. The tool looks at how each item is positioned in the 
ranked lists and compares this to the baseline case where 
all the preference lists are randomly shuffled. As a result, a 
P-value would be assigned for all items, showing how 
much better it was positioned in the ranked lists than 
expected by chance. This P-value is used both for re-
ranking the items and deciding their significance. RRA 
is a suitable and effective solution for identification of 
statistically significant miRNA integrated-signature and is 
particularly useful when input experiments are performed 
by different technological platforms cover different sets 
of genes and full rankings of miRNAs are not available.

Herein, we would use this integrated bioinformatics 
approach to obtain a consistent miRNA expression signature 
as well as novel miRNA-regulated molecular pathways that 
contribute to the pathogenesis of HCC, which would help to 

prioritize the putative targets for further experimental studies 
of HCC development. Moreover, we further validated the 
most dysregulated miRNAs in a clinical setting.

RESULTS

Characteristics of the datasets

According to the inclusion criteria, 26 independent 
full-text studies retrieved from public databases (GEO, 
ISI Web of Science, and ArrayExpress) were used to build 
the 26 HCC miRNA expression profiling datasets. Of the 
26 HCC miRNA expression profiling datasets, 1 profiling 
datasets were re-analyzed in GEO DataSets [12], while 
the others were extracted from the published studies 
directly. The description of the studies was provided in 
Supplementary Table 1.

Our integrated dataset included a total of 1250 pairs 
tumor and adjacent noncancerous tissues. The number of 
samples investigated ranged from 8 to 241 pairs (median 
21) across the studies. Various microarray platforms 
were used in the studies (either commercial or custom) 
and the median number of miRNA probes assayed was 
384 (ranging from 114 to 208818). Distribution of HCC-
specific miRNA alterations as reported by primary studies 
was shown in Figure 1, which reflected the expansion of 
studied miRnome from 2006 to 2013.

Figure 1: Distribution of miRNA alterations in HCC as reported in 26 miRNA profiles datasets. Upregulated and 
downregulated miRNAs were shown as short red and blue vertical bars, respectively. miRNAs are aligned according to miRBase release 
21. The number of miRNAs in each study is graphically depicted on the right. The positions of HCC imtegrated-signature miRNAs were 
marked. HCC, hepatocellular carcinoma; miRNA, microRNA.
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In total, 278 significantly up-regulated miRNAs 
and 231 significantly down-regulated miRNAs were 
reported in at least one study, respectively. In addition, 39 
discordant alteration miRNAs were reported, indicating 
that they both up-regulated and down-regulated across the 
different studies. The number of significantly dysregulated 
miRNAs varies greatly across the studies. At least two 
upregulated or downregulated miRNAs were reported 
in each study, with the exception of GL, 2007 [13], in 
which only one up-regulated miRNA was reported. 
The deregulated miRNA lists varies across the studies 
(Supplementary Figure 1). Finally, the rank matrixes of 
normalized upregulated and downregulated miRNAs lists 
were separate constructed (Table 1).

HCC associated microRNA expression signature

A P-value was assigned for each miRNA using RRA. 
Five upregulated (miR-93-5p, miR-224-5p, miR-222-3p, 
miR-221-3p, and miR-21-5p) and eight downregulated 
(miR-223-3p, miR-214-3p, miR-199a-5p, miR-199a-3p, 

miR-195-5p, miR-150-5p, miR-145-5p, and miR-130a-
3p) miRNAs in HCC samples compared to matched 
non-tumor liver tissue were identified. All integrated-
signature miRNAs reached statistical significance after 
Bonferroni correction and were reported by at least 1/3 
datasets. Among these integrated-signature miRNAs, miR-
199a, was represented by both its ‘‘major” (miR-199a-3p) 
and ‘‘minor’’ (miR-199a-5p) forms. Seven of the most 
significantly dysregulated miRNAs, miR-221-3p, miR-
21-5p, miR-214-3p, miR-199a-5p, miR-199a-3p, miR-
195-5p and miR-145-5p, were reported by 1/2 datasets 
(Table 1). The expression change of integrated-signature 
miRNAs was consistent across corresponding studies. 
Corrected p-value of integrated-signature miRNAs ranged 
from 6.17E-14 to 6.55E-04. Most integrated-signature 
miRNAs belonged to the broadly conserved seed families 
(conserved across most vertebrates, usually to zebrafish), 
while miR-224-5p was sorted as conserved seed families 
(conserved across most mammals, but usually not beyond 
placental mammals), and miR-199a-3p was from poorly 
conserved seed families.

Table 1: Hepatocellular carcinoma associated microRNAs
microRNA Chromosome Permutation 

p-value
Corrected 

p-value
No. of 

Studies
Seed family microRNA 

Cluster

Upregulated

 miR-93-5p 7q22.1 1.55E–10 3.23E–05 12
miR-17/17-5p/20ab/20b-
5p/93/106ab/427/518a-
3p/519d

miR-25/miR-
93/miR-106

 miR-224-5p Xq28 5.85E–14 1.22E–08 12 miR-224 miR-224/
miR-452

 miR-222-3p Xp11.3 5.81E–14 1.21E–08 12 miR-221/222/222ab/1928 miR-221/
miR-222

 miR-221-3p Xp11.3 7.10E–17 1.48E–11 16 miR-221/222/222ab/1928 miR-221/
miR-222

 miR-21-5p 17q23.1 3.65E–12 7.63E–07 15 miR-21/miR-590-5p -

Downregulated

 miR-223-3p Xq12 2.59E–09 5.40E–04 9 miR-223 -

 miR-214-3p 1q24.3 1.01E–13 2.11E–08 13 miR-214/761/3619-5p miR-199/
miR-214

 miR-199a-5p 19p13.2/1q24.3 2.95E–19 6.17E–14 14 miR-199a-5p -

 miR-199a-3p 19p13.2/1q24.3 1.20E–16 2.52E–11 15 miR-199ab-3p/3129-5p -

 miR-195-5p 17p13.1 1.85E–11 3.86E–06 14 miR-15abc/16/16a
bc/195/322/424/497/1907

miR-195/
miR-497

 miR-150-5p 19q13.33 2.60E–09 5.44E–04 10 miR-150/5127 -

 miR-145-5p 5q32 4.90E–12 1.02E–06 13 miR-145 miR-143/
miR-145

 miR-130a-3p 11q12.1 3.13E–09 6.55E–04 9 miR-130ac/301ab/301b/301b-
3p/454/721/4295/3666

miR-130/
miR-301/
miR-454
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A cluster of miRNAs was defined as that miRNAs 
were located at a distance of less than 50 kb, were 
transcribed in the same direction and were not separated 
by a transcription unit or a miRNA in the opposite 
orientation. Therefore, 8 integrated-signature miRNAs 
belong to the cluster of two or more miRNAs.

In the integrated datasets, 8 studies were focused 
only on hepatitis B virus (HBV) related HCC [10, 14–
20], and one study included only hepatitis C virus (HCV) 
infection patients [21], whereas most of the studies were 
not focused on any specific etiology related HCC [3–9, 12, 
13, 22–29]. Therefore, we reanalyzed subsets of datasets 
derived from HBV related HCC samples. Analysis of 
studies which consisted of samples with HBV infection 
only, showed that miR-222-3p (Bonferroni-corrected p-
value = 1.74E-05), miR-21-5p (Bonferroni-corrected p-
value = 4.69E-04), and miR-221-3p (Bonferroni-corrected 
p-value = 1.71E-02) reached statistical significance 
in upregulated gene lists. In addition, miR-199a-5p 
(Bonferroni-corrected p-value = 6.33E-05), miR-145-5p 
(Bonferroni-corrected p-value = 5.50E-03), and miR-
199a-3p (Bonferroni-corrected p-value = 2.31E-02) were 
significantly downregulated in HBV related HCC.

Experimental validation of expression of the 
integrated-signature miRNAs in patients with 
HCC and clinical significance

The 13 most deregulated miRNAs from the 
integrated bioinformatics analysis were determined by 
qRT-PCR analysis. The results showed that the expression 
levels of miR-93-5p, miR-224-5p, miR-221-3p and miR-
21-5p were increased more than 2 folds (Figure 2, P < 
0.05), whereas the levels of miR-214-3p, miR-199a-3p, 
miR-195-5p, miR-150-5p and miR-145-5p were decreased 
more than 2 folds in the HCC tissues (Figure 3, P < 0.05). 
Consistent with our initial analysis, 11 miRNAs were found 
to be significantly dysregulated in HCC tissues in Tumor 
Cancer Genome Atlas (TCGA) data base (49 pairs of 
tumorous and adjacent nontumorous liver tissues) (Figure 
4A, Figure 4B), except miR-199a-5p and miR-199a-3p 
which were not listed. However, the expressions changed 
more than 2-fold were found in miR-224-5p, miR-222-3p, 
miR-221-3p, miR-21-5p, miR-223-3p, miR-214-3p, miR-
145-5p and miR-130a-3p. In addition, the performances 
of these 8 validated miRNAs in HCC tissue classification 
were estimated using receiver operating characteristic 
(ROC) curve analysis. Each miRNA had a good predictive 
performance. The combined miRNAs panel using LASSO 
regression model provided a high classification accuracy 
of HCC tissue (AUC = 0.982) [30, 31]: HCC risk score 
= 0.180E_miR-221 + 0.0262E_miR-21 - 0.007E_miR-
223 - 0.185E_miR-130a (Figure 4C). E_miR-n = Log 2 
(expression of microRNA n). The TCGA results showed 
that comparing to well-differentiated tumor grade, miR-
93-5p, miR-224-5p, miR-222-3p, miR-221-3p and 

miR-21-5p were significantly increased, whereas miR-
214-3p significantly decreased in the moderately/poorly 
differentiated tumor grade (Supplementary Figure 2A, 2B). 
However, none of the miRNAs had 2-fold changes. The 
Grade score combined miRNAs using LASSO regression 
model had a relative good performance: 0.0427E_miR-222 
+ 0.0030E_miR-221 + 0.0763E_miR-21 - 0.0184E_miR-
214-3p + 0.0098E_miR-130a (Supplementary Figure 
2C). The predictive power of the single miRNA was low. 
However, none of the 13 most deregulated miRNAs was 
related with MVI in TCGA data (Supplementary Figure 3).

Furthermore, we used Cox regression analysis to 
build a prognostic classifier, by which only miR-21 was 
selected: miR-21 (hazard ratio [HR]: 1.509, 95%CI: 
1.079–2.112, P = 0.016) for 3-year survival and miR-21 
(HR: 1.416, 95%CI: 1.057–1.897, P = 0.020) for 5-year 
survival, respectively. X-tile and K-M survival analysis 
also showed the miR-21 could predict the clinical outcome 
of TCGA (Figure 5).

Targets prediction and functional enrichment

The high-stringency target prediction for validated 
miRNAs was conducted. Target genes were obtained from 
both prediction algorithms and experimentally supported 
databases. The counts of predicted targets, experimentally 
validated targets, prediction based consensus targets, and 
consensus targets were summarized in Supplementary 
Figure 4. miR-21-5p, miR-195-5p, and miR-214-3p 
had highest number of consensus targets, whereas miR-
199a-3p were the miRNAs with smallest number of 
consensus targets. In addtion, we performed enrichment 
analyses to elucidate the biological function of miRNA 
integrated-signature using target genes. Finally, 72 Panther 
pathways, 143 KEGG pathways, and 857 GO processes 
were enriched with the miRNAs targets.

The top enriched panther pathways maps regulated 
by the miRNAs converge on apoptosis signaling pathway, 
interleukin signaling pathway, angiogenesis, PDGF 
signaling pathway, PI3 kinase pathway, p53 pathway 
feedback loops 2, and Ras Pathway, most of which are 
known to play an important role in carcinogentics (Figure 6). 
KEGG pathways that were significantly enriched with the 
miRNAs targets were mainly associated with cancer, e.g. 
pathways in cancer, chronic myeloid leukemia, pancreatic 
cancer, colorectal cancer, prostate cancer, and MAPK 
signaling pathway (Supplementary Figure 5). The miRNAs 
target genes are statistically enriched in GO processes of 
regulation of transcription. Ten pathways and GO processes 
most strongly enriched by integrated-signature miRNA 
targets were shown in Supplementary Table 2.

Furthermore, to evaluate association between these 
pathways and HCC, the published papers which described 
HCC related constituent objects in the pathways were 
searched in PubMed. The pathway maps in which the 
constituent objects were supported in previous literature 
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were considered to be HCC-related. After text mining, 39 
Panther and 71 KEGG pathways pathways were found 
to be HCC-related. To visualize the most significantly 
enriched pathways, volcano plots were constructed by 
plotting the -log10 of p-value versus gene enrichment ratio 
on the y- and x-axes, respectively. Finally, 12 out of the 39 
Panther pathways and 16 out of the 71 KEGG pathways 
were highly saturated with HCC (enrichment ratio > 0.15, 
p-value < 0.0001) (Figure 7, Table 2).

DISCUSSION

miRNA profiling efforts have often led to 
inconsistent results between the studies. Systematic 
review or meta-analysis has been done previously to 

determine differentially expressed genes in cancer at the 
gene level [32, 33]. However, such rigorous approach 
is often not possible due to the lack of cross-platform 
standardization of miRNA profiling technologies or the 
unavailability of raw data. In current study, we overcame 
the drawback of lack of agreement among miRNA 
expression profiling studies in HCC using RRA method 
which directly analyzed 26 prioritized miRNA lists 
detected from a total of 1250 paired HCC tissues and 
adjacent noncancerous tissues. The miRNAs would be re-
ranked and their significance would be re-decided. A true 
combined P value were calculated for each miRNA. In 
addition, we determined the overlap among many studies 
using different platforms and observe which miRNAs 
are consistently reported as differentially expressed. 

Figure 2: RT-PCR analysis of upregulated miRNAs expression in the HCC tissues and the adjacent noncancerous liver 
tissues. HCC, hepatocellular carcinoma; miRNA, microRNA.
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Finally, an integrated-signature of 5 upregulated and 
8 downregulated miRNAs was identified. The miRNAs 
from every dataset matched at least one of the integrated-
signature miRNAs. These integrated-signiture miRNAs 
likely showed biological relevance to the tumorigenesis 
of HCC, as opposed to sporadically reported genes.

Futhermore, we attempted to divide the patients into 
smaller subgroups according to etilogies of HCC. Most 
cases of HCC were secondary to either a viral hepatitis 
infection (hepatitis B or C) or cirrhosis (alcoholism being 
the most common cause of hepatic cirrhosis). However, 
in the included datasets, 8 datasets derived from HBV 
related HCC samples, 1 from samples with HCV infection, 
while the others were muti-etiologies. Therefore, the 
only subset of datasets derived from HBV related HCC 
samples was reanalyzed. The results showed that 6 aberant 
miRNAs involving only HBV related HCC samples 
were included in the integrated-signature miRNAs with 
overall HCC datasets. This indicated that miRNA profile 
of the HBV related and non-HBV-related HCC might 
not be fundamentally different and the most significant 
aberrations probably reflect the mechanisms that are 
common to all subtypes of the disease.

Most integrated-signature miRNAs were known 
to be functionally associated with cancer development. 
miR-93 has been identified as a potential biomarker for 
detection of many cancers [34, 35]. Downregulation of 

miR-93 expression could reduce cell proliferation and 
clonogenicity of HepG2 cells. Furthermore, it is shown 
to directly target some tumor-suppressors [36, 37]. Many 
of validated targets of miR-93 were notably associated 
with the regulation of angiogenesis, apoptosis, and cell 
cycle regulation [38, 39]. Previous evidence has shown 
that miR-224 and miR-222 may function as an onco-
miRNA in HCC cells by activating AKT signaling 
[15, 40]. Furthermore, miR-224, miR-222 and miR-
221 were increased in HCC tissues and might be an 
independent poor prognostic factor [41, 42]. miR-21 has 
been validated as specific biomarker for many cancers, 
including HCC [43, 44]. miR-223, miR-199a, miR-145, 
miR-195 and miR-130a are commonly repressed in 
hepatocellular carcinoma. Downregulation of miR-214 
contributes to HCC via activation of the HDGF paracrine 
pathway for tumor angiogenesis [8]. miR-214 could 
inhibit the tumorigenesis of HCC through suppression 
of β-catenin. miR-195 may exert its tumor suppressive 
function by decreasing the expression of multiple NF-
κB downstream effectors by way of the direct targeting 
of IKKα and TAB3 in HCC. miR-150 is not extensively 
studied in HCC, but it functions as a tumour suppressor in 
human colorectal cancer by targeting c-Myb, an important 
pro-invasive molecule [45]. In addition, the results showed 
that corrected p-values of integrated-signature miRNAs 
were less than 1.0E-03 (Table 1). Interestingly, miR-122, 

Figure 3: qRT-PCR analysis of downregulated miRNAs expression in the HCC tissues and the adjacent noncancerous 
liver tissues. HCC, hepatocellular carcinoma; miRNA, microRNA.
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as the most frequent miRNA in the liver, and a central 
player in liver biology and disease, was not part of HCC 
integrated- miRNA signature. miR-122 has been shown 
to be an essential regulator in the development of HCC 
[46]. miR-122 was found among downregulated miRNAs 
(4 studies), but did not reach the statistical significance in 
our integrated-analysis.

To determine whether these 13 miRNAs have been 
previously validated to have diagnostic/prognostic values 
as biomarkers in HCC, we also performed a validation 
experiment, and our data confirmed that miR-93-5p, miR-
224-5p, miR-221-3p and miR-21-5p were up-regulated 
and miR-214-3p, miR-199a-3p, miR-195-5p, miR-150-
5p and miR-145-5p were down-regulated in HCC tissues, 
which further supported the findings obtained in the present 
integrated bioinformatics analysis. Consistent with our 
initial analysis, 11 miRNAs were found to be significantly 
dysregulated in HCC tissues in TCGA data base, except miR-
199a-5p and miR-199a-3p which were not listed. In current 

study, as was validated by qRT-PCR, the miRNAs were all 
expressed in liver tissues. Therefore, this miRNA panel might 
be novel potential biomarkers for the diagnosis of HCC. The 
miRNA based score using LASSO regression model provided 
a high classification accuracy of HCC tissue. Further studies 
could be performed to evaluate the diagnostic value of the 
miRNA expression signature in HCC. In addition, the target 
genes enrichment analysis suggested that the validated 
miRNAs were key regulatory drivers of the oncogenic 
process, which indicated very strong impact on several 
pathways related to signaling, regulation of transcription 
and tumor development. Therefore, these miRNAs may be 
good candidate biomarkers for diagnosing or monitoring 
remission during postoperative follow-up in HCC. In current 
study, tumor grades were also identified by some of the 13 
miRNAs (miR-93-5p, miR-222-3p, miR-221-3p, miR-21-5p 
and miR-214-3p). Using LASSO regression, the signature 
can separate patients into well-differentiated and moderately/
poorly differentiated tumor grades and may have clinical 

Figure 4: Validation of miRNAs expression in HCC on the TCGA dataset. A. Upregulated miRNAs expression. 
B. Downregulated miRNAs expression. C. Performances of the miRNAs in HCC tissue classification. For boxplots, expression values of 
miRNAs were log2-transformed and box width was proportional to the square root of sample size in each variant. HCC risk score was built 
using LASSO regression model by R software: 0.180E_miR-221 + 0.0262E_miR-21 - 0.007E_miR-223 - 0.185E_miR-130a. E_miR-n = 
Log 2 (expression of microRNA n). HCC, hepatocellular carcinoma; miRNA, microRNA; TCGA, Tumor Cancer Genome Atlas.
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utility for decisions on patient management. However, none 
of the 13 most deregulated miRNAs was related with MVI 
in our initial analysis and TCGA data. Furthermore, we used 
Cox regression analysis to build a prognostic classifier, by 
which only miR-21 was selected.

The biological function of each validated miRNA 
were thoroughly investigated in our study. A single 
miRNA may target multiple target genes, and a specific 
mRNA may be regulated by many different miRNAs, 
which allow the miRNAs to induce changes in various 
pathways and processes and to present a further 
level of mechanism via which HCC may be induced. 
Supplementary Table 2 listed the ten most strongly 
enriched pathways and GO processes. The most significant 

pathways enriched in KEGG and Panther pathway by 
targets of rank aggregation miRNAs were pathways in 
cancer and apoptosis signaling pathway respectively, 
which highlighted the essential roles of miRNAs in cancer 
development. Regulation of transcription, known as the 
primary functions of miRNAs, was ranked first in the in 
the GO processes list. In functional enrichment analysis, 
when mapped to higher functional levels, inconsistent 
microRNA lists could fall within the same functional 
modules, pathways or networks and become more 
consistent. A better understanding of the functions of the 
miRNAs would advance their use in clinical settings. In 
addition to the known pathways in HCC tumorigenesis, 
we also performed text mining at pathway to evaluate 

Figure 5: Kaplan-Meier survival analysis by X-tile plots cut-off point. A. 1-year survival analysis; B. 3-year survival analysis; 
C. 5-year survival analysis X-tile plots are shown in the left panels. The plot showed the chi-squared log-rank values created when the 
cohort was divided into two groups. The optimal cut-point highlighted by the black circle in the left panels is shown on a histogram of the 
entire cohort (middle panels) and a Kaplan-Meier plot (right panels).
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the relevance of the enriched pathways in HCC. Sixteen 
KEGG pathways and 12 Panther pathways were shighly 
saturated with HCC (Figure 6).

Although our analysis was limited to comparison 
and validation between tumor and noncancerous tissue 
only, the 13 most significantly and consistently reported 
differentially expressed miRNAs could be used as 
potential diagnostic and/or prognostic biomarkers. In a 
clinical setting, sufficient sensitivity and specificity of the 
panel of miRNAs should be determined in the further well-
designed clinical studies. Furthermore, targets prediction 
and functional enrichment analysis may provide a clue for 

elucidating the role of miRNAs in tumorigenesis of HCC 
and the precise underlying mechanisms. Taken together, 
the findings of the current study may have substantial 
clinical significance or implications.

In conclusion, a HCC associated microRNA 
expression signature, consisting of 11 highly significant 
and consistently dysregulated miRNAs, were identified in 
our integrated bioinformatics analysis and experimental 
validation study, which may be potential candidate 
biomarkers for HCC. The rigorous evaluation of 
integrated-miRNA signature and functional enrichment 
analysis of their targets were promising them as candidates 

Figure 6: Panther pathway enrichment of targets by validated miRNAs. The heatmap was constructed using the validated 
targets and GeneCodis web tool, which showed the results of panther pathway enrichment analysis. The intensity of color represents the 
FDR-corrected p-value. Clustering was performed using Pearson correlation and average linkage method. FDR, false discovery rate; 
miRNA, microRNA.
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for diagnostic markers of HCC. Further clinical and 
mechanistic studies focusing on these miRNAs are 
required for their clinical significance and the underlying 
mechanisms in tumorigenesis of HCC.

MATERIALS AND METHODS

Studies selection and datasets

Gene Expression Omnibus (GEO, www.ncbi.nlm.
nih.gov/geo/), ISI Web of Science (thomsonreuters.com/
web-of-science/), and ArrayExpress (www.ebi.ac.uk/
arrayexpress) were searched for hepatocellular carcinoma 
miRNA expression profiling studies that had been published 

prior to December 31st, 2013. The search strategy was based 
on a combination of (mirna* OR microrna* OR mir-*) AND 
profil* AND ((liver AND (cancer* OR tumor* OR tumour* 
OR carcinoma)) OR (hepato* AND (cancer* OR tumor* 
OR tumour* OR carcinoma)). Citations of retrieved articles 
were also screened. Only original experimental articles 
published in English language were included. Full text of 
each study was carefully evaluated. The studies analyzed 
miRNA expression between HCC and noncancerous liver 
tissue in human were further analyzed. Expression studies 
of individual preselected candidate genes or studies using 
only cell lines were excluded. Studies that profiled different 
histologic subtypes but did not include noncancerous tissue 
were also excluded.

Figure 7: Volcano plot of pathways enriched with HCC-related genes. A. KEGG pathways; B. Panther pathways. The red points 
indicate pathways of interest that display both large enrichment ratio (> 0.15, x-axis) as well as high statistical significance (P < 0.0001, 
y-axis). HCC, hepatocellular carcinoma; miRNA, microRNA.
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Standardization of miRNA names

The lists of miRNAs with statistically significant 
(less than 0.05 was considered significant) expression 
changes between HCC and noncancerous liver tissue 
were extracted from the included studies. Authors were 
contacted for supplemental data, if the gene list was 

not available in the publication. For a comprehensive 
integrated analysis of miRNA expression, it is essential 
that the miRNA names are comparable across the studies 
and follow the same nomenclature. Because of the relative 
novelty of the miRNA profiling fi eld and frequent updates 
in the miRBase, miRNA nomenclature can vary depending 
on when the study was conducted. Therefore, all miRNA 

Table 2: The hepatocellular carcinoma highly saturated pathways by targets of validated 
microRNAs
Pathway Enrichment Ratio FDR

KEGG pathway

 04060: Cytokine-cytokine receptor interaction 0.17 1.80E–18

 05215: Prostate cancer 0.20 3.46E–12

 05220: Chronic myeloid leukemia 0.22 1.92E–11

 05211: Renal cell carcinoma 0.21 1.12E–10

 04012: ErbB signaling pathway 0.18 2.03E–10

 05214: Glioma 0.22 2.37E–10

 05212: Pancreatic cancer 0.20 8.14E–10

 05218: Melanoma 0.20 8.14E–10

 04115: p53 signaling pathway 0.19 4.42E–9

 05223: Non-small cell lung cancer 0.19 5.32E–7

 04930: Type II diabetes mellitus 0.24 6.31E–7

 05219: Bladder cancer 0.21 7.35E–7

 05210: Colorectal cancer 0.16 1.96E–6

 04150: mTOR signaling pathway 0.17 4.05E–6

 05221: Acute myeloid leukemia 0.16 6.67E–6

 05213: Endometrial cancer 0.15 2.74E–5

Panther pathway

 P00002: Alpha adrenergic receptor signaling pathway 0.31 9.74E–22

 P00032:  Insulin/IGF pathway-mitogen activated protein kinase kinase/ 
MAP kinase cascade 0.32 2.29E–21

 P00023: General transcription regulation 0.22 1.22E–14

 P00006: Apoptosis signaling pathway 0.20 1.32E–11

 P00034: Integrin signalling pathway 0.29 3.02E–10

 P00005: Angiogenesis 0.17 1.10E–8

 P00038: JAK/STAT signaling pathway 0.45 2.30E–8

 P00033: Insulin/IGF pathway-protein kinase B signaling cascade 0.22 1.30E–7

 P00020: FAS signaling pathway 0.31 4.39E–6

 P00025: Hedgehog signaling pathway 0.26 4.71E–6

 P00045: Notch signaling pathway 0.27 8.13E–5

 P00027: Heterotrimeric G-protein signaling pathway 0.18 8.38E–5

FDR, false discovery rate
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names were standardized according to miRBase version 
21 (http://www.mirbase.org/). Many traditional “major” 
miRNA names throughout the main text were redesignated 
according to miRBase database vesion 21. Viral miRNAs 
and non-miRNA probes were excluded from the analysis. 
Pre-miRNAs, reported in some of the studies, were used in 
the analyses after the standardization of precursor names.

Datasets construction

The extracted miRNAs were ranked based on 
statistical test fold changes where reported, and p-values 
where old changes were not reported. The rank matrixes 
of upregulated and downregulated miRNAs lists were 
separate analyzed, which constructed the overall rank 
matrix. Furthermore, the rank of miRNA from the analysis 
of upregulated and downregulated miRNAs lists were both 
normalized, which was the original rank divided by the 
maximal possible rank in the study. In the normalized rank 
matrixes, a value was given to each miRNA, which was 
one minus normalized rank of miRNA from the analysis 
of upregulated gene lists, or normalized rank from analysis 
of downregulated gene lists. Value 0.5 means that this 
miRNA was not reported in that study, value above 0.5 
means it is upregulated and value below 0.5 means that 
this miRNA is downregulated in that study.

Statistical analysis

A novel RRA method implemented as an R package 
RobustRankAggreg was used to identify miRNAs 
that were ranked consistently better than expected by 
chance [47]. This method detects genes that are ranked 
consistently better than expected under null hypothesis of 

uncorrelated inputs and assigns a P-value for each gene. 
To assess the stability of acquired p-values, the leave 
one out cross-validation was applied on the robust rank 
aggregation algorithm. Analyses were repeated 10,000 
times, and one random gene list was excluded from the 
analysis each time. Acquired P-values from each round 
for each miRNA were then averaged. All integrated-
signature miRNAs that reached statistical significance 
after Bonferroni correction and were reported by at least 
1/3 datasets were selected.

Validation of the integrated-signature miRNAs 
using quantitative real-time PCR

To validate the results of integrated bioinformatics 
analysis, 11 pairs of fresh HCC and adjacent noncancerous 
liver tissues were obtained from 11 patients by experienced 
surgeons and examined by experienced pathologists 
at the the First Affiliated Hospital of Wenzhou Medical 
University between July and December, 2014. Written 
informed consent was obtained from all patients or their 
guardians. The samples were frozen immediately and 
stored in liquid nitrogen after being surgically resected. 
Clinical information was summarized in the Table 3. 
Total RNA was extracted using the Qiagen RNeasy 
Kit (QIAGEN GmbH, Germany) according to the 
manufacturer’s instructions. First-strand complementary 
DNA (cDNA) was synthesized from 2 μl of total RNA 
using an oligo-dT primer and superscript II reverse 
transcriptase (Invitrogen). Then, quantification of the 
significantly up-regulated or down-regulated miRNAs was 
performed by real-time PCR, using SYBRRPremix Ex Taq 
TM (TakaRa). The primers of each dys-regulated miRNAs 

Table 3: Characteristics of the patients
No. gender Age (year) alpha-fetal 

protein
etiology Cirrhosis Child-

Pugh 
class

Tumor 
size (cm)

Tumor 
grade

MVI

1 female 63 12.28 HBV Present A 3 G1 Absent

2 male 56 593.62 HBV Present A 3.5 G3 Absent

3 male 63 10.04 HBV/Alcohol Absent A 2 G1 Absent

4 male 48 1.69 HBV Present B 7 G1 Absent

5 male 50 6.34 HBV/Alcohol Absent B 4 G4 Present

6 male 42 1024.96 HBV Present A 3 G3 Present

7 female 64 87.05 HBV Present A 2 G3 Absent

8 male 55 450.72 HBV/Alcohol Present B 12 G3 Present

9 male 65 2.26 HBV Present A 13 G2 Present

10 male 49 22663.00 HBV/Alcohol Present A 9 G2 Present

11 female 71 3.66 HBV Present A 4 G1 Absent

HBV, hepatitis B virus; MVI, microscopic vascular invasion
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were listed in Supplementary Table 3. The primers for U6 
were obtained from TakaRa. PCR was performed in a real-
time PCR system (Applied Biosystems 7500) as follows: 
95°C for 3 min followed by 35 cycles of 95°C for 5 sec, 
60°C for 20 sec and 72°C for 30 sec and then 94°C for 
1 min, 60°C for 1 min, with addition of a cycle for every 
0.5°C. Expression values were normalized to those for U6 
as a control. Relative fold changes of miRNA expression 
were calculated by the ∆∆CT method, and the values were 
expressed as 2-∆∆CT. miRNAs with fold-change values ≥ 2 
or ≤ 0.5 compared to adjacent noncancerous tissue were 
considered to be deregulated miRNAs in HCC.

The paired test was used to examine the difference 
of miRNA expression levels between tumor and 
adjacent nontumor liver tissues. The prognosis of HCC 
strongly depends upon nuclear grade and the presence 
of microscopic vascular invasion (MVI). Therefore, the 
difference of miRNA expression levels were also tested 
in samples with or without MVI, different tumor grades 
and survival. MVI was defined by the presence of tumour 
emboli within either the central hepatic vein, the portal, or 
the large capsular vessels [48]. Edmondson and Steiner's 
nuclear grades were used to classify the tumor grade, in 
which grades 1 and 2 were defined as well-differentiated, 
and grades 3 and 4 as moderately/poorly differentiated [49]. 
The results were validated on the TCGA datasets. miRNA 
expression data and corresponding clinical information for 
HCC dataset were downloaded from TCGA data portal 
in January 2015. TCGA data are classified by data type 
(clinical, mutations, gene expression) and data level, to 
allow structured access to this resource with appropriate 
patient privacy protection (Supplementary Table 4). 
This study meets the publication guidelines provided by 
TCGA. The miRNA expression profiling was performed 
using the Illumina HiSeq 2000 miRNA sequencing 
platforms (Illumina Inc, San Diego, CA). The miRNA 
expression level was demonstrated as reads per million 
miRNA mapped data. The miRNA expression analyses 
were performed using BRB-ArrayTools (version 4.4) 
developed by Dr. Richard Simon and the BRB-ArrayTools 
Development Team. In brief, the miRNAs with missing 
data exceeded 10% of all subjects were excluded from the 
dataset and the expression level of each individual miRNA 
was log2-transformed for further analysis. The predicted 
performances of the validated miRNAs for classifying 
HCC, MVI, and tumour grade were estimated on the 
TCGA datasets using ROC curve. The TCGA samples 
were assessed using a LASSO penalized regression 
analysis to predict HCC, MVI, tumor grade and survival 
using microRNA expression with leave-one-out cross-
validation using R software (v3.1.2) and the Lars package 
(v1.2) [50]. A risk score was generated using the sum of 
microRNA expression values weighted by the coefficients 
from the LASSO regression, as described. The statistical 
analyses were performed using the SPSS 18.0 (SPSS Inc.). 
Statistical significance was defined as p < 0.05.

For survival analysis, we used the Kaplan-Meier 
method to analysis the correlation between overall 
survival and the miRNAs, and the logrank test was used 
to compare survival curves. The optimum cut-off value for 
the miRNAs using X-tile plots based on the association 
with mortality of the patients. X-tile plots provide a 
single and intuitive method to assess the association 
between variables and survival. The X-tile program can 
automatically select the optimum data cut point according 
to the highest χ2 value (minimum p value) defined by 
Kaplan-Meier survival analysis and log-rank test [51]. 
We did the X-tile plots using the X-tile software version 
3.6.1 (Yale University School of Medicine, New Haven, 
CT, USA).

miRNA target prediction

The putative targets of integrated-signature miRNAs 
were predicted using databases utilizing three different 
target prediction algorithms: TargetScan v6.2 (http://www.
targetscan.org/), RNA22 (https://cm.jefferson.edu/rna22v2/), 
miRDB (http://www.mirdb.org/miRDB/), RNAhybrid (http://
bibiserv.techfak.uni-bielefeld.de/rnahybrid/) and DIANA-
microT-CDS Web Server v5.0 (http://diana.imis.athena-
innovation.gr/DianaTools/index.php?r=microT_CDS/index). 
DIANA algorithm predictions were performed using miTG 
score threshold 0.7 (strict setting). Only genes with target 
sites in 3′UTR were used. Validated targets were acquired 
from TarBase v6.0 database (http://diana.imis.athena-
innovation.gr/DianaTools/index.php?r=tarbase/index) and 
miRwalk (http://www.umm.uni-heidelberg.de/apps/zmf/
mirwalk/mirnatargetpub.html). Consensus targets were 
then defined as genes predicted by at least 4 algorithms plus 
validated targets from TarBase and starBase.

Enrichment analysis

Enrichment analyses for Panther and KEGG 
pathways and Gene Ontology terms were carried out with 
GeneCodis web tool (http://genecodis.dacya.ucm.es/) 
[52]. Predicted target genes for each miRNA were used as 
input and false discovery rate (FDR)-corrected p-values 
were visualized as a heatmap. Clustering of the heatmap 
was based on Pearson correlation and average linkage. 
Furthermore, the association between the pathways 
affected by altered expression of miRNAs and HCC was 
evaluated.
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