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ABSTRACT
The discovery and clinical application of molecular biomarkers in solid tumors, 

increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent 
molecular profiling. This in turn requires the pathological review of haematoxylin 
& eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by 
visually estimating the percentage tumor nuclei and tumor annotation for manual 
macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor 
nuclei percentage between pathologists, potentially undermining the precision of NSCLC 
molecular evaluation and emphasising the need for quantitative tumor evaluation. We 
subsequently describe the development and validation of a system called TissueMark for 
automated tumor annotation and percentage tumor nuclei measurement in NSCLC using 
computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated 
tumor annotation of cases using Tissuemark,  strong concordance with manually drawn 
boundaries and identical EGFR mutational status, following manual macrodissection 
from the image analysis generated tumor boundaries. Automated analysis of cell counts 
for % tumor measurements by Tissuemark showed reduced variability and significant 
correlation (p < 0.001) with benchmark tumor cell counts. This study demonstrates a 
robust image analysis technology that can facilitate the automated quantitative analysis 
of tissue samples for molecular profiling in discovery and diagnostics.

INTRODUCTION

Personalised medicine aims to stratify patients’ 
cancers into new molecular subtypes who can benefit 
from individualised therapy [1–3]. The translation and 
validation of new molecular biomarkers in cancer relies 
heavily on molecular pathology and the investigation of 
specific mutations or other genomic anomalies in nucleic 
acids extracted from formalin fixed, paraffin embedded 
(FFPE) human tissues.

Extracting DNA and RNA from tumor cells in 
the context of FFPE samples is not straightforward. 
Most tissues containing tumor also contain a mixture 

of cell types such as non-neoplastic epithelial cells, 
mesenchymal tissue, inflammatory cells and acellular 
material such as mucin which has an influence on 
subsequent processes including nucleic acid isolation, 
PCR amplification and next generation sequencing [4]. 
Therefore in most studies, it is important to determine 
the tumor nuclei content by visually estimating the 
percentage tumor cells and where that falls below a 
certain threshold, to enrich the tumor cell contents of 
the sample by manual macrodissection (Figure 1), to a) 
make the sample suitable depending on the sensitivity of 
the test, and b) make the molecular analysis as broad as 
possible to be able to identify “clonal disease”.
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Macrodissection is a manual process in which 
the region of tumor is physically scraped from the slide 
using a scalpel into a receptacle for subsequent nucleic 
acid extraction and molecular analysis. Marking the 
regions of viable tumor within tissue samples relies on 
the visual assessment of haematoxylin and eosin (H&E) 
tissue sections, usually by an experienced pathologist 
and typically performed at low power magnification. 
Manual macrodissection aims to enrich the proportion 
of neoplastic cell nucleic acid by removing non-tumor 
containing regions, not only increasing the likelihood of 
detecting a relevant mutation if it exists but also increasing 
the certainty that a mutant signature originates from the 
malignant cell isolate. Percentage tumor evaluation and 
macrodissection underpin most of the new and emerging 
molecular tests for solid tumors including RAS, EGFR, 
BRAF mutational analysis, commercial tests such as 
Oncotype DX, Mammaprint, Prolaris and more recent 
clinical sequencing panels (e.g. Foundation One). Given 
that this role falls primarily to the pathologist, the rapid 
rise in the investigation of solid tumor molecular tests 
and their delivery in diagnostic molecular laboratories 
is putting a strain on pathology services. Molecular labs 
without in-house pathology competency, must transport 
slides to a qualified pathologist for review and manual 
annotation. The centralization of some molecular tests, 
despite having clear sample guidelines on their test 
request forms, must review the slides centrally and ensure 
sufficient tumor is present before macrodissection and 
analysis.

Whilst pathologists can usually confidently identify 
malignant cells within a tissue section, the tracing of 
boundaries for manual macrodissection is imprecise 
and inherently subjective. This has the potential of 
introducing inter-/intra-observer/laboratory variability 
and impacting the quality of molecular assays from the 
subsequently macro-dissected regions. This is particularly 
important in the evaluation of % tumor cells which can 
be highly subjective. For example, Smits et al [5] have 
shown significant variation in the reporting of tumor 
cell percentage across the same set of lung cancer 
samples. In a series of 47 cases, tumor cell percentage 

was overestimated in 45% of cases with only 14% of the 
observations being considered correct against precise 
cell counts on the same samples. Differences between 
pathologists could be as high as 40 points on the % scale 
for the same sample. Similar findings have been reported 
in colorectal cancer [6]. The demand for automation to 
support markup, high throughput analysis and precision 
is growing rapidly.

This is particularly important in lung cancer. Lung 
cancer is the number one cause of cancer-related deaths 
in both men and women, accounting for 1.38 million 
deaths a year in 2008 [7] with non-small cell lung cancer 
(NSCLC) accounting for approximately 87% of all lung 
cancer cases [8]. With an increasing understanding of 
how genetic mutations relate to cancer development, 
recent work has focused on the identification of molecular 
biomarkers for targeted molecular therapies [9]. A number 
of candidate molecular targets have been identified, 
including the human epidermal growth factor receptor 
(EGFR/HER/ERBB) family of receptors in humans 
(EGFR [10, 11], HER2/neu [12, 13], HER3 [14, 15]), RAS 
[16, 17], VEGF [18], ALK [19], MET [8], IGF1R [20] and 
the PI3K/Akt/mTOR pathway [21]. Importantly, EGFR 
mutational status is vital in selecting patients for erlotinib 
and gefitinib therapy [22, 23]. As discussed, depending 
on the assay type, reliable EGFR mutational analysis 
requires significant numbers of tumor cells and frequently 
macrodissection to generate sufficient tumor DNA and 
avoid false negative test results.

With rapid developments in digital pathology, glass 
slides can now be digitised in their entirety at diagnostic 
resolution using whole slide scanning devices. This allows 
routine scanning of whole slides for the purposes of archiving, 
education, remote consultation and research [24–27]. It also 
provides the opportunity to develop and use computer based 
image analysis methods to automatically identify areas of 
tumor for macrodissected and quantitatively measure tumor 
cell percentage in H&E tissue samples. While there has been 
considerable effort in the image analysis community to develop 
quantitative immunohistochemistry (IHC), little work has been 
done using image analysis for H&E stained samples for the 
purposes of tumor identification and annotation. This study 

Figure 1: Comparison of current methods for macrodissection based on manual annotation (top) and the proposed 
automated tumor annotation for macrodissection (bottom). 
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is the first to present a novel computerised approach for the 
automated identification of tumor regions and measurement 
of tumor percentage by cell counts from H&E stained tissue 
sections, with the specific goal of supporting recent advances 
in molecular pathology (Figure 1).

RESULTS

Inter-observer variability of tumor 
boundary annotation

During manual slide annotation, 15 randomly 
selected neoplastic tissue slides were annotated 
independently by two pathologists. Direct comparisons 
of the drawn boundaries on both occasions show overlap 
of tumour boundary between 68% and 98%. While most 
of the variations in manual annotation were considered 
minor, some samples showed important discrepancies 
which could have impacted in the estimation of tumor 
percentage and downstream molecular test results. 
Examples are shown in Figure 2.

Inter-observer variation in percentage 
tumour cell estimates

The percentage of tumor was visually estimated 
independently by two pathologists for each of the 136 H&E 
stained slides containing tumor in this study, in the same 
way as is currently used in routine molecular diagnostics. 
There was a high degree of descepancy between the two 
pathologists’ estimations of % tumor (Figure 3). The 
Pearson’s correlation coefficient r = 0.32 between the 
two reviews, indicated a poor correlation. In 51/136 cases 
(37%), the tumor percentage estimation discrepancy 
was greater than 20%. The largest difference showed a 

discrepancy of 60 units on the % scale (90% versus 30%). 
These results highlight the real inter-observer variation that 
exists in % tumor cell estimation in lung cancer samples.

In addition, a series of 20 H&E stained lung images 
were also circulated to four different pathologists for review 
and evaluation of percentage tumor. Tumor cell estimates by 
pathologists across the range of sample images are shown in 
Figure 4. The first column represents a single case reviewed 
by four pathologists with % estimates ranging from 20% to 
80%. The mean maximum deviation across all cases was 
25%. The pathologists are colour coded and on review did 
not show any consistent bias with regards to higher or lower 
scoring of percentage tumor cells. Again this illustrates the 
considerable variation that exists in the reporting of tumor 
percentage for molecular analysis and the need to improve 
objectivity of this evaluation.

Precise benchmark cell counts were available on 10 
cases within this set. If a difference exceeding 10% from 
the benchmark number is considered unacceptable, only 
50% of cases were considered correct. Comparison with 
benchmark data showed that pathologists overestimated % 
tumor in 32% of cases (Figure 5).

Automated tissuemark calculation of  
tumour boundary

Automated annotations were generated by Tissue­
Mark on the digital H&E images. Annotations generated 
by the pathologist and the automated TissueMark method 
were superimposed on all 136 slides containing tumor 
tissue. There was a high concordance between manual and 
automated tumor boundaries (Figure 6).

For statistical evaluation, it was necessary to 
measure boundary concordance using a variety of metrics 
as no single measurement was sufficient to reflect the 

Figure 2: Two examples of manual tumor annotation showing observer varibility. In both A. and B. the solid black contours 
were from the first review, with the dotted lines from the second review. A minor discrepancy exists between the two boundaries in (A) 
In (B), the larger discrepant area (shown with the white arrow) is a region of mixed tumor cells and necrotic tissue. This deviation might 
impact downstream molecular analysis.
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Figure 3: Scatterplot of tumor percentage for 136 lung cancer cases derived from two experienced pathologists, 
showing gross variation between estimates.

Figure 4: Shows the % tumor estimates provided by pathologists for 20 random regions of lung cancer. Each column 
represents an indvidual case with color coded dots showing the % tumor estimates for each case.
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Figure 5: For ten cases the absolute numbers of tumor cells were counted. This is shown by the solid black line for cases 
ordered by increasing % tumor cells. Visual estimation of % tumor cells by four pathologists is individually plotted as the grey lines. This 
shows no consistency in the overcalling or undercalling of % tumor cells.

Figure 6: Two examples A. and B. showing the comparison between pathologist annotation (solid black line) with 
the automated macrodissection method (dotted black line) on H&E stained lung images. Both examples show strong 
concordance between manual and automated boundaries.
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range of differences that might be observed. The inclusion 
rate vs. exclusion rate plot is shown in Figure 7A. Results 
suggested the proposed automated tumor annotation 
approach is highly accurate with a median exclusive error 
rate of 91.70% and average exclusive error of 86.61%, 
and median inclusive error value of 89.00% and average 
inclusive error of 82.40%, accepting the pathologist’s 
annotation as the gold standard. The ROC curve is shown 
in Figure 7B. It suggests that the majority of slides showed 
strong boundary concordance as most of the data points 
are located at the top left corner of the plot. The AUC 
also achieved the high value of 0.89. Figure 7C shows the 
CI presented as a box plot, with a high median CI value 
of 0.93 and 75% (102 out of 136) slides with a CI value 
higher than 0.88. The majority 92.65% (126 out of 136) 
slides achieved CI > 0.76 (the lower adjacent) which gave 
only 10 outlier cases as shown. On review, outlier cases 
were the result of weak staining or sparsely distributed 
tumor cells within the sample. FDR evaluation can be 

seen in Figure 7D where an average FDR of 0.06 was 
obtained. This is in the upper borderline range meaning 
that there is more chance that extracted nucleic acids will 
be from a neoplastic cell rather than a non-neoplastic 
cell. To give a safe margin of error, if we define the FDR 
acceptance standard to place twice as much importance on 
the identification of malignant cells than non-malignant 
cells, we get a threshold of FDR′ = 0.33. At this threshold, 
97.06% (132/136) of the slides were considered suitable 
for manual macrodissection.

For the 136 tumor slides, automated annotations 
were reviewed by an independent pathologist. The 
pathologist found good concordance between computer 
generated annotations and the manual annotations for a 
majority of cases with all automated slide annotations 
considered suitable for manual macrodissection. There 
were a small number of cases where the automated 
computer approach included small regions of non-
neoplastic tissue within the annotation. Due to the 

Figure 7: Objective comparison of manual and automated tumor annotations for 136 neoplastic lung tissue slides 
using four statistical measurements. A. Shows the inclusion rate vs. exclusion rate plot. For each of the 136 slides, the inclusion rate 
figure (left) and exclusion rate figures (right) are shown. For clarity, this plot was sorted by exclusion rate in descending order. The two 
dotted vertical lines indicate the median exclusion rate value across all slides to be 91.70% and inclusion rate of 89.00%. The top 8 cases in 
the plot do not have exclusion rate values as the pathologist indicated that the entirety of these tissues should be taken forward for nucleic 
acid extraction without macrodissection. B. A receiver operating characteristic (ROC) curve shows the majority of cases achieved strong 
boundary concordance with low false positivity and high true positivity (sensitivity). The area under the curve (AUC) value is 0.89. C. A 
box plot for CI measurement. The median CI value is 0.93, and there are 10 outlier cases marked as “+” in the plot. D. A Stem plot of the 
false discovery rate (FDR) for all the cases. Using a threshold value of 0.33, results in only 3 outlier cases.
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small area of these regions, it was concluded by the 
molecular pathologist that in his subjective view, this 
would not affect the extraction of nucleic acids or 
subsequent sequencing analyses and that the automated 
annotations would ensure a sufficiently high percentage 
of malignant cells in the sample to carry out a successful 
molecular test.

For the 109 non-tumor slides, the automated 
method successfully identified 106 as non-tumor. Only 
3 slides gave small regions of wrongly recognised 
tumor, which gave an overall success rate of 97.25%. 
These minor misclassifications were due to the presence 
of histologically benign areas including necrosis, 
pneumocyte hyperplasia and dense lymphocyte crowding 
due to inflammation.

Heatmap generation

As each tile on the image is allocated a posterior 
probability in the range of 0–1 indicating its likelihood to 
be tumor or non-tumor, this can be visualised in the form 
a tumor heatmap (Figure 8). This TumorMap is a useful 
adjunct in assessing algorithm performance and the correct 
identification of tumour and non-tumour regions within 
the automatically annotated boundary.
Automated cell counting and tumour percentage

Automated calculation of tumour percentage using 
TissueMark was compared against manual hand-counted 
results on a series of 10 images. A strong correlation (r = 
0.972, p < 0.0001) was seen with all TissueMark results 
falling within 10 units of the benchmark (Figure 9A). 
This demonstrates that TissueMark analysis can rapidly 
estimate tumour percentage in tissue samples that closely 
correlates with the actual percentage. This provides much 
more consistent and repeatable results than seen for 

pathologist scores as shown in Figure 9B which show 
considerable variation around the benchmark values.

Molecular evaluation

For the six cases evaluated, automated annotation 
generated precisely the same EGFR mutation results as 
conventional manual hand drawn annotations (Table 1). 
In addition, the DNA extracted following the automated 
identification had a similar 260/280 reading and, 
interestingly, an improved concentration yield in 5 out of 
6 cases.

DISCUSSION

There have been considerable advances made in the 
molecular pathology of solid tumours with an increasing 
armoury of nucleic acid based tests for single or multiple 
biomarker assessment, some of which are now essential 
for patient stratification and therapeutic selection. These 
include recognised tests such as RAS, BRAF and EGFR 
mutation detection, OncotypeDX, Mammaprint and a 
range of emerging next generation sequencing oncology 
panels which will further enhance the molecular profiling 
of tumors and the targeted treatment of cancer patients. 
However, due to the complexity and heterogeneity of 
tissue, the reliability of molecular profiling is strongly 
dependent on the pathological review of tumor samples 
together with the selection and enrichment of tumor DNA 
by macrodissection. Nevertheless, pathological review, 
markup and assessing tumor content on tissue samples, (i) 
can be subjective, inconsistent and time consuming; (ii) 
is widely considered to be a bottleneck for many research 
and diagnostic laboratories; and (iii) if not done precisely, 
could undermine the reliability of molecular diagnostics.

Figure 8: Illustrates how a Tumormap can be generated from the posterior probabilities, highlighting regions of high 
tumor probability (red) against low tumor probability (blue) and associated color spectrum within the generated 
tumor boundary.
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Percentage tumor nuclei on H&E slides has 
emerged as one of the key determinants of sample quality 
and successful molecular testing—as it is currently the 
most reliable and practical way to determine if there is 
sufficient tumor DNA in which to detect tumor associated 
mutations and other genetic aberrations, that may impact 
on targeted therapy. Depending on the sensitivity of the 
molecular assay, the minimum percentage of tumor nuclei 
required in the sample to avoid a false negative result can 
vary from 1% to 70%. In this current study, we illustrated 
the subjectivity of tumour annotation and in particular 
percentage tumor estimations by eye. Reproducibility 
between pathologists showed gross variation in percentage 
tumor estimations on lung cancer cases between reads. 
Some cases varied by as much as 60 points on the % scale 
and in a majority of cases the percentage of tumour cells 
was overestimated, with over half of the assessments 
deviating from ground truth by more than 10 points on 
the percentage scale. In lung cancer and the molecular 
evaluation of EGFR mutation for therapeutic selection, 

inaccurate and overestimated tumor cell content could 
result in a false nagative test results, potentially leading to 
anti-EGFR therapy being withheld.

Considerable variation in reporting the % tumor 
cells in lung tissue samples has been demonstrated in 
other recent studies in lung [5] and other tissues [6, 28, 
29]. Smits et al [5] showed that over a third of lung cancer 
samples that fell below the crucial 20% limit of detection 
(LOD) for direct sequencing, were overestimated by 
pathologists, raising the likelihood of false negative 
EGFR test results in these cases. In colon cancer, a multi-
institutional diagnostic trial on percentage tumor estimates 
for KRAS evaluation by Viray et al, again showed 
considerable variation from pathologist to pathologist 
and similarly suggested that this could have a significant 
impact on molecular testing for patient stratification and 
therapy in colorectal cancer [6]. Whilst this is important 
for patient therapy, this evidence clearly translates 
across to discovery science and potential flaws in the 
identification and validation of new mutational targets and 

Figure 9: A. Comparison of automated tumour nuclei counts and percentage tumour values (y-axis), against benchmark 
data on tumor % showing strong correlation, mapping closely to actual tumor cell percentage values. B. The same 
scatterplot as (A) but superimposing the range of pathology estimates (red circles) against the benchmark data.

Table 1: Shows the six cases, macrodissected and assayed twice for EGFR, once using conventional 
manual annotation and once using automated tumor recognition
Case No. Manual Automated

NA 
Conc’n

260/280 Mutation Result NA 
Conc’n

260/280 Mutation Result

1 213.7 1.8 MUTATION EXON 21 L858R 253.2 1.88 MUTATION EXON 21 L858R

2 252.6 1.85 MUTATION NOT DETECTED 207.8 1.87 MUTATION NOT DETECTED

3 76.6 1.84 MUTATION NOT DETECTED 129.2 1.83 MUTATION NOT DETECTED

4 133.5 1.88 MUTATION EXON 21 L858R 187.2 1.87 MUTATION EXON 21 L858R

5 101.2 1.83 MUTATION NOT DETECTED 179.6 1.88 MUTATION NOT DETECTED

6 47.6 1.85 MUTATION EXON 19 DELETION 72.3 1.86 MUTATION EXON 19 
DELETION

Results show typical difference in nuclear acid concentration but full consistency in mutation status between the two methods.
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biomarkers based on FFPE samples from solid tumors. 
Clearly a more reliable, quantitative and reproducible 
method is necessary for estimating tumor cell sufficiency 
in investigative and diagnostic molecular pathology.

In this study, we developed and validated an 
automated image analysis method called TissueMark 
for tumor recognition, annotation and analysis which 
could overcome many of these difficulties. Focusing on 
applications in non-small cell lung cancer, the method 
uses high performance image processing, quantitative 
feature analysis and pattern recognition technology to 
automatically recognise the tissue patterns associated with 
lung cancer in H&E tissue scans and differentiate tumor 
morphology from other non-tumor tissue components. 
Support Vector Machine technology was used to classify 
the image using a unique set of image features—a 
method that has been shown previously to be successful 
in H&E stained histological images, including cervix 
[24], breast [30, 31], colon [32] and prostate tissues [33] 
[36]. Using this approach, the boundary of the tumor can 
be rapidly computed and presented in a way which can 
guide laboratory technicians in the macrodissection of 
samples. Over 97% of cases were shown to be recognised 
correctly, with statistical analysis of four independent 
similarity metrics showing strong concordance with 
conventional hand-drawn boundaries made by experienced 
pathologists. To further confirm the molecular reliability 
of automated tumor annotation in this way, a comparison 
of EGFR mutation status between macrodissected samples 
derived from manual and automatically annotated samples 
showed the same mutational status with the automated 
method. While further validation would be necessary, this 
indicates the potential of using automated imaging tools 
to support the high throughput analysis of tissue samples 
in biomarker discovery programs, in patient selection 
for clinical trials and to support the rapid growth of new 

molecular tests for primary diagnostics and therapeutic 
selection.

In addition to automated annotation of tumor 
boundary to guide macrodissection, the quantitative mea-
surement of percentage tumor cells using the TissueMark 
image analysis method can overcome the shortfalls of 
visual estimation and provide a more objective measure 
of tumor cell sufficiency. In order to benchmark this, 
subjective visual estimations of tumor cell percentage 
accuracy were not sufficient. Instead we hand-counted a 
series of tissue images to get precise numbers of tumor 
and non-tumor cells and an absolute, gold standard 
measurement of percentage tumor nuclei. Similar types of 
manual cell counts were carried out by Smit et al [5] and 
Viray et al [6] but purely for the purposes of comparing 
against pathological scores. Here, we used this approach 
to verify accuracy of our image analysis methods and we 
showed strong concordance between automated image 
analysis and benchmark nuclear counts. Interestingly, 
manual bechmark counts took about approximately 4 
hours per sample image factoring up to approximately 
100 hours per whole slide. Automated image analysis 
achieved the same results on a whole slide image in under 
3 minutes with the same level of precision. This we feel 
has important potential in measuring sample quality 
and tumour nucleic acid sufficiency in the molecular 
evaluation of solid tumors and molecular diagnostics.

Currently, automated boundary generation and % 
tumor nuclei are separate independent functions. It would 
however be possible to link them to ensure that defined 
boundaries only contained tumour cell percentages above 
defined thresholds, that relate to the limits of detection 
(LOD) associated with different molecular technologies/
biomarkers.

H&E can be a highly variable stain, difficult to control 
and differs from one laboratory to the next. It is important 

Figure 10: Design of the automated annotation solution. A. Shows the manual markup and annotatation selection which provides 
training data for image classification in (B). B. Illustrates the linear SVM classifier which can process new images to automatically identify 
regions of tumour and non-tumour.
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therefore that any image analysis algorithm that attempts 
to measure H&E pattern precisely and use this to identify 
tumor patterns is resilient to stain variability. In this study 
we explored samples from different laboratories that were 
stained in different batches where we showed the algorithm 
to cope with variation in sample preparation and provide 
reliable results across a range of H&E staining patterns and 
intensities. The algorithm has been developed to allow the 
normalization of digital images from different laboratories to 
ensure consistent interpretation regardless of stain variation. 
Nevertheless, if the H&E stain falls outside certain expected 
standards and intensity ranges, tissue recognition ability 
will be undermined and the algorithm will need to be further 
adjusted to cope with patterns that emerge from badly 
stained samples. Nevertheless, the algorithm has been shown 
to work across a range of laboratory staining practices and 
can be easily adjusted to fit with the staining preferences of 
most modern diagnostics and research laboratories.

The tumor identification algorithms were developed 
initially to operate on the Aperio whole slide imaging 
platform and the svs image format. Variations in the optics 
of different scanners, proprietary image formats and image 
processing methods adopted by hardware manufacturers 
generally result in images with different colour mixes, 
contrasts, brightness and backgrounds. Subsequent 
development of image normalization methodologies 
which standardises these variables across scanner types 
has allowed the automated tumor analysis to operate on 
other whole slide imaging platforms (e.g. Hamamatsu 
Nanozoomer). Further validation work will be necessary 

to ensure similar levels of reproducibility, performance 
and precision on other scanning platforms.

The TissueMark algorithm for lung tumor 
identification, developed and validated here, has 
subsequently been integrated into TissueMark workflow 
software that provides automated markup of tissue 
samples very rapidly, accelerating pathological review 
and sample selection within a busy molecular pathology 
laboratory. In addition to providing the facility to filter and 
select samples on the basis of objective percentage tumor 
calculations, the software also prints tumor annotations on 
paper or acetate sheets in 1:1 slide format for subsequent 
blank tissue section overlay and macrodissection. This 
illustrates a real example of translating image analysis 
technology into a workflow that facilitates the rapid 
generation of macrodissection boundary markups and 
quantitative tumor percentage measurements for molecular 
evaluation in solid tumors.

The methodology presented here is also a generic 
framework for tissue identification, which could be 
developed to automatically identify tumor morphology 
in other histological subtypes in lung cancer and for 
the automated identification of other tumors types. This 
approach is facilitated by the widespread use of digital 
pathology in research and its increasing adoption in 
diagnostic laboratories. The use of image analysis on 
whole slide scans for automated tumor markup to guide 
macrodissection and the measurement of percentage tumor 
for molecular pathology applications has not been described 
previously. As a method, it could significantly speed up the 

Figure 11: An example showing how a tissue slide is annotated using the automatic tissue identification. A. An original 
H&E stained lung tissue slide captured. B. A pseudo coloured TumorMap image after processing, where gray represents tumor rich tissue, 
white represents non-tumor tissue and black shows the white background (void). C. A refined TumorMap image where the boundary has 
been smoothed to support tissue annotation. D. An overlay of the TumorMap boundary on top of the original lung slide.
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turnaround time for macrodissection in large cohort studies 
or clinical trials facilitating the discovery of molecular 
biomarkers and integration with other morphomolecular 
data [34]. It could also improve the objectivity and reliability 
of tumor markup and percentage tumor estimations for 
routine molecular diagnostic tests.

In conclusion, this study presents for the first time 
a powerful image analysis technology which can support 
tumor markup, sample selection, macrodissection and 
tumor nucleic acid enrichment in translational molecular 
research and in molecular diagnostics. Incorporated within 
dedicated workflow software, this can manage digital 
slides, track samples, run a range of tumor identification 
algorithms, store annotations and present these in a lab 
for physical macrodissection. This has the potential to 
significantly improve workflow and instil accuracy and 
consistency in molecular pathology.

MATERIALS AND METHODS

Tissue samples

This study was approved by the Office for Research 
Ethics Committees Northern Ireland (ORECNI). REC 
reference: 06/NIR01/94. In addition, the molecular 
evaluation of tissue samples was approved under Northern 
Ireland Biobank application NIB13-0079.

Samples from 135 NSCLC patients were retrieved 
from the FFPE archive at Belfast Health and Social Care 
Trust (BHSCT) by an experienced pathologist, typical 
of resection cases processed for EGFR/KRAS mutation 
analysis. Sample types included wedge resection, 
lobectomy and pneumonectomy specimens. Standard 
laboratory procedures were then followed for FFPE 
processing for molecular diagnostics. Standard 5 um 
sections taken from the FFPE blocks were mounted 
on glass slides and stained with H&E using standard 
operating procedures adopted in the laboratory. Using a 
single representative tumor block per case, this provided 
for the current study a total of 245 H&E slides, of which 
110 (44.9%) slides were from non-tumor control FFPE 
blocks, the remainding 135 (55.1%) showing a mixture of 
tumor and non-tumor regions.

All slides were scanned using an Aperio ScanScope 
CS whole slide scanner at 20X magnification using a 
20X/0.75 Plan Apo objective. Digital slide images were 
generated with a resolution of 0.50 μm/pixel and stored 
in Aperio .svs format. After scanning, these digital slides 
were compressed using lossy JPEG compression using 
factory settings on the Aperio platform.

Manual annotation of slides

A consultant pathologist with a specialist interest 
in lung cancer reviewed all 245 lung tissue H&E digital 
slides using PathXL online digital slide viewer (PathXL 

Ltd, Belfast, UK). In total, the pathologist confirmed 
109 slides (44.49%) to be non-neoplastic and contain no 
tumor tissue. The remaining 136 slides (55.51%) were 
digitally annotated using the PathXL software to show 
regions of tumor suitable for macrodissection within the 
tissue section. The 136 tumor cases comprised a range of 
histological subtypes including squamous cell carcinoma 
(SCC), adenocarcinoma, mixed and undifferentiated 
carcinoma.

Reproducibility of % tumour cells estimations 
amongst pathologists

Reproducibility of conventional pathological % 
tumour estimations was evaluated in two ways. Firstly, the 
tumor percentages for each of the 136 tumor containing 
slides were estimated in the overall slide, independently 
by two different pathologists. Secondly, a series of 20 
high resolution images of lung cancers were circulated 
to 4 pathologists and their independent estimates of % 
tumour recorded. Eighteen slides were reviewed by all 
four pathologists, whereas two were reviewed by three 
pathologists. These were then compared graphically and 
statistically to determine variability of % lung tumor 
estimates.

Manual cell counts for precise % tumor 
measurements

In order to establish a benchmark dataset for 
evaluating the precision of tumor cell imaging and 
automated measurement of percentage tumor cells in in 
NSCLC, a series of ten cases were randomly selected for 
manual cell counting. Large 1 mm2 regions of the digital 
slides were randonly located from each of the digital slides 
and every tumor and non-tumor cells manually counted by 
hand on the H&E image to derive an accurate percentage 
tumor figure. Cell counting was facilitated by using the 
mouse to manually mark the cells on the digital slide. Over 
500,000 cells were counted manually for this exercise. 
All results were reviewed by a second pathologist to 
ensure that tumor cell identification and manual counts 
were representative and properly estimated. Whilst time 
consuming, this provided us with precise benchmark data 
on the percentage tumor cells in these regions.

Automated tumor identification using image 
analysis

Training set, feature extraction and classifier

Using expert pathological selection, a training 
subset of tumor (n = 58) and non-tumor (n = 46) case 
images were selected and partitioned into tumor and 
non-tumor tiles of 31 × 31 pixels at varying resolutions 
for feature selection and algorithm training. Within this 
training image set and sub-sample of tumor image regions 
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were selected randomly across the different histological 
subtypes. Similarly, a sub-sample of non-tumour regions 
for training included stroma, necrotic tissue, cartilage, 
normal epithelial tissue, hemorrhagic areas and other 
areas not consisdered to be tumor tissue. A total number 
of 50,000 training tiles were created for algorithm training. 
This was considered to be a minimal training set which 
could then be applied to the entire series of images, 
including the set from which the training tiles had been 
taken from.

A set of 135 image features were extracted from 
each training tile image. Firstly, the colour image tile was 
converted into the gray scale and a colour deconvolution 
method was then used to separate the haematoxylin colour 
channels from eosin [35]. For these three colour channels, 
namely haematoxylin, eosin and gray, 45 image features 
were then calculated, which included 7 histogram features 
[24, 36, 37], 16 features derived from gray level co-
occurrence matrix [24, 38–40], 15 spectral features from 
the Fourier domain [41] and 7 moment invariant features 
(invariant to translation, scaling, rotation and mirroring) [42].

A Support Vector Machine (SVM) supervised 
learning method was constructed and trained to 
classify tumor and non-tumor tiles using the feature set 
(Patent application numbers: PCT/GB2014/051426, 
PCT/GB2014/051427, 9th May 2014). For a 2-class 
classification, this approach separates feature vectors from 
2 categories by obtaining the optimal boundary hyper-
plane in a high dimensional space. The popular Gaussian 
radial basis function was used to fit the maximum margin 
hyper-plane in a transformed Hilbert space of infinite 
dimensions [43, 44]. This is illustrated in Figure 10.

After the calculation of features for both tumor and 
non-tumor tiles, and a grid search 5-fold cross validation, 
we achieved a strong training accuracy of 89.02%. Similar 
studies in the literature have reported 87.8% in colon 
tissue [32], 89.2% in cervical tissue [24] and 96.7% in 
prostate tissue [45]. The training accuracy is dependent 
on the selection of multiple factors including image tile 
dimensions, feature sets and supervised learning methods. 
The trained support vector model was obtained which 
could optimally detect tumor from other digital slides.

Automated analysis of tumor nuclei counts and tumor 
percentage

Using image analytics and tissue recognition, 
a number of methods were devised to calculate the 
percentage of tumor nuclei within the tissue sample. 
These ranged from calculating the percentage of image 
tiles that were classed as tumour through to the estimation 
of actual tumor cell number within those tissue tiles. Since 
image tiles can contain different densities of tumor, it was 
considered that tissue area estimation would not offer 
the precision necessary for assessing molecular nucleic 
acid quality. Whole slide scans on the Aperio platform 
provided resolutions up to 0.24 um per pixel allowing 

high resolution imaging and analysis of nuclear content. 
Following adaptive thresholding of the image, nuclear 
segmentation allowed an evaluation of global nuclear 
content followed by estimation of nuclei numbers based 
on nuclear size modelling (Patent application numbers: 
WO2014/184522 and WO2014/181123). This provided a 
rapid and efficient method of estimating nuclear numbers 
in both the tumor and non-tumor regions without the need 
for detailed individual nuclei segmentation. Cell counts 
and percentage tumor estimations were subsequently 
compared with manual hand-counted benchmark data to 
determine accuracy.
Testing

The tumour identification and analysis algorithm 
developed above was subsequently applied to whole slide 
digital images in the series. For a new whole slide H&E 
lung cancer scan, the background was firstly recognised and 
removed using a simple Otsu’s thresholding method [41], 
The remaining tissue components were then partitioned 
into 31 × 31 pixel tiles at a range of resolutions. As with 
the training process, a set of 135 image features were then 
calculated for each tile. Using the trained support vector 
model, each tile was classified as tumor or non-tumor. The 
tile label was then used to construct a spatial map of the 
image, in which the background in the original tissue slide 
(Figure 11A) is marked in black, tumor regions are marked 
in gray and non-tumor regions are marked in white in the 
image map (Figure 11B). The image is further processed to 
remove isolated regions using image processing techniques 
including image opening and closing, and hole filling. The 
irregular boundaries were then smoothed using a pair of 
forward and inverse Fourier descriptors. Smoothing was 
important to ensure that the resulting image could be 
used as a practical mask for macrodissection. Finally the 
refined tumor boundary annotation was produced, as in the 
example shown in Figure 11C & 11D.

A posterior probability in the range of [0–1] was 
also computed for each tile to indicate the likelihood for 
tumor or non-tumor class membership. This could be 
presented as a TumorMap, allowing the visualisation of 
tumor regions color coded as the probability of tumor.

Statistical evaluation of algorithm performance

It was important to compare manually drawn tumor 
boundaries with boundaries generated using automated 
image analysis. Visual assessment by an experienced 
pathologist allowed us to determine the quality and 
accuracy of automated tumor annotation as well as 
a visual comparison between manual and automated 
annotation and an evaluation on whether deviations 
would have impact on molecular testing. These were 
largely subjective evaluations. In addition, however, we 
devised four methods to measure boundary differences: 
(i) inclusion rate vs. exclusion rate, (ii) receiver operating 
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characteristic (ROC) curve, (iii) concordance index and 
(iv) false discovery rate (FDR). These are fully described 
in Appendix 1. In addition, tumor nuclear count data and 
percentage tumor cells derives using the algorithm was 
compared against the gold standard benchmnark of hand 
counts on a series of high resolution images.

Molecular evaluation

In order to evaluate the consistency of molecular 
test results from manually and automatically annotated 
tissues samples, a series of 6 lung cancer clinical cases 
were randomly selected from our molecular diagnostic 
service (Northern Ireland Molecular Pathology 
Laboratory, holding CPA accreditation), previously 
genotyped for EGFR mutation status. These had been 
previously macrodissected using a manual boundary to 
enrich the sample, followed by DNA extraction using 
the Roche COBAS DNA Preparation Kit and EGFR 
mutation status determined by Roche COBAS EGFR 
IVD kit using COBAS 4800 LightCycler software. New 
sequential sections were taken from the tissue block. 
Following H&E staining of one section, the slide was 
digitally scanned as previously described and subjected 
to the tumor identification algorithm. The digitally 
annotated images were used as the guide for subsequent 
macrodissection and the enriched sample subjected to 
DNA extraction and EGFR mutation evaluation.

APPENDIX 1

Firstly, computer generated tumor boundaries 
were overlaid with hand drawn annotations, and level 
of overlap was measured using a vraiety of approaches. 
True positive (TP) areas were pixels where the manual 
and automated methods agreed on identification of 
tumor. True negative (TN) regions were pixels where the 
manual and automated methods agreed on identification 
of non-tumor. False positive (FP) was defined as 
the number of pixels annotated as non-tumor by the 
pathologist but identified as tumor by the automated 
method. False negative (FN) was defined as the number 
of pixels annotated as tumor by the pathologist but 
identified as non-tumor by the automated method. White 
background (void) is excluded from all calculations. To 
further validate tumor boundary concurrence, we defined 
inclusion rate to be the sensitivity (SEN) of overlapping 
tissue area, and exclusion rate to be the specificity (SPE) 
of overlapping tissue area. These two values are in the 
numerical range of [0–100%]. The higher these two 
values are, the more similar the automated annotation 
is to a pathologist’s manual annotation. Finally, we also 
generated a ROC curve and its area under the curve 
(AUC) value as a measure of accuracy, demonstrating 
the discriminating power.

The above two measurements, inclusion rate 
vs. exclusion rate and ROC curve have similar 
weightings when assessing boundary concordance. In 
macrodissection however, the impact of false positive 
is greater as it is more important to exclude non-tumour 
material from the boundary. Therefore, we introduced 
a new numerical measurement namely concordance 
index (CI). CI is in fact the Fβ score with β < 1 to 
highlight false positives embedded in the precision 
measurement (48).

In this study, we use CI = F0.5 to measure the 
effectiveness of the proposed automatic tumor identi-
fication therefore placing half as much importance on 
sensitivity as precision (positive predictive value).

To further explore false positive cases, we also used 
false discovery rate (FRD) to highlight the worst false 
positive cases:

FDR= N FP
N TP +N FP

( )
( ) ( )  

(1)

where N(▪) is the number of pixels inside a region. FDR 
is in the range of [0–1] and clearly the smaller the FDR 
value, the better the performance.

CONFLICTS OF INTEREST

Professor Peter Hamilton is the founder of and non-
executive director with PathXL Ltd. Jonathon Tunstall is 
the Director of Product Strategy with PathXL Ltd. David 
McCleary is Head of Development and Research at PathXL. 
Jim Diamond is Research Lead at PathXL Ltd. Professor 
Manuel Salto-Tellez is a Senior Advisor to PathXL.

FUNDING

The research leading to these results has received 
funding from the People Programme (Marie Curie 
Actions) of the European Union’s Seventh Framework 
Programme FP7/2007–2013/ under REA grant agreement 
no [285910].

This research has also been supported by an Invest 
Northern Ireland R&D grant.

The samples used in this research were received 
from the Northern Ireland Biobank which is funded by 
HSC Research and Development Division of the Public 
Health Agency in Northern Ireland and Cancer Research 
UK through the Belfast CRUK Centre and the Northern 
Ireland Experimental Cancer Medicine Centre; additional 
support was received from the Friends of the Cancer 
Centre.

The Northern Ireland Molecular Pathology Labora-
tory, which is responsible for creating resources for the 
NIB, has received funding from Cancer Research UK, the 
Friends of the Cancer Centre, the Tom Simms Memorial 
Fund and the Sean Crummey Foundation.



Oncotarget27951www.impactjournals.com/oncotarget

REFERENCES

1. Amir-Aslani A, Mangematin V. The future of drug discov-
ery and development: Shifting emphasis towards person-
alized medicine. Technol. Forecast. Soc. Change. 2010; 
77:203–17.

2. Kasaian K, Jones SJ. A new frontier in personalized cancer 
therapy: mapping molecular changes. Future Oncol. 2011; 
7:873–94.

3. Mirnezami R, Nicholson J, Darzi A. Preparing for Precision 
Medicine. N. Engl. J. Med. 2012; :489–91.

4. Angulo B, Conde E, Suárez-Gauthier A, Plaza C, Martínez R, 
Redondo P, et al. A comparison of EGFR mutation testing 
methods in lung carcinoma: Direct sequencing, real-time 
PCR and immunohistochemistry. PLoS One. 2012; 7.

5. Smits AJJ, Kummer JA, de Bruin PC, Bol M, van den 
Tweel JG, Seldenrijk K a, et al. The estimation of tumor cell 
percentage for molecular testing by pathologists is not accu-
rate. Mod. Pathol. [Internet]. 2014; 27:168–74. Available 
from: http://www.ncbi.nlm.nih.gov/pubmed/23887293.

6. Viray H Dr, Li K, Long TA, Vasalos P, Bridge JA Dr, 
Jennings LJ Dr, et al. A prospective, multi-Institutional 
diagnostic trial to determine pathologist accuracy in esti-
mation of percentage of malignant cells. Arch. Pathol. Lab. 
Med. 2013; 137:1545–9.

7. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, 
Parkin DM. Estimates of worldwide burden of can-
cer in 2008: GLOBOCAN 2008. Int. J. Cancer. 2010; 
127:2893–917.

8. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, 
Hyland C, Park JO, et al. MET amplification leads to gefi-
tinib resistance in lung cancer by activating ERBB3 signal-
ing. Science. 2007; 316:1039–43.

9. Reade CA, Ganti AK. EGFR targeted therapy in non-small 
cell lung cancer: potential role of cetuximab. Biologics. 
2009; 3:215–24.

10. Pao W, Chmielecki J. Rational, biologically based treatment 
of EGFR-mutant non-small-cell lung cancer. Nat. Rev. 
Cancer. 2010; 10:760–74.

11. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, 
et al. EGFR mutations in lung cancer: correlation with clinical 
response to gefitinib therapy. Science. 2004; 304:1497–500.

12. Cappuzzo F, Gregorc V, Rossi E, Cancellieri A, Magrini E, 
Paties CT, et al. Gefitinib in pretreated non-small-cell lung 
cancer (NSCLC): analysis of efficacy and correlation with 
HER2 and epidermal growth factor receptor expression in 
locally advanced or metastatic NSCLC. J. Clin. Oncol. 2003; 
21:2658–63.

13. Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki 
M, Lee H, et al. Somatic mutations of the HER2 kinase domain 
in lung adenocarcinomas. Cancer Res. 2005; 65:1642–6.

14. Zhou BBS, Peyton M, He B, Liu C, Girard L, Caudler E, 
et al. Targeting ADAM-mediated ligand cleavage to inhibit 

HER3 and EGFR pathways in non-small cell lung cancer. 
Cancer Cell. 2006; 10:39–50.

15. Hsieh AC, Moasser MM. Targeting HER proteins in cancer 
therapy and the role of the non-target HER3. Br. J. Cancer. 
2007; 97:453–7.

16. Eberhard DA, Johnson BE, Amler LC, Goddard AD, 
Heldens SL, Herbst RS, et al. Mutations in the Epidermal 
Growth Factor Receptor and in KRAS Are Predictive and 
Prognostic Indicators in Patients With Non-Small-Cell 
Lung Cancer Treated With Chemotherapy Alone and in 
Combination With Erlotinib. J. Clin. Oncol. [Internet]. 
2005; 23:5900–9. Available from: http://jco.ascopubs.org/
content/23/25/5900.abstract

17. Massarelli E, Varella-Garcia M, Tang X, Xavier AC, 
Ozburn NC, Liu DD, et al. KRAS mutation is an important 
predictor of resistance to therapy with epidermal growth 
factor receptor tyrosine kinase inhibitors in non-small-cell 
lung cancer. Clin. Cancer Res. 2007; 13:2890–6.

18. Decaussin M, Sartelet H, Robert C, Moro D, Claraz C, 
Brambilla C, et al. Expression of vascular endothelial 
growth factor (VEGF) and its two receptors (VEGF-R1-Flt1 
and VEGF-R2-Flk1/KDR) in non-small cell lung carcino-
mas (NSCLCs): correlation with angiogenesis and survival. 
J. Pathol. 1999; 188:369–77.

19. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, 
Ishikawa S, et al. Identification of the transforming EML4-
ALK fusion gene in non-small-cell lung cancer. Nature. 
2007; 448:561–6.

20. Cappuzzo F, Tallini G, Finocchiaro G, Wilson RS, 
Ligorio C, Giordano L, et al. Insulin-like growth factor 
receptor 1 (IGF1R) expression and survival in surgically 
resected non-small-cell lung cancer (NSCLC) patients. Ann. 
Oncol. 2010; 21:562–7.

21. Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, 
Nallasura V, Fox EA, et al. Functional expression and muta-
tions of c-Met and its therapeutic inhibition with SU11274 
and small interfering RNA in non-small cell lung cancer. 
Cancer Res. 2005; 65:1479–88.

22. Larsen JE, Cascone T, Gerber DE, Heymach J V, Minna 
JD. Targeted therapies for lung cancer: clinical experience 
and novel agents. Cancer J. [Internet]. 2012;17:512–27. 
Available from: http://www.pubmedcentral.nih.gov/arti-
clerender.fcgi?artid=3381956&tool=pmcentrez&renderty
pe=abstract

23. Mok TS, Wu Y-L, Thongprasert S, Yang C-H, Chu D-T, 
Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmo-
nary adenocarcinoma. N. Engl. J. Med. 2009; 361:947–957.

24. Wang Y, Crookes D, Eldin OS, Wang S, Hamilton P, 
Diamond J. Assisted Diagnosis of Cervical Intraepithelial 
Neoplasia (CIN). IEEE, J. Sel. Top. Signal Process. 2009; 
112–21.

25. Wilbur DC, Madi K, Colvin RB, Duncan LM, Faquin WC, 
Ferry JA, et al. Whole-slide imaging digital pathology as 
a platform for teleconsultation: A pilot study using paired 



Oncotarget27952www.impactjournals.com/oncotarget

subspecialist correlations. Arch. Pathol. Lab. Med. 2009; 
133:1949–53.

26. Hamilton PW, Wang Y, McCullough SJ. Virtual micros-
copy and digital pathology in training and education. 
APMIS. 2012. p. 305–15.

27. Hamilton PW, Bankhead P, Wang Y, Hutchinson R, 
Kieran D, McArt D, et al. Digital pathology and image anal-
ysis in tissue biomarker research. Methods. 2014; 1:59–73.

28. Dudley JC, Gurda GT, Tseng LH, Anderson DA, Chen G, 
Taube JM, et al. Tumor cellularity as a quality assurance 
measure for accurate clinical detection of braf mutations in 
melanoma. Mol. Diagnosis Ther. 2014; 18:409–18.

29. Check W. Steep climb to suitable reference stabdards. CAP 
Today. 2013; 48.

30. Bilgin C, Demir C, Nagi C, Yener B. Cell-graph mining for 
breast tissue modeling and classification. Conf. Proc. IEEE 
Eng. Med. Biol. Soc. 2007; 2007:5311–4.

31. Doyle S, Agner S, Madabhushi A, Feldman M, 
Tomaszewski J. Automated grading of breast cancer histo-
pathology using spectral clustering with textural and archi-
tectural image features. 2008 5th IEEE Int. Symp. Biomed. 
Imaging From Nano to Macro, Proceedings, ISBI. 2008. 
p. 496–9.

32. Masood K, Rajpoot N, Rajpoot K, Qureshi H. Hyperspectral 
Colon Tissue Classification using Morphological Analysis. 
Int. Conf. Emerg. Technol. 2006. p. 735–41

33. Khurd P, Bahlmann C, Maday P, Kamen A, Gibbs-
Strauss S, Genega EM, et al. Computer-aided gleason grad-
ing of prostate cancer histopathological images using texton 
forests. 2010 7th IEEE Int. Symp. Biomed. Imaging From 
Nano to Macro, ISBI 2010 - Proc. 2010; p. 636–9.

34. McArt DG, Blayney JK, Boyle DP, Irwin GW, Moran M, 
Hutchinson R a, et al. PICan: An integromics framework 
for dynamic cancer biomarker discovery. Mol. Oncol. 2015; 
accepted for publication.

35. Ruifrok AC, Johnston DA. Quantification of histochemical 
staining by color deconvolution. Anal. Quant. Cytol. Histol. 
2001; 23:291–9.

36. Arivazhagan S, Ganesan L. Texture segmentation 
using wavelet transform. Pattern Recognit. Lett. 2003; 
24:3197–203.

37. Kamalov R, Guillaud M, Haskins D, Harrison A, Kemp R, 
Chiu D, et al. A Java application for tissue section image anal-
ysis. Comput. Methods Programs Biomed. 2005; 77:99–113.

38. Chang KI, Bowyer KW, Sivagurunath M. Evaluation of 
texture segmentation algorithms. Proceedings. 1999 IEEE 
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (Cat. 
No PR00149. 1999; 1.

39. Diamond J, Anderson NH, Bartels PH, Montironi R, 
Hamilton PW. The use of morphological characteris-
tics and texture analysis in the identification of tissue 
composition in prostatic neoplasia. Hum. Pathol. 2004; 
35:1121–31.

40. Hamilton PW, Bartels PH, Thompson D, Anderson NH, 
Montironi R, Sloan JM. Automated location of dysplastic 
fields in colorectal histology using image texture analysis. 
J. Pathol. 1997; 182:68–75.

41. Otsu N. No Title. IEE Trans. Syst. Man Cybern. 1979; 
9:62.

42. Gonzales R, Woods R. Digital Image Processing. Prentice 
Hall(2nd ed)2002.

43. C. Cortes, C. Cortes, V. Vapnik, V. Vapnik. Support Vector 
Networks. Mach. Learn. 1995; 20:273–297.

44. Cristianini N, Shawe-Taylor J. An introduction to Support 
Vector Machines [Internet]. History. 2000. Available from: 
http://eprints.ecs.soton.ac.uk/9578/.

45. Tabesh A, Teverovskiy M, Pang HY, Kumar VP, Verbel D, 
Kotsianti A, et al. Multifeature prostate cancer diagnosis 
and gleason grading of histological images. IEEE Trans. 
Med. Imaging. 2007; 26:1366–78.


