
www.impactjournals.com/oncotarget/ Oncotarget, December, Vol.2, No 12

Oncotarget 2011; 2:   1352 - 13671352www.impactjournals.com/oncotarget

NCI’s provocative questions on cancer: some answers to ignite 
discussion

Mikhail V. Blagosklonny1

1 Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, L3-312, Elm and Carlton Streets, Buffalo, NY, 
14263, USA

Correspondence to: Mikhail V. Blagosklonny, email: blagosklonny@oncotarget.com

Keywords: NCI, cancer, therapy, prevention, aging, rapamycin, mTOR

Received:  December 8, 2011, Accepted: December 31, 2011, Published: December 31, 2011

Copyright: © Blagosklonny. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 

ABSTRACT:
National Cancer Institute has announced 24 provocative questions on cancer. 
Here I try to answer some of them by linking the dots of existing knowledge.

INTRODUCTION

As announced by the NCI director Harold E. Varmus, 
answers to these perplexing questions will revolutionize 
prevention and treatment of cancer. How does obesity 
contribute to cancer risk? What is the mechanism by 
which some drugs commonly and chronically used for 
other indications protect against cancer? Can we use our 
knowledge of aging to enhance prevention or treatment 
of cancer? Can we develop methods to rapidly test 
interventions for cancer treatment or prevention? Why are 
some disseminated cancers cured by chemotherapy alone? 
Can we extend patient survival by using approaches that 
keep tumors static? Why do many cancer cells die when 
suddenly deprived of a protein encoded by an oncogene? 
http://provocativequestions.nci.nih.gov/?cid=WTq_cgov

What these questions have in common is that they 
cannot be answered by a single experiment. Knowledge 
from different fields needs to be brought together and 
seemingly unrelated facts to be linked. Then predictions 
can be tested by retrieving published data (virtual 
experiments) [1, 2]. Here are answers to some questions. 
Since the order of questions was arbitrary, I have re- 
arranged questions, keeping the original numbers. 

PQ-22: Why do many cancer cells die when 
suddenly deprived of a protein encoded by an 
oncogene?

Oncogene addiction is dependence on oncogene, 
even though this oncogene was not needed before its 
activation [3-31]. For example, transfection of Bcr-Abl 
renders HL-60 cells apoptosis-reluctant, resistant to 
killing by most anti-cancer drugs [28, 32, 33]. In contrast, 

the Bcr-Abl inhibitor imatinib kills Bcr-Abl-transfected 
cells without affecting parental cells. Parental cells neither 
have Bcr-Abl nor need Bcr-Abl to start with. So why 
losing Bcr-Abl is detrimental but not having Bcr-Abl at all 
is not. Bcr-Abl inhibits apoptosis and therefore some other 
anti-apoptotic proteins become redundant. For example, 
while Bcl-2 is over expressed in HL-60 cells, it is not 
expressed in HL60/Bcr-Abl cells [34, 35]. (By the way, 
this also explains why Bcl-2 (and p53) status does not 
correlate with cell propensity to apoptosis (see [36-38]). 

The Bcr-Abl addiction can be described by the dam 
model [39]. Bcr-Abl is ‘a dam on the pro-apoptotic river’. 
Pro-apoptotic molecules accumulate upstream of the 
dam. For example, hyper-active caspase-9 was detected 
in Bcr-Abl-expressing HL-60 cells [40]. When Bcr-
Abl is suddenly removed, then apoptotic signals “flow” 
downstream, causing a flood [39, 40]. 

Figure 1: Oncogene addiction and synthetic lethality
Oncogene addiction. Activation of pro-survival pathway A 
leads to deactivation of parallel  (and redundant) pro-survival 
pathway B. Cell becomes addicted to “A”. Targeting “A” will 
kill this cell.    
Synthetic lethality. Loss of pro-survival pathway B renders 
the cell dependent on pro-survival pathway A. Targeting “A” 
will kill this cell.   
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Let us make a generalization: Activation or over-
activation of a pro-survival pathway may lead to 
deactivation of an alternative (and redundant) pro-survival 
pathway(s) because of redundancy (Figure 1, oncogene 
addiction). 

Now we can connect two dots: Oncogene addiction 
(OA) and synthetic lethality (SL). Two genes are synthetic 
lethal if mutation of either alone is compatible with 
viability but mutation of both leads to death [19, 41-44]. 
At first glance, OA and SL are different phenomena. Yet, 
the difference between OA and SL is the sequence of 
events and … our knowledge about these events. 

In synthetic lethality, gene B (or process B) is 
inactivated first (Figure 1). This renders cell dependent 
on gene A (or process A). In oncogene addiction, gene 
A is overactivated first and gene B is inactivated later. 
Oncogene addiction (OA) is a mirror image of synthetic 
lethality (SL). The distinction between SL and OA depends 
on our knowledge of the sequence of events. When we 
introduce an oncogene, this is oncogene addiction. But 
what about natural oncogene-dependent tumors. Is that 
OA or SL? We cannot distinguish them. In other words, 
OA is SL and vice versa, depending on our point of view. 
For example, in OA gene A is known. In SL, we screen for 
gene A using agents that toxic to such cells. (Note: instead 
of gene, there might be a pathway or a process such as 
glycolysis, oxidative or protetoxic stress [45-47]. We use 
the word gene for brevity. )

In natural tumors, oncogene addiction is a 
consequence of selection for resistance to restrictive, 
growth-limiting conditions, when resistance is conferred 
by oncogene A. Definition: oncogenic resistance is 
resistance to cytostatic/cytotoxic agents based on 
oncogenic alterations such as loss of p53 or expression of 
Bcr-Abl, which renders cells both resistant and malignant 
[48]). But then the oncogenic cell may lose redundant 
pathway/gene B, therefore becoming addicted to oncogene 
A. Thus, oncogene addiction (or synthetic lethality) and 
oncogenic resistance are two sides of the same coin. 

PQ-21: Given the appearance of resistance in 
response to cell killing therapies, can we extend 
survival by using approaches that keep tumors 
static?

Will static drugs cause resistance? The answer is 
yes. Anything that is cytostatic must select for resistance. 
Sensitive cells get arrested, whereas rare resistant 
cells selectively proliferate. But this does not preclude 
successful therapy. Furthermore, selection for resistance 
is a consequence of successful treatment that keeps 
most cells static. In comparison, antibiotics (especially 
cytostatic agents) effectively select for resistance in 
bacteria. But still antibiotics are very useful. Compared 

with bacteria, mutation rates and cell numbers and 
mutation rate are relatively lower in cancer and resistant 
cancer cells do not spread to new patients (so acquired 
resistance always is acquired de novo). 

While arresting sensitive cancer cells, static drugs 
select for resistant cancer cells. So therapy that effectively 
arrest tumor growth must select for resistance. Fortunately, 
any anticancer drugs including static drugs can select 
for resistance, only by causing therapeutic response due 
to arresting or killing non-resistant cells. Unfortunately, 
when resistance arises, resistant cancer cells tend to be 
more malignant and aggressive. This is because resistance 
can be oncogenic [48]. Therefore, therapeutic response 
often does not prolong life of cancer patient [49]. 

 But here is a solution. In resistant tumors, we 
can select for drug sensitivity using antagonistic drug 
combinations [50]. Antagonistic combinations may be 
comprised of a toxic drug and a static drug that antagonizes 
(blocks) the toxic drug. If cells are (or become) resistant 
to the static drug, the toxic drug will kill them. Of course, 
the entire combination selects for resistance but this is 
resistance to the entire combination [50]. Yet resistance 
to the entire combination can be achieved by selection 
for sensitivity to the static drug. Such antagonistic 
combinations selectively eliminate resistant cancer cells 
in cell culture [51-56]. 

Furthermore, if normal cells are sensitive to a static 
drug but resistant cancer cells are not, then resistant cancer 
cells could be eliminated without toxic side effects. This 
links two dots: (a) prevention of resistance by antagonistic 
combinations and (b) protection of normal cells from 
chemotherapy. Normal cells can be protected from cell 
cycle-dependent chemotherapy by pre-treatment with 
cytostatic agents [56-62] and also by agents that block 
cell death selectively in normal cells [54, 63-68]. This 
strategy was discussed in detail [69-72]. Most importantly, 
drug combinations that selectively kill resistant cancer 
cells, while sparing normal cells, can be designed using 
currently available drugs [62, 71, 73]. 

So will static drugs cause resistance? The answer 
is yes. But can they extend patient survival (despite 
appearance of resistance). The answer is also yes. Yes, 
if additional therapeutic modalities (such as antagonistic 
combinations and protection of normal cells) will be used 
in sequence [74]. 

PQ-19: Why are some disseminated cancers cured 
by chemotherapy alone?

Let us first discuss why most disseminated cancers 
are NOT cured by chemotherapy alone? First, common 
cancers such as lung, colorectal, breast, prostate, 
pancreatic, renal, thyroid cancers are age-related diseases, 
which occur late in life. During lifespan pre-malignant 



Oncotarget 2011; 2:   1352 - 13671354www.impactjournals.com/oncotarget

and malignant cells acquire mutations, undergo multiple 
rounds of selection and replication [75-80]. Cancer cells 
accumulate hundreds of mutations that render them 
oncogenic, abolishing cell death and cycle arrest [78, 81-
92]. Not surprisingly, they are also intrinsically resistant 
to chemotherapy. Furthermore, chemotherapy itself causes 
selection for resistance, which is associated with more 
malignant and aggressive phenotype and acceleration of 
tumor growth [49, 93, 94]. 

Second, these cancers arise from normal tissues 
resistant to therapy to start with. For example, side effects 
of chemotherapy are not prominent in breast and lung 
tissues compared with bone marrow. Why would breast 
and lung cancer be more sensitive to chemotherapy 
than bone marrow? Even further, apoptosis-avoidance 
is a hallmark of cancer, so these cancer cells must be 
even more resistant than their normal counterparts. 
Not surprisingly, therapeutic window is low. (Note: 
as we discussed, oncogenes confer resistance to some 
chemotherapy on the cost of oncogene addiction, which 
could be exploited for therapy). 

Third, metastasis may require mutations beyond 
those required for primary tumors [82]. These additional 
oncogenic changes may contribute to resistance of 
disseminated cancers. For example, in pancreatic cancer, 
at least a decade separates the occurrence of the initiating 
mutation and the birth of the parental, non-metastatic 
founder cell. And at least five more years are required 
for the acquisition of metastatic ability and patients die 
an average of two years thereafter [95]. So cancer cells 
undergo long selection for fitness and oncogenic resistance 
[80, 96]. 

However, some cancers are highly sensitive to 
chemotherapy. Examples include testicular cancer, 
gestational choriocarcinoma, some lymphomas, childhood 
malignancies such as Wilms tumors. These cancers share 
three features. 

1. Curable cancers arise from apoptosis-prone tissues 
such as lymphoid, testicular, embryonic and placental/
endometrial. 

Apoptosis is a marker of therapeutic response and 
curable malignancies are prone to undergo apoptosis 
in response to therapy [97-105]. (Note: it has been 
emphasized that in most cancers apoptosis is not a 
predictive marker of therapeutic response [106-109]. 
Apoptosis is not important for therapy of such cancers, 
simply because these cancers are apoptosis-reluctant 
[110, 111]. These are the same common cancers that are 
not curable by chemotherapy alone. One may suggest that 
these cancers are not curable exactly because apoptosis is 
not a primary response to chemotherapy or in other words 
because they are apoptosis-reluctant. 

In contrast, curable disseminated cancers are 
apoptosis-prone. Testicular germ cell tumors are unique in 
their excellent response to DNA-damaging chemotherapy. 
Hypersensitivity of testicular tumors to etoposide-induced 

apoptosis is associated with functional p53 [112]. In 
cancer with overexpressed Mdm2, nutlin-3a induces p53 
and apoptosis [113]. Similarly, testicular cancer easily 
undergo apoptosis in response to p53 induced by cisplatin. 
Resistance to cisplatin is linked to p53 mutation [114, 
115]. Relapsed tumors are resistant to therapy [116]. 

2. Curable cancers arise without lengthy selection 
and progression. A few mutations may be sufficient for 
dissemination of these particular cancers (see feature 3) 
but they did not acquire resistance associated with tumor 
progression. 

A peculiar example of cancer-like condition 
represents endometriosis, growth of normal endometrial 
cells, resembling malignant processes, including invasive 
growth and distant implantation. Oncogenic mutations 
are absent or very rare [117]. Medulloblastoma, the most 
common malignant brain tumor of children [118] has 
lower genetic alterations compared to adult solid tumors. 

3. Curable disseminated cancers arise from tissues 
that “normally metastasize” (hematopoietic/lymphoid) 
and invasive (the placenta) and highly proliferative. So 
they can become disseminated with minimal number of 
mutations and without tumor-progression. 

PQ-17: Since current methods to assess potential 
cancer treatments are cumbersome, expensive, 
and often inaccurate, can we develop other 
methods to rapidly test interventions for cancer 
treatment or prevention?

Although different cell culture methods can be 
suggested, they probably would share something in 
common: these rapid methods will be unaesthetic. 

Currently, many methods are based on evenly plated 
cells in relatively low cell densities. In control, cells are 
beautifully healthy. It is easy to observe spectacular effects 
of drugs that induce apoptosis and senescence. However, 
almost everything in these methods is artificial. (the only 
correct parameters are temperature and CO2 levels. )

a. In the organism, cells exist in very high densities. 
b. 21% oxygen used in cell culture does not exist in 

the body, only in the air. In tumors oxygen levels are 0. 
1-3%. 

c. Cancer cells are usually cultured in high-glucose 
DME, with levels of glucose 5 fold higher than blood 
glucose levels. 

d. In real tumors, levels of lactate are very high and 
pH is low. 

Yet, hypoglycemic/hypoxic condition in vitro 
mimicking the tumor microenvironment markedly reduced 
the efficacy of anticancer drugs [119]. In the high cell 
density in hypoxia model, cancer cells lose viability due 
to self-poisoning with lactic acid. Some anti-cancer agents 
actually increase cell viability [120]. Overgrown, “yellow” 
cell cultures in hypoxic conditions may mimic in vivo 
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environment. 

PQ-7: How does the lifespan of an organism affect 
the molecular mechanisms of cancer development, 
and can we use our deepening knowledge of aging 
to enhance prevention or treatment of cancer? 

What are cellular and molecular mechanisms linking 
aging and cancer? And what is cellular aging? 

In proliferating normal cells, growth factors (GF) 
stimulate (a) cellular mass growth and metabolism and (b) 
cell cycle progression. Cellular mass growth is balanced 
by cell division. (Many signaling pathways that promote 
mass growth and metabolism converge on mTOR, so 
I will refer to them as the mTOR network or pathway). 
In the absence of growth signals, the cell neither grows 
nor cycles. This is quiescence [121, 122]. When the cell 
cycle is blocked but mTOR is still active, then the arrested 
cell becomes senescent [122-134]. mTOR renders cells 
resistant to insulin and growth factors. As discussed in 
detail, senescent cells are hypertrophic, hyperfunctional, 
overactivated, pro-inflammatory and hypersecretory, 
signal-resistant and lack the regenerative potential (the 
inability to restart proliferation). Thus, mTOR converts 
quiescence into senescence. This process could be 
called gerogenic conversion or geroconversion [122]. 
Rapamycin slows down geroconversion. Rapamycin is a 
gerosuppressant. 

Furthermore, mTOR is involved in cell senescence 
and stem cell exhaustion in the organism [135-140]. Also, 
rapamycin reverses cellular phenotypes in Hutchinson-
Gilford progeria syndrome cells [141]. Whereas calorie 
restriction (CR) deactivates the nutrient-sensing mTOR 
pathway [142], short-term CR suppresses cellular 
senescence in the organism [143, 144]. 

There are 3 links between aging and cancer that are 
in part mTOR-dependent. 

First, senescent cells secrete pro-inflammatory 
factors [145-154]. Second, mTOR overactivation can 
cause insulin resistance [155-159], which in turn leads 
to a compensatory increase in insulin levels, which can 
promote cancer. Third, signal-resistance, irresponsiveness 
and loss of regenerative potential of the aging normal 
cells create a selective pressure to bypass the need for 
growth-signals and bypass cell cycle block. Unable to 
respond to physiological stimuli, normal cells are in 
disadvantage, unable to compete with premalignant cells. 
Cells with oncogenic mutations and loss of cell cycle 
control (due to mutations in p53, p16 and Rb) selectively 
proliferate. In other words, due to irresponsiveness of 
aging normal cells to mitogenic signals and decreased 
regenerative potential of aging cells, there is a selective 
advantage for transformed cells, which are autonomous 
and lack cell cycle checkpoints. For example, declining 
lymphoid progenitor fitness promotes aging-associated 

leukemogenesis [160, 161]. I suggest that restoration of 
signal-sensitivity and responsiveness of normal cells by 
pulse (intermittent) treatment with rapamycin can abolish 
selective advantage for cancer cells. 

Thus, at least 3 mechanisms of how mTOR-
driven aging can contribute to cancer. This predicts that 
suppression of aging of normal cells by rapamycin will 
extend lifespan and delay cancer. In fact, numerous data 
support this prediction (see PQ-5). Noteworthy, rapamycin 
is not intended to directly affect cancer cells. It is intended 
to suppress geroconversion (suppress aging of normal 
cells). As a gerosuppressant, rapamycin will be used in 
low doses and in pulses, thus precluding side effects [162, 
163]. 

In summary, the incidence of common cancers 
such as breast, prostate, colon, lung, pancreatic, gastric, 
bladder and certain leukemias is increased with age. 
Conditions that accelerate aging such as obesity also 
accelerate cancer, whereas slow aging is associated with 
delayed cancer. One can suggest that pharmacological 
interventions that slow down organismal aging will delay 
or prevent cancer. It was demonstrated that mTOR is 
involved in cellular senescence, converting quiescence 
into senescence (geroconversion). Importantly, mTOR is 
involved in organismal aging and its inhibition extends 
lifespan. Aging can be decelerated by rapamycin. 

PQ-5: Given the evidence that some drugs 
commonly and chronically used for other 
indications, such as an anti-inflammatory 
drug, can protect against cancer incidence and 
mortality, can we determine the mechanism by 
which any of these drugs work? 

Some drugs commonly and chronically used for other 
indications can protect against cancer. As announced by 
NCI, elucidating the mechanisms by which these agents 
work would be a major breakthrough in cancer prevention. 

Preclinical and clinical data suggest that certain 
drugs used for diabetes, hypertension, atherosclerosis, 
inflammation and immunossupression can protect against 
cancer. These drugs include metformin, beta-blockers, 
angiotensin-blockers, aspirin and rapamycin. Since 
type II diabetes, hypertension, pro-inflammation and 
atherosclerosis are all age-related diseases and conditions, 
we can expect that these drugs may affect the aging 
process. And since cancer is also an age-related disease, 
conditions that slow down aging in turn delay or prevent 
cancer. At doses used in the clinic for treatment of age-
related diseases, these accidental cancer-preventive agents 
are relatively ineffective to treat cancer, implying that their 
cancer-preventive effects are not due to targeting cancer 
cells directly. Since the mTOR pathway is involved in 
cellular and organismal aging and age-related diseases, 
one can suggest that cancer preventive activities of 
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“accidental” drugs are in part due to suppression of aging. 
Rapamycin decelerates geroconversion (conversion 

of quiescence into senescence) in arrested cells [122-132]. 
Also rapamycin suppresses yeast aging and prolongs life 
span in Drosophila and mice [164-183]. 

Finally, rapamycin prevents cancer in mice [178, 
179, 184-192] and humans [193-196]. Given that mTOR 
is the only one target of rapamycin, one can conclude that 
inhibition of mTOR is sufficient to suppress aging and 
delay cancer. 

 Metformin, an anti-diabetic drug, inhibits the 
mTOR pathway [197-200]. Metformin and its analog 
phenformin slow down aging, delay cancer and extend life 
span in rodents [201-210]. Also metformin decreases the 
risk of cancer in humans [206, 211-220]. 

Angiotensin-II-blockers. Inhibitors of angiotensin 
II activity include ACE inhibitors (such as captopril and 
lisinopril), which decrease angiotensin II production, 
and angiotensin receptor blockers such as losratan. 
Angiotensin-II-blockers suppress chemically-
induced colon carcinogenesis in obese mice [221], 
hepatocarcinogenesis in rats [222] and metastasis in mice 
[222-224]. In humans, use of these drugs is associated 
with a lower incidence of cancer occurrence [225, 226]. In 
patients with renal transplantation, the use of angiotensin-
II-blockers is associated with a two-fold reduced risk of 
skin cancers [227]. 

Angiotensin-II activates mTOR pathway and causes 

cellular hypertrophy [228-236]. Therefore, angiotensin-
II-blockers, which prevent these effects, are indirect 
inhibitors of mTOR. 

Beta-blockers, which are used for therapy of 
hypertension, prevent breast cancer [237-242]. There are 
several publications that activators of beta-androgenic 
receptors can activate the mTOR pathway [243-245]. 
Therefore, beta-blockers are expected too block mTOR 
activation. This requires further investigations. 

Aspirin decreases cancer incidence in humans 
[246-252]. As an anti-inflammatory agent, it decreases 
an important hallmark of aging. The effect of aspirin on 
gerogenic-signaling pathways such as mTOR needs to be 
studied in the organism. In some cell models, salicylate 
inhibits phosphorylation of S6, a downstream target of 
mTOR/S6K [253]. 

PQ-1: How does obesity contribute to cancer risk? 

Summary: The simplest answer is that obesity 
promotes cancer by over-activating the nutrient-sensing 
mTOR pathway, which is involved in obesity, aging and 
cancer. Cancer is an age-related disease and accelerated 
aging promotes cancer. High-calorie diet and obesity 
activate mTOR, thus promoting aging and cancer. 
Rapamycin increases lifespan in mice including cancer-
prone mice and prevents cancer in part by slowing down 
aging. Given that rapamycin is a clinically approved drug, 
it can be used in low doses to prevent cancer in obese 
patients. Thus, one can suggest not only how obesity 
contributes to cancer risk but also a therapeutic strategy 
for cancer prevention. 

How obesity and cancer might be linked 
Many studies have documented an increased risk 

of cancer incidence and mortality in individuals who are 
obese [254-260]. What are mechanisms that underlie this 
risk? There are causative and correlative links between 
obesity and cancer. 

Causative links: obesity promotes cancer
First, several factors secreted by the adipose tissue 

can directly stimulate tumor growth. Second, obesity 
causes hormonal changes such as insulinemia and insulin 
promotes cancer. Third, as we will discuss, obesity can 
accelerate aging and aging promotes cancer. 

Correlative links: both obesity and cancer are 
promoted by a common cause

First, aging is a major risk factor for cancer and is 
associated with visceral obesity. Second, high-calorie 
diet can promote both obesity and cancer. Yet, even these 
correlative relationships are causative on a deeper level, 
sharing a common molecular mechanism that links aging, 
cancer and obesity. Thus, the same pathway (such as 
mTOR) may be involved in aging, obesity and cancer per 
se, as well as aging and obesity can mutually stimulate 
each other (via the mTOR pathway) and both of them 

Figure 2: Several mTOR-dependent processes acting 
in concert can promote cancer. The mTOR pathway is 
involved in cellular and organismal aging, thus connecting 
aging to age-related diseases such as cancer. Pro-aging, growth-
promoting and inflammatory pathways such as mTOR drive 
aging and cancer. Rapamycin may decrease cancer by (a) 
slowing aging, (b) preventing obesity and (c) directly affecting 
cancer cells. 
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play causative role in cancer (Figure 2). Pharmacological 
inhibition of such a common pathway will prevent or 
delay cancer. What are molecular changes induced by 
obesity that actually promote cancer development? 

Dot 1. Nutrients and insulin activate mTOR, whereas 
calorie restriction (fasting) deactivates mTOR [142, 156, 
261-266]. 

Dot 2. The mTOR pathway promotes obesity and is 
activated in obesity [256, 261, 265, 268-272]. 

Dot 3. mTOR is involved in cellular aging [122-
132, 136-139, 273] and organismal aging [164-183]. 
Noteworthy, basal (fasting) levels of mTOR activity is 
increased in old mice [266]. 

Taken together (dots 1-3) these data predict that 
obesity would accelerate aging and age-related diseases, 
thus shortening life span. This prediction does not need to 
be tested. It is too well known that: Obesity accelerates all 
age-related diseases. 

Dot 4. Obesity accelerates age-related diseases and 
shortens lifespan. 

Dot 5. Cancer is age-related disease and accelerated 
aging accelerates cancer. Prediction 2. Since obesity 
accelerates aging and age-related diseases, obesity must 
accelerate cancer, which is an age-related disease. This 
prediction does not need to be tested. It is too well known 
that: Obesity increases cancer risk. Furthermore, this is 
exactly the starting point (PQ-1). 

Prediction 3: Rapamycin should delay cancer by 
slowing down the aging process. In fact, rapamycin 
prevents cancer in mice [178, 184-192] and humans [193-
196]. 

Noteworthy, the activation PI3K/mTOR pathway 
by mutations (Figure 2) is one of the most universal 
alterations in cancer [87, 274-284]. 

As a gerosuppressant, rapamycin will be probably 
used in low doses and intermittent schedules to avoid side 
effects. It could be used for cancer prevention in obese 
patients with multiple age-related pathologies and could be 
combined with diet, physical exercise, aspirin, metformin, 
beta-blockers, angiotensin-blockers and lipid-lowering 
drugs. Then cancer can be delayed by staying young.
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