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ABSTRACT:
Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common 
malignant neoplasm and more than 50% of patients succumb to this disease. 
HNSCCs are characterized by therapy resistance, which relies on the overexpression 
of anti-apoptotic proteins and on the aberrant regulation of the epidermal growth 
factor receptor (EGFR). As inherent and acquired resistance to therapy counteracts 
improvement of long-term survival, novel multi-targeting strategies triggering cancer 
cell death are urgently required. We investigated how induction of replicational stress 
by the ribonucleotide reductase inhibitor hydroxyurea (HU) combined with histone 
deacetylase inhibitors (HDACi) exerts anti-tumor activity. We treated HNSCC cell 
lines and freshly isolated tumor cells with HDACi, such as the clinically approved anti-
epileptic drug valproic acid (VPA), in combination with HU. Our data demonstrate that 
at clinically achievable levels VPA/HU combinations efficiently block proliferation as 
well as clonogenic survival, and trigger apoptosis of HNSCC cells. In the presence 
of VPA/HU, such tumor cells increase expression of the pro-apoptotic BCL-2 family 
protein BIM, independent of wild-type p53 signaling and in the absence of increased 
expression of the p53 targets PUMA and BAX. The pro-apoptotic activity of BIM in 
HNSCCs was found critical for tumor cell death; ectopic overexpression of BIM induced 
HNSCC apoptosis and RNAi-mediated depletion of BIM protected HNSCC cells from 
VPA/HU. Also, significantly elevated BIM levels (p<0.01) were detectable in the 
apoptotic tumor centers versus proliferating tumor margins in HNSCC patients (n=31), 
underlining BIM’s clinical relevance. Importantly, VPA/HU treatment additionally 
reduces expression and cell surface localization of EGFR. Accordingly, in a xenograft 
mouse model, VPA/HU efficiently blocked tumor growth (P<0.001) correlating 
with BIM induction and EGFR downregulation. We provide a molecular rationale 
for the potent anti-cancer activities of this drug combination. Our data suggest its 
exploitation as a potential strategy for the treatment of HNSCC and other tumor 
entities characterized by therapy resistance linked to dysregulated EGFR activation.
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INTRODUCTION

With a worldwide annual incidence of more than 
640,000 cases, head and neck cancer is the sixth most 
common malignant neoplasm in humans [1, 2]. The 
majority of head and neck squamous cell carcinoma 
(HNSCC) is induced by chronic exposure to a surplus of 
carcinogens enclosed in all forms of tobacco, synergized 
by heavy alcohol consumptions and/or is associated with 
oncogenic human papillomaviruses [3, 4]. HNSCC is 
characterized by local tumor aggressiveness, high rate 
of early recurrences and development of second primary 
carcinomas [3]. Loco-regional relapse after therapy 
is the major cause of death despite modern disease 
management strategies [5, 6]. Hence, long-term survival 
rates, especially for advanced HNSCC (30-40%), have 
not improved significantly over the last decades [3, 6]. 
Currently, EGFR-targeting agents, such as antibodies or 
tyrosine kinase inhibitors gained major clinical attention 
[3, 7]. Despite encouraging developments, EGFR-directed 
therapies are effective only in a relatively small percentage 
of cancer patients underlining the need for additional 
combination treatment options [7-9].

Therapy resistance favoring recurring or advanced-
stage HNSCC mainly results from failure of the tumor 
cells to undergo chemoradiation-induced apoptosis [1, 
3]. Particularly, the intrinsic or mitochondrial pathway of 
programmed cell death (PCD) plays an important role for 
killing cancer cells in response to various therapies, and is 
controlled by interactions among pro- and anti-apoptotic 
BCL-2 protein family members [10, 11]. Pro-survival 
proteins like BCL-XL and BCL-2 inhibit apoptosis by 
binding and neutralizing the activities of the pro-apoptotic 
multidomain proteins BAX and BAK as well as the BH3 
domain-only proteins BIM, BIK, NOXA, and PUMA [10-
12].

Overexpression of anti-apoptotic BCL-2 proteins 
and apoptosis inhibitors like Survivin plays a critical role 
for therapy resistance and overall survival in HNSCC [10, 
11, 13]. Consequently, strategies for neutralizing these 
cytoprotective factors involve shifting the cellular balance 
of anti- versus pro-apoptotic proteins in favor of the latter 
[10, 11, 13].

In this respect, histone deacetylase inhibitors 
(HDACi), such as VPA, have emerged as promising 
chemotherapeutic agents by inducing a wide range of 
anti-tumoral activities, including induction of cell cycle 
arrest and apoptosis [14-20]. HDACi can correct aberrant 
genomic and non-genomic signaling by chromatin 
remodeling as well as histone/protein modifications 
[21]. Likewise, the ribonucleotide reductase inhibitor 
hydroxyurea (HU) sensitizes tumors to cancer therapy-
induced apoptosis and has been used to treat HNSCC, 
particularly as part of chemoradiation platforms [22, 
23]. However, it has not been investigated whether the 

combination of HDACi and HU may be applicable for 
the treatment of HNSCC nor have molecular mechanisms 
underlying its potential anti-tumoral activity been 
resolved.

Our study demonstrates for the first time that this 
drug combination efficiently eliminates HNSCC cancer 
cells by evoking expression of the pro-apoptotic protein 
BIM (B cell lymphoma 2 interacting mediator of cell 
death) and by downregulation of EGFR. This potent dual 
anti-tumoral activity suggests the clinical exploitation of 
this novel drug combination as a strategy to counteract 
therapy resistance in HNSCC.

RESULTS

Combining VPA with HU cooperate in the killing 
of HNSCC tumor cells and loss of clonogenicity

Cell lines representing HNSCC from different 
anatomical sites (Supplementary Table SI) were treated 
with VPA and HU alone and in combination. MTT 
assays revealed that although VPA and HU individually 
inhibited proliferation in a dose-dependent manner, co-
administration of VPA/HU was most effective (Figure 
1A and B; Supplementary Table SI). Similar results were 
obtained using a clonogenic cell survival assay (Figure 
1C). FACS analysis showed that the VPA/HU combination 
potently induced apoptosis and confirmed that HU 
induced S-phase arrest (Figure 2A; Supplementary Figure 
S1A). Induction of cell death was already evident using 
a single dosage of VPA/HU (0.5 mM/0.3 mM) and was 
not dependent on repetitive drug administration (Figure 
2A). VPA/HU-induced apoptosis was further confirmed 
by independent experimental approaches. Immunoblot 
analysis showed enhanced cleavage of Caspases-3, -8 
and -9 (Figure 2B; Supplementary Figure S1B). Also, 
increased Caspase-3 activity was detectable in lysates 
from treated cells, which could be counteracted by the 
pan-Caspase inhibitor Z-VAD-FMK (Figure 2B). The 
observed cleavage of Caspase-9, the loss of mitochondrial 
integrity, and DNA fragmentation upon treatment 
strongly imply that the intrinsic apoptosis pathway is 
responsible for VPA/HU induced cell death (Figure 2C; 
Supplementary Figure S1C). Similar results were obtained 
for several HNSCC cell lines tested and this effect was 
not restricted to VPA as treatment with other HU/HDACi 
combinations, such as TSA or butyrate, also resulted in 
cell death (Supplementary Table SI; Supplementary Figure 
S1D; data not shown).
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Induction of the pro-apoptotic protein BIM by 
VPA/HU treatment correlates with cell death

When analyzing the effects of VPA/HU treatment 
on the levels of pro- and anti-apoptotic BCL-2 proteins, 
we observed increased BIM levels (Figure 3A). Although 

both drugs slightly induced expression of BIM, the effect 
was most prominent using the VPA/HU combination, 
correlating with enhanced apoptosis. The doses required 
to induce appreciable Caspase-3 activation and apoptosis 
were comparable to those necessary to induce BIM 
expression (Figure 2 and 3A). Notably, this effect was 
not restricted to VPA as treatment with other HU/HDACi 
combinations, such as with TSA or butyrate, also resulted 
in BIM induction and cell death (Supplementary Figure 
S1D; data not shown). Another BH-3-only protein, p53-
upregulated modulator of apoptosis (PUMA), was recently 
reported to mediate apoptosis induced by EGFR inhibitors 
in HNSCC cells [12]. In contrast to the strong induction 
of BIM by VPA/HU, immunoblot analysis revealed no 
enhanced expression of PUMA, BAX, and BCL-2/BCL-
xL (Figure 3G and data not shown). Moreover, VPA/HU 
could induce BIM in p53-negative PC3 cells, and BIM 
induction could be verified by independent methods in 
p53-mutant FaDu cells (Supplementary Figure S1E, S2A).

BIM is critical for VPA/HU-induced tumor cell 
apoptosis

To demonstrate that enhancing BIM levels triggers 
apoptosis in HNSCC cell lines, we first performed ectopic 
overexpression studies. Transfection of plasmids encoding 
a BIMEL-GFP fusion or untagged BIMEL, the longest BIM 
isoform (196 amino acids), resulted in efficient cell death 
(Figure 3B and not shown).

In order to further confirm the direct relevance of 
BIM for HDACi/HU-induced apoptosis, we used RNAi 
to deplete endogenous BIM. HNSCC cells with RNAi-
mediated attenuated BIM expression displayed enhanced 
proliferation linked to reduced basal apoptosis rates 
(Figure 3C and data not shown). Furthermore, compared to 
the scrambled control, these cell lines showed significantly 
enhanced resistance to VPA/HU-induced cell death, as 
verified by analyzing Caspase-3 activation, TUNEL-
staining and loss of mitochondrial integrity (Figure 3D; 
Supplementary Figure S2B). Similar results were observed 
for TSA or butyrate (data not shown). Collectively, these 
results provide strong evidence that BIM is critical for the 
HDACi/HU-induced killing of cancer cells.

VPA/HU enhances BIM expression p53-
independently

Increased BIM levels (Figure 3E) could be the result 
of transcriptional activation [11, 24]. Transfection of a 
BIM promoter-containing luciferase reporter revealed 
that VPA/HU indeed stimulated BIM transcription 
(Figure 3F). Of note, this was observed in cells bearing 
inactive p53 (FaDu) as well as in p53-negative cells 
(PC3) (Supplementary Figure S1D and E). Experimental 
data collected with E2F- or c-JUN/FOS (AP1)-dependent 

Figure 1: VPA and HU cooperate in HNSCC cells 
growth inhibition and loss of clonogenicity. Columns, 
mean; bars, ±SD from three independent experiments. A) 
Indicated cell lines were treated with VPA (V), hydroxyurea 
(HU), VPA/HU (1.5 mM each) or PBS (C; set as 1) for 48 h, 
and proliferation was analyzed by the MTT assay. B) Treatment 
was performed with the indicated drug combinations or PBS (C; 
set as 1). Cell proliferation was assessed with MTT. C) VPA/
HU affects clonogenic cell survival. Cells were seeded and 24 h 
later treated with the indicated compounds or PBS. Surviving 
colonies were counted 10 days later and displayed as colony 
forming units (CFU) relative to the PBS control (C; set as 1)
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reporter constructs transfected into HNSCC cells suggest 
a role of AP1 for the VPA/HU-mediated transcriptional 
activation of BIM (Supplementary Figure S2D). A BIM 
reporter containing an inactivated MYB-binding site was 
still responsive to treatment (Supplementary Figure S2C). 
Although the pharmacological inhibition of ERK signaling 
was critical for BIM expression in B-RAF/K-RAS mutant 
lung tumor cells [11], VPA/HU did not affect ERK levels 
but still evoked enhanced BIM expression in our cell 
models (Supplementary Figure S2E).

BIM induction in tumor cells from head and neck 
carcinoma patients

To underline the pathophysiological relevance of 
BIM not only for tumor cell models but also for the clinics, 
we first visualized BIM expression by IHC in tumor 
biopsies (n=31). Using the immunoreactive score (IRS) 
[25], significantly elevated BIM levels (p<0.001) were 
observed in cancer cells in the apoptotic tumor centers 
versus proliferating tumor margins (Figure 4A and 4B). 
Second, to definitely demonstrate that BIM is induced by 

Figure 2: VPA and HU efficiently trigger apoptosis in HNSCC tumor cells. A) Drug-induced apoptosis was determined by 
measuring the sub-G1 population by flow cytometry (PI staining) 48 h post treatment. Induction of cell death was already evident using 
a single dose of VPA/HU (1.5 mM/0.5 mM) and was not further enhanced by additional drug administration after 24 h (VPA/HU 2X). B) 
VPA/HU treatment (1.5 mM each; 48 h) induced caspases activation sensitive to the pan-Caspase inhibitor Z-VAD. Immunoblot analysis 
demonstrated cleavage of Caspase-3 and -9 (upper panel; tubulin, loading control. Apoptosis was quantified by measuring Caspase-3 
activity in cell lysates (lower panel). C) VPA/HU-induced cell damage shown by analyzing mitochondrial integrity and by TUNEL-
staining. The VPA/HU combination (1.5 mM each) caused significant mitochondrial damage already 24 h post treatment, resulting in loss 
of dimeric MitoCapture dye staining (upper panel). TUNEL-staining revealed VPA/HU-induced DNA-damage indicative of apoptotic cells 
(lower panel).
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VPA/HU also in primary tumor cells, we used cancer cells 
freshly isolated from HNSCC patients. Treatment of such 
tumor cells with VPA/HU resulted in enhanced BIM levels 
and cancer cell death (Figure 4C). Hence, regulated BIM 
expression appears to be relevant for disease progression 
and can be modulated by drug treatment.

VPA/HU attenuates EGFR expression and 
signaling

The EGFR is overexpressed in various epithelial 
malignancies and also represses BIM expression [11, 

26]. As EGFR-targeting strategies are intensively tested 
in the clinics, we investigated the effects of VPA/HU 
treatment on this receptor. Interestingly, immunoblot 
analysis revealed that the combination of VPA/HU 
efficiently reduced the levels of total and phosphorylated 
EGFR (Figure 5A). To further examine the intracellular 
localization of EGFR, cells were treated with VPA/HU 
or PBS, and examined by IHC analysis. This analysis not 
only confirmed the reduction of overall EGFR levels, but 
also showed that such treatment affected the cell surface 
localization of the receptor and additionally enhanced 
BIM expression (Figure 5C). As a control, VPA/HU 
treatment appears not to cause an unspecific degeneration 

Figure 3: VPA/HU-treatment specifically induces the BCL-2 family protein BIM modulating cell proliferation and 
apoptosis.  A) Cells were drug treated (1.5 mM; 20 h) and expression levels of the indicated proteins were visualized by immunoblot. 
Actin served to control equal loading of cell lysates. B) Cell death induction by ectopic expression of BIMEL-GFP. BIMEL-GFP was 
visualized 24 h post transfection in FaDu cells by direct and indirect immunofluorescence using α-BIM Ab. C) Downregulation of BIM in 
HNSCCUM-03T cells stably transfected with BIM- (shBIM) versus scrambled-shRNA (shCtl) verified by immunoblot. Counting revealed 
that cells with attenuated endogenous BIM levels displayed enhanced proliferation. D) Decreased VPA/HU-induced apoptosis (1.5 mM 
each, 24 h) in BIM-depleted cells shown by immunoblot analyses for BIM and cleaved Caspase-3 (left), as well as by quantification of 
enzymatic Caspase-3 activity in cell lysates (right). E) Immunoblot revealed that VPA/HU (1.5 mM each) induced BIM in a time-dependent 
manner. F) VPA/HU-mediated transcriptional activation was monitored by analyzing luciferase activity. FaDu cells transfected with a BIM 
reporter were treated with VPA/HU (1.5 mM each). G) In contrast to the strong induction of BIM levels by VPA/HU, correlating with 
Caspase-3 cleavage, no enhanced expression of PUMA and BAX was induced by VPA/HU. Actin and Tubulin served as loading controls. 
Columns, mean; bars, ±SD from three independent experiments.
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of pro-survival proteins, as STAT3 levels, an important 
factor for head and neck carcinogenesis [27] or the growth 
factor receptor ERB-B2, were not significantly affected 
(Figure 5B; Supplementary Figure S2E). Collectively, 
these data provide evidence for a hitherto unknown 
molecular mechanism contributing to the potent anti-
cancer activity of the VPA/HU combination. However, we 
cannot completely exclude the possibility that additional 
effects of VPA/HU on other proteins may at least partially 
contribute to the potent anti-tumoral activity of this drug 
combination.

VPA/HU efficiently suppresses HNSCC tumor 
growth in murine xenotransplantation models

Prior to testing the anti-tumoral activity of VPA/
HU in murine models, we first compared the cell 
killing activity of VPA/HU and of chemotherapeutic 
drugs currently used in the clinics. In our HNSCC cell 
culture models and at the concentrations used, VPA/HU 
treatment was more effective in triggering cell death, when 
compared to the EGFR inhibitors cetuximab and gefitinib 
or the DNA-damaging agent cisplatin (Supplementary 
Figure S2F). Notably, interference with EGFR signaling 
by gefitinib also induced BIM expression (Supplementary 
Figure S2G).

These in vitro-results encouraged us to examine 
whether VPA/HU treatment also inhibits tumor growth in 
vivo. Using a xenograft model, established FaDu tumors 
were treated with VPA/HU (350 mg/kg, 750 mg/kg body 
weight) or PBS control i.p. for 14 days. Administration 
of VPA/HU to FaDu tumor-bearing mice significantly 
inhibited tumor growth (p<0.001) (Figure 5D). To 
visualize whether drug treatment also enhanced BIM 
levels and caused EGFR attenuation in vivo, tumors 
from treated and control animals were analyzed by IHC. 
Enhanced BIM levels and reduced EGFR expression 
were observed in tumors from VPA/HU treated animals 
compared to those from control mice (Figure 5E). The 
above data not only confirmed the potent anti-cancer 
activity of the VPA/HU combination in vivo, but also 
demonstrated the in vivo-relevance of the molecular 
mechanisms identified in our cell culture models. Of 
note, drug treatment of non-transplanted nude mice did 
not result in loss of body weight, and no organ damage 
was evident by histological inspection of treated C57BL/6 
mice (data not shown). Hence, the anti-tumoral effect of 
our drug combination was not mediated by unspecific 
cytotoxicity.

Figure 4: BIM expression in tumor biopsies from head and neck carcinoma patients. A) Detection of BIM in HNSCC tumor 
centers (TC) versus proliferating tumor margins (TM). Representative example of an oral SCC (G2, pT3, pN0) stained with hematoxylin/
eosin (HE) (left panel) and immunohistochemical visualization of BIM using α-BIM Ab (right panel). B) Box plot (with range) for BIM 
IRS reveals enhanced BIM expression in the TC in HNSCC patient biopsies (*p<0.001; n=31). C) Treatment of freshly isolated tumor cells 
from two patients (T1: Hypopharynx, G2, pT3, pN0; T2: oral cavity, G3, pT3, pN0) with VPA/HU (1.5/0.5 mM) for 48 h resulted in BIM 
induction and Caspase-3 activation. Indicated proteins were detected by immunoblot analysis. Actin served as loading control
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DISCUSSION

Rational combination therapies are considered as the 
most efficient strategy to combat cancer [9, 28]. As the 
success of these treatments requires a profound molecular 
knowledge of their underlying mechanisms [29-31], we 
here studied the combination of two drugs, which have 
been suggested to affect tumor cell death by different 
mechanisms [23, 32, 33]. Employing comprehensive 
cell culture and in vivo models we here demonstrate for 
the first time that combining HDACi with HU potently 
kills HNSCC by a dual mechanism. Although such agents 
have been shown to individually affect tumor cells [22, 
32], the (pre)clinical anti-tumor activities of the HDACi/
HU combinations as well as the underlying molecular 
mechanisms have not been resolved so far for HNSCC.

Treatment of malignant cells with HDACi can 
induce a wide range of anticancer effects including 

apoptosis, cell cycle arrest and differentiation [15, 18, 
20, 34, 35]. Numerous HDACi have been tested in the 
clinics or are currently the subject of ongoing early-phase 
clinical trials, including HNSCC [14, 19, 36-38]. Since 
HDACi monotherapies seem not to be effective against 
solid tumors, their full therapeutic potential will be best 
realized through combination with other anticancer agents 
[17, 19, 34]. However, most reports do not provide a well-
defined molecular rationale for combining an HDACi with 
a given agent. Moreover, the molecular events underlying 
cooperative combination effects are often still to be 
identified [17, 19, 34].

In contrast, we here provide convincing evidence 
that activation of the proapoptotic BH3-only protein 
BIM together with EGFR attenuation are key regulators 
for VPA/HU-induced tumor cell death. This conclusion 
is based on several lines of evidence: First, HDACi/HU 
induced BIM upregulation, induction of apoptosis and 

Figure 5: Effects of VPA/HU on the growth factor receptors EGFR and ERB-B2, and suppression of HNSCC tumor 
growth in vivo. A/B) FaDu cells were treated with V, HU, VPA/HU (1.5 mM each) or PBS (C). Expression of the indicated proteins 
was analyzed by immunoblotting. Actin served to control equal loading. VPA/HU treatment effectively reduced the levels of total and 
phosphorylated EGFR, whereas ERB-B2 levels were not affected. C) FaDu cells treated with VPA/HU (1.5 mM each) were FFPE and used 
for IHC analysis employing EGFR- or BIM-specific Ab. Treatment resulted in reduced expression and cell surface localization of the EGFR 
as well as increased BIM levels. D) VPA/HU suppressed the growth of FaDu HNSCC xenograft tumors. Growth curve of tumors subjected 
to VPA/HU (i.p., 350 mg/kg and 750 mg/kg body weight) or PBS control. Nude mice were inoculated with FaDu tumor cells. When tumors 
had reached the target size of 0.1 cm3, mice were treated once every second day for 14 days. *p<0.001, n=4 animals per treatment group, 
data are mean±SD. E) Enhanced BIM and reduced EGFR levels in xenograft tumors at the end of VPA/HU treatment. BIM and EGFR 
expression was visualized by IHC.
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loss of the clonogenic potential of HNSCC cell lines 
derived from different anatomical sites. This finding will 
be clinically relevant as SCC from different anatomical 
regions, like the hypopharynx or the oral cavity, differ 
in their clinical prognosis and response [6], but do 
express BIM as shown by the analysis of tumor biopsies. 
Currently, the clinical relevance of results obtained 
in permanent tumor cell lines are questioned, as such 
cell lines may differ from primary tumor cells at their 
molecular level [39]. However, also freshly isolated 
tumor cells but not fibroblasts from HNSCC patients 
responded to VPA/HU administered at therapeutically 
achievable levels (0.5-1.5 mM) with BIM induction, 
EGFR downregulation and apoptosis. Several clinical 
studies have already demonstrated that VPA or HU plasma 
levels in the 0.5-1.5 mM range can be achieved in cancer 
patients without major toxicity [37, 40, 41], supporting an 
expectable clinical efficacy of the VPA/HU combination. 
Second, ectopic expression and RNAi experiments 
convincingly demonstrate that BIM is the BCL-2 family 
member essential for VPA/HU-induced cancer cell death. 
Third, VPA/HU efficiently prevented progression of 
HNSCC tumors in nude mice correlating with enhanced 
BIM levels and attenuation of EGFR surface expression. 
The tumor growth delay achieved with the combination 
treatment was highly significant compared with the 
untreated control, without major toxicity.

BIM-evoked apoptosis was found crucial for 
epithelial tumor cell death triggered by anti-cancer 
therapeutics [11, 42, 43]. We found that especially the 
VPA/HU combination cooperatively activated BIM at 
the transcriptional level. To date, several transcription 
factors, including p53, E2F, c-JUN/FOS (AP1), MYB, 
RUNX3, and FOXO3A have been reported to regulate 
BIM transcription [11, 24, 44]. Our data suggest that 
transcriptional activation of BIM in HNSCC by VPA/HU 
is mediated via AP1, which is not subject to mutation in 
oral cancer patients [45]. It is possible that HU-mediated 
S-phase-dependent induction of c-JUN enhances BIM 
expression [46]. Also, the activity of c-JUN is repressed 
by the HDAC3-NCoR complex [47], which is particularly 
sensitive to inhibition by VPA [15]. Phosphorylation 
of c-JUN by JUN kinase (JNK) permits dissociation of 
HDAC3 and c-JUN-dependent transcription [47]. HU 
has been shown to activate JNK in vivo [48], which may 
contribute to c-JUN-dependent BIM induction.

Although the BH-3-only protein PUMA was 
recently reported to mediate apoptosis of HNSCC cell 
lines induced by EGFR tyrosine kinase inhibitors [12], 
VPA/HU-mediated PCD did not require induction of the 
p53 targets PUMA and BAX. This finding seems to be of 
clinical relevance as VPA/HU-induced cell death does not 
rely on p53, which is mutated in the majority of HNSCC 
[49]. Moreover, HNSCC cells with attenuated BIM 
expression displayed enhanced proliferation. Our finding 
that lowering this endogenous pro-apoptotic factors not 

only increases tumor cell survival but also proliferation 
might be involved in HNSCC therapy response and 
disease progression. Although BIM plays a major role 
in death signaling, this does not rule out the additional 
participation of other BCL-2 family members and/or other 
apoptosis inhibitor proteins [12, 50]. 

As we did not observe increased BCL-2/BCL-xL 
levels upon VPA/HU treatment potentially neutralizing 
increased BIM expression, it is conceivable to speculate 
that the addition of BH3 mimetics, such as ABT-737, 
may not further boost tumor cell death. Killing of B-RAF 
mutant lung tumor cells with ABT-737 required BIM 
induction by inhibition of ERK signaling. Furthermore, 
B-RAF wild type cancer cells were even largely resistant 
to this treatment [51]. As the frequency of RAF/RAS 
mutations in HNSCC is rather low [52, 53], VPA/HU 
is hence likely to be clinically more effective when 
compared to certain other attempts to alter BCL-2 family 
members [11]. It will furthermore be interesting to analyze 
the putative impact of VPA/HU on other molecules 
important for HNSCC survival. These are for example 
Aurora kinase-A, which shares signaling pathways with 
EGFR [54], and the structural protein NSP 5a3a promoting 
HNSCC apoptosis via the p53-related factor p73 [29, 30].

HNSCC tumors are often characterized 
by deregulated EGFR signaling due to receptor 
overexpression, activating receptor mutations and 
aberrant downstream signaling cascades [7]. Survival 
is secured by the activation of MEK and ERK kinases, 
leading to stabilization of MCL-1, activation of BCL-2, 
and degradation of BIM [11]. (Pre)clinical approaches 
interfering with EGFR signaling trigger apoptosis by also 
enhancing BIM expression [7, 11; this study]. Importantly, 
we show that VPA/HU treatment efficiently reduced not 
only EGFR levels and signaling, but also attenuated 
EGFR cell surface localization in cell and xenograft 
models. Although recent antibody-based EGFR targeting 
strategies have gained major attention, the clinical 
response rates to such therapies are rather low. In addition, 
the mechanism(s) conferring resistance of HNSCC against 
agents targeting the EGFR are ill-defined [8, 9], and the 
required agents are expensive and often show a suboptimal 
pharmacodynamic profile. VPA and HU are stable lower-
cost drugs, which can be administered orally [14, 22, 
33]. Moreover, the VPA/HU combination may represent 
a contingency treatment option for patients acquiring 
resistance to other EGFR-targeting approaches [8, 23, 54, 
55]. Both, HU and VPA target major and general cellular 
survival factors that are misregulated in a variety of human 
cancers. E.g., cell cycle control is lost in the vast majority 
of malignancies, and HDACs are frequently overexpressed 
during tumorigenesis [17]. The molecular mechanisms 
underlying EGFR attenuation upon exposure of malignant 
cells to VPA/HU in vitro and in mice remain to be resolved 
in detail. These may involve HU-induced replication 
arrest, known to affect oncogenic tyrosine kinase signaling 
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[56], and/or the E3 ubiquitin ligase c-CBL, which controls 
EGFR ubiquitination and lysosomal degradation [57].

A major advantage allowing to expedite potential 
clinical studies employing VPA/HU for the treatment of 
HNSCC is the fact that both agents are FDA approved 
drugs. Albeit hardly in combination, both are used 
frequently in the clinic [17, 22, 37]. Thus, one can rely 
on an extensive knowledge on the therapeutically most 
effective dose and pharmacodynamics of these agents [32, 
38]. Also, dose-limiting but clinically manageable side 
effects are known, including myelosuppression, fatigue, 
nausea, and diarrhea [22, 32, 33, 37, 38]. In contrast, 
neither toxicity profiles nor clinical efficacy are known 
for other anti-tumor strategies targeting BCL-2 family 
members [51].

Our study has several potential limitations. One is the 
use of immunocompromised mice as preclinical models 
of human malignancies, which do not always reflect the 
heterogeneity and complexity seen in patients. Second, 
although significantly higher concentrations of VPA or HU 
were previously used in tumor models without major signs 
of toxicity [58-60], the VPA/HU doses employed in the 
xenograft model exceed VPA/HU concentrations currently 
used in patients [22, 40]. However, cell culture results 
suggest that even low VPA/HU concentrations will show 
anti-tumoral efficacy in vivo. The minimal effective dose, 
the optimal application route (oral, i.p., i.v.), as well as 
the effects of long-term treatment needs to be determined 
in comprehensive preclinical studies prior to prospective 
clinical trials. 

In conclusion, in addition to current chemo-
radiotherapy platforms combining HU with HDACi might 
prove as an extra treatment option for HNSCC. Although 
not examined in this study, such drug combinations 
may be of therapeutic interest also for other tumor 
entities characterized by therapy resistance and EGFR 
overexpression, such as colon cancer.

METHODS

Ethics Statement

Investigation has been conducted in accordance with 
the ethical standards and according to the Declaration 
of Helsinki and according to national and international 
guidelines and has been approved by the authors’ 
institutional review board.

Cells, transfections and luciferase assay

Cultivation of the indicated head and neck cancer 
and other tumor cell lines has been described in detail [25, 
61-64] (Supplementary Table SI). Cell lines constitutively 
expressing shRNA directed against BIM or a scrambled 

control were generated by transfection of pHR-THT-
BIMshRNA-SFFV-eGFP or pHR-THT-scr_shRNA-SFFV-
eGFP [65], respectively. Cells were transfected using PEI 
(Sigma Aldrich, Munich, Germany) or Lipofectamine 
(Invitrogen, Karlsruhe, Germany) and selected by 
addition of puromycin (1 µg/ml; Sigma Aldrich, Munich, 
Germany). Luciferase reporter assays were carried out in 
triplicate and repeated thrice as stated [62].

Microscopy and image analysis

Observation, image analysis and quantification of 
protein localization were performed as described [66]. 
DNA/cell nuclei were visualized by Hoechst 33258 
staining (Sigma Aldrich, Munich, Germany) as described 
before [66]. At least 100 fluorescent cells were analyzed 
in three independent experiments.

Patients, tissue sampling and primary cell 
isolation

Biopsies of patients diagnosed with HNSCC and 
treated at the Departments of Oral and Maxillofacial 
Surgery and ENT of the University Hospitals in Frankfurt 
and Mainz were analyzed. Tumor specimens were 
collected from primary tumors of patients who underwent 
surgery. All cases were clinically and histologically 
diagnosed according to established criteria including 
grading and TNM-classification (Supplementary Table 
SII). Studies of human tissue biopsies were performed 
according to the requirements of the local ethics 
committee (#83756604), and informed consent has 
been obtained in accordance with the Declaration of 
Helsinki. For the isolation of primary cancer cells, tumor 
specimens were cut into small pieces and enzymatically 
digested with collagenase typeI/hyaluronidase (Sigma 
Aldrich, Munich, Germany) in RPMI-1640 (Invitrogen, 
Karlsruhe, Germany) at 37°C overnight. Following 
digestion, dissociated cells were passed through a cell 
strainer, and epithelial cancer cells and fibroblast were 
isolated by MACS® separation using CD326 (EpCAM) 
or α-fibroblast MicroBeads (Miltenyi Biotec GmbH, Bergisch 
Gladbach, Germany) according to the manufacturer’s 
recommendations. Cells were propagated for one week as 
described [67] and subjected to analysis. 

Drug treatment and clonogenic survival assay

Cells were treated with VPA, trichostatin A (T), 
sodium butyrate (B), HU, or cisplatin (Sigma Aldrich, 
Munich, Germany) as described [16, 67]. The EGFR 
antagonists gefitinib (Tocris Bioscience, Ellisville, USA) 
and cetuximab (ImClone, New York, NY, USA) were 
applied for 48 h. For colony formation assays, 1x103 cells/
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T25 flask were seeded in triplicate. 24 h later, cells were 
treated with the indicated compounds or PBS control and 
further cultivated for 10 days. Drug-containing medium 
was replaced every day. Cells were fixed and stained with 
Giemsa. Colonies containing >50 cells were counted 
automatically using a colony counter (Oxford Optronics, 
Oxford, United Kingdom). Data shown are calculated 
from the mean values of three independent experiments.

Antibodies (Ab)

Ab were: α-PUMA (4976) (NEB Cell Signaling, 
Frankfurt, Germany); α-Survivin (Novus NB 500-201; 
Novus Biologicals, Littleton, CO); anti-ß-Actin (A2066), 
α-BIM (B7929), anti-alpha-Tubulin (T5168) (Sigma 
Aldrich, Munich, Germany); α-BCL-XL (66461A), 
α-Caspase-8 (9745), -9 (9501) (Pharmingen); cleaved 
Caspase-3 (9664) (Cell Signaling); α-BAX (sc-20067), 
α-Caspase-3 (sc-7272/-7148), α-ERB-B2 (sc-284), 
α-EGFR (sc-81449), α-ERK1/2 (sc-135900), α-STAT3 (sc-
482) (Santa Cruz Biotechnology, Heidelberg, Germany). 
Appropriate HRP-, Cy3- or FITC-conjugated secondary 
antibodies (Sigma Aldrich, Munich, Germany; Santa Cruz 
Biotechnology, Heidelberg, Germany) were used.

Protein extraction, immunoblot analysis and 
immunofluorescence

Preparation of whole lysates from cells or tissue, co-
immunoprecipitations and immunoblotting were carried 
out as described [61, 62]. Equal loading of lysates was 
controlled by reprobing blots for Actin or Tubulin as 
described [62]. Immunofluorescence was performed as 
described in detail [62, 66, 68].

Immunohistochemistry (IHC)

Tissue samples or transfected cell pellets were 
formalin fixed, paraffin embedded (FFPE) and processed 
for IHC as described [25, 61]. For antigen retrieval, 
sections were treated in a pressure cooker with Tris buffer 
(10 mM, pH9.0) for BIM or were treated with proteinase 
K (S3020, DakoCytomation, Glostrup, Denmark) 
for 8 min at room temperature for EGFR detection. 
Sections were incubated with primary Ab (α-BIM, 1:800; 
α-EGFR 1:50) overnight at 4°C. For visualization, the 
EnVision® detection system (Dako GmbH, Hamburg, 
Germany) was applied as described [25]. Sections were 
counterstained with hematoxylin. Negative control slides 
without primary Ab were included for each staining. For 
quantification, sections were scanned at low power to 
identify areas of positivity and three random fields were 
selected. Expression levels for BIM were scored semi-
quantitatively based on staining intensity and distribution 

using the immunoreactive score (IRS) [25]. IRS=SI 
(staining intensity) x PP (percentage of positive cells). SI 
is assigned as 0, negative; 1, weak; 2, moderate; 3, strong. 
PP is defined as 0, negative; 1, <5%; 2, 6–30%; 3, 31–
60%; and 4, >60% positive cells.

Measurement of apoptosis, cell cycle and viability

Assessment of apoptosis was performed by 
quantifying Caspase-3-dependent hydrolysis of a 
fluorogenic substrate and by immunoblot-based detection 
of cleaved caspases [62]. Apoptotic cells were visualized 
by analyzing mitochondrial integrity using the PromoKine 
Mitochondrial Apoptosis Staining Kit (PromoCell; 
Heidelberg, Germany), staining of fragmented nuclei with 
Hoechst dye or TUNEL-staining as described [69]. Briefly, 
200 cells from three separate images were inspected and 
the percentage of apoptotic cells determined. Cell viability 
was calculated employing MTT-assays and the electric 
sensing zone method as described in detail [61, 62]. Cell 
cycle profiles were obtained by FACS-mediated analysis 
of prodidium iodide (PI) stained cells as outlined before 
[16].

Animals and xenograft tumors

All animal work has been conducted according to 
relevant national and international guidelines. For animal 
studies, FaDu cells (2x106) cells were implanted into both 
flanks of four-week-old female NMRI nu/nu mice (Harlan 
Winkelmann, Hamburg, Germany) [69], and were allowed 
to establish for 7 days followed by treatment for 14 days. 
VPA/HU (350 mg/kg, 750 mg/kg body weight) or PBS 
control was administered intraperitoneally (i.p.) every 
second day as described [58]. Mice were randomized 
into groups (4 mice/group) such that the average tumor 
volumes across the groups were equal. Tumor growth 
was monitored using calipers to calculate tumor volumes 
according to the formula: length x π width2 x 0.52. 
Animals were euthanized at the end of the study, and 
the tumors processed for IHC analysis as described [69]. 
To assess drug-induced side effects, VPA/HU or PBS 
treatment was also performed in non-transplanted NMRI 
nu/nu or eight-week-old female C57BL/6 mice (2 mice/
group). All animal experiments were approved by the 
Institutional Animal Care and Use Committee at the 
University of Mainz.

Statistical analysis

For all experiments stating p-values, a paired 
Student’s t-test was performed. Unless stated otherwise, 
p-values represent data obtained from three independent 
experiments done in triplicate. p-values <0.05 were 



Oncotarget 2012; 3:  31 - 4341www.impactjournals.com/oncotarget

considered as significant.

Plasmids and RNAi

The expression construct for human BIMEL, 
pCDNA4/TO-BIMEL, was described [70]. For expression 
of a BIMEL-GFP fusion, BIMEL cDNA was PCR 
amplified and cloned into pc3-GFP (pc3BIMEL-GFP) as 
stated before [66]. pGL3-luciferase reporter constructs 
containing the BIM promoter, MYB, E2F or AP1 binding 
sites were introduced previously [24]. Lentiviral vectors 
constitutively expressing shRNA directed against BIM or 
a scrambled control, pHR-THT-BIMshRNA-SFFV-eGFP 
or pHR-THT-scr_shRNA-SFFV-eGFP, respectively, were 
reported [65].
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