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ABSTRACT

To characterize the mutation profiles of colorectal cancer (CRC) primary tumors 
(PTs) and liver metastases (CLMs), we performed both whole-exome and RNA 
sequencing. Ten significantly mutated genes, including BMI1, CARD11, and NRG1, 
were found in 34 CRCs with CLMs. We defined three mutation classes (Class 1 to 3) 
based on the absence or presence of mutations during liver metastasis. Most 
mutations were classified into Class 1 (shared between PTs and CLMs), suggesting 
the common clonal origin of PTs and CLMs. Class 1 was more strongly associated with 
the clinical characteristics of advanced cancer and was more frequently superimposed 
with chromosomal deletions in CLMs than Class 2 (PT-specific). The integration 
of exome and RNA sequencing revealed that variant-allele frequencies (VAFs) of 
mutations in the transcriptome tended to have stronger functional implications 
than those in the exome. For instance, VAFs of the TP53 and APC mutations in the 
transcriptome significantly correlated with the expression level of their target genes. 
Additionally, mutations with high functional impact were enriched with high VAFs in 
the CLM transcriptomes. We identified 11 mutation-associated splicing events in the 
CRC transcriptomes. Thus, the integration of the exome and the transcriptome may 
elucidate the underlying molecular events responsible for CLMs.

INTRODUCTION

CRC develops through a well-established sequence 
of events that are characterized by specific mutations: 
inactivating APC mutations lead to the development of 
a small benign adenoma; activating KRAS mutations are 
associated with the formation of a large adenoma; and 
diverse mutations in TP53, PIK3CA, and TGF-β pathway 
genes drive the evolution of a malignant carcinoma [1, 2]. 
Recent genome-scale studies identified additional frequent 
mutations in ARID1A, CDH10, DOCK, FAM123B, FAT4, 

and SOX9 that might be responsible for CRC development 
[3, 4]. In addition, mutations overrepresented in CRC 
subgroups, which are characterized by microsatellite 
instability (MSI) or a CpG island methylator phenotype, 
were also reported [5, 6]. However, genetic alterations 
associated with metastasis are largely unknown, even 
though metastasis is the major cause of deaths from CRC.

Thus far, no recurrent metastasis-specific mutations 
have been demonstrated [7]. Instead, evidences have 
shown that PT-derived mutations may drive metastatic 
progression. In prostate cancer, the clonal populations that 
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lead to distant metastases are represented within PTs [8]. 
In CRC, the genomic features between colorectal PTs and 
matched metastatic tumors were highly concordant [9], 
suggesting that the genetic alterations of metastatic tumors 
may descend from those of PTs. Thus, it is essential to 
monitor the identity of PT-derived mutations during 
metastasis.

Nevertheless, undoubted differences between PTs 
and CLMs might potentiate the existence of de novo 
metastasis-specific mutations. To understand these genetic 
alterations, recent studies have compared the mutational 
profiles between PTs and matched CLMs using targeted 
sequencing, cancer mini-exome sequencing, whole-exome 
sequencing, and whole-genome sequencing. However, 
a few groups performed targeted sequencing for only a 
subset of known cancer-associated genes [9–11], whereas 
the others sequenced only a small number of samples 
despite their genome-wide approaches [12, 13]. Hence, 
unbiased whole-exome analyses using sufficient sample 
sizes are required to determine whether CLM-specific 
mutations exist. In addition, a recent study showed that 
the integration of whole-exome sequencing with RNA 
sequencing facilitated more sensitive identification 
of cancer drivers and therapeutically targetable genes 
by providing greater mutation signal than the DNA in 
expressed mutations [14]. Therefore, we perform both 
whole-exome and RNA sequencing using tumor samples 
from Korean CRC patients with CLMs. We report the 
identity, pattern, and frequency of somatic mutations in 
the exomes and transcriptomes of PTs and CLMs.

RESULTS

Global molecular patterns of PTs and 
associated CLMs

To evaluate the somatic mutations found in PTs 
and CLMs, we performed both whole-exome sequencing 
(exome-seq) and RNA sequencing (RNA-seq) across a total 
of 57 tissues that encompass normal tissues, PTs, and CLMs 
from 19 CRC patients with CLMs (Supplementary Table 
S1). We used high-purity tumors (approximately > 90% 
tumor cell contents under histological examination) to 
improve mutation detection (Supplementary Figure S1A). 
However, tumor purity estimated mathematically using 
ASCAT v2.1 was lower than the pathology-based 
estimates (Supplementary Figure S1B). The average 
tumor purity of PTs (46.6%) and CLMs (47.6%) was 
comparable (P = 0.94). Performing pairwise comparisons 
of sequencing reads obtained from a normal tissue, a PT, 
and an associated CLM tissue for each patient, we identified 
somatic mutations in the exomes and transcriptomes of 
PTs and CLMs (Supplementary Table S2, S3, and S4) 
and successfully confirmed a few mutations by Sanger 
sequencing (Supplementary Figure S2).

A recent report suggested that integrating exome-
seq with RNA-seq improves the detection of cancer driver 
mutations [14]. Therefore, we examined whether variants 
excluded during the exome-seq mutation calling processes 
can be supported by RNA-seq. Among variants with 
‘reject' calls by MuTect exome analysis, 137 mutations 
that had ‘Keep’ calls and more than 10 × coverage in 
MuTect RNA-seq analysis were revived (Supplementary 
Table S2). These included mutations in CRC-associated 
genes, such as APC and PTEN.

The average sequencing depth of exonic variants 
across all samples was ~101 ×, and the average 
nonsynonymous mutation rate was ~2.5 per megabase 
(Mb). Our cohort mostly consisted of microsatellite stable 
(MSS) CRC patients, with the exception of one MSI-high 
patient (Supplementary Table S1). The one MSI-high 
patient acquired an approximately 15-fold higher number 
of mutations than the rest (Figure 1A). The average 
number of mutations per MSS patient was 61.5 in the PTs 
and 66.7 in the matched CLMs (Figure 1A).

We observed high rates of C-to-T base substitutions 
in the PTs (57.4%), but the proportion significantly 
decreased during the progression from PTs to CLMs 
(46.3%) (Figure 1A and 1B). The decrease in C-to-T 
transitions occurred with a significant increase in 
transversions during the progression from PTs to CLMs 
(28.0% → 37.6%) (Figure 1B, right panel). Consistent 
with our data, a significant increase of transversions 
during the progression from PTs (33.5%) to CLMs 
(43.1%) was observed in an independent cohort of 15 
CRCs (SRP034161, Supplementary Figure S3A). When 
96 base substitutions were examined in a tri-nucleotide 
context, the proportion of mutations occurring in the 
context of G[C→A]C, T[C→A]C, T[C→G]T, A[A→C]
G, G[C→T]C, A[C→T]C, and A[A→G]G was greater in 
CLMs than PTs (Supplementary Figure S3B), suggesting 
that the substitution pattern is slightly different between 
PTs and CLMs.

We assessed the genomic and transcriptomic 
variability during liver metastasis. When LOH occurring 
at heterozygote SNPs in tumors was examined as a sign 
of chromosomal aberrations, the number of LOH events 
was greater in CLMs than PTs (Figure 1C). In addition, 
we found that the gene expression deviations calculated 
based on RPKM gradually increased from normal tissues 
to PTs and, ultimately, to CLMs in a significant manner 
(Figure 1D).

Classification of CRC mutations

To identify significantly mutated genes in CRCs 
with CLMs, we analyzed the exomes of a total of 
34 Korean CRCs with CLMs (See Method) using the 
following criteria: significantly mutated genes (P < 0.05) 
by MutSig analysis; genes mutated in at least three 
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MSS patients; and genes expressed at more than 0.5 of 
the Log2 RPKM level in normal tissues, PTs, or CLMs. 
This analysis revealed 10 significantly mutated genes in 
CRCs with CLMs (Figure 2A). Consistent with previous 
genomic studies, CRCs with CLMs acquired frequent 
mutations in APC, FBXW7, KRAS, PIK3CA, SMAD4, 
TCF7L2, and TP53 (Figure 2A). In addition, CRCs 
with CLMs significantly acquired mutations in NRG1 
(6 of 34 patients), BMI1 (3 of 34 patients), and CARD11 
(4 of 34 patients) (Figure 2A and 2B). NRG1 and CARD11 
were reported to be recurrently mutated in gastric cancer 
and B-cell lymphoma, respectively [15, 16]. In BMI1, an 
intestinal stem cell marker, we found a hotspot mutation 
(N310K) that is located at genomic position 22618420 
on chromosome 10 (Figure 2B and Supplementary 
Figure S2). On the other hand, we could not identify 
significant CLM-specific mutations in 34 CLMs.

Based on the absence or presence of mutations 
during liver metastasis, we classified mutations into three 
classes (Supplementary Table S5): (1) Class 1: mutations 
shared between PTs and CLMs, (2) Class 2: mutations 
detected in only PTs, and (3) Class 3: mutations detected 
in only CLMs. In our cohort, most of the mutations 
detected in PTs were concordantly detected in the matched 
CLMs, displaying the greatest proportion of Class 1 
(~57.6%, Figure 3A). The proportion of Class 2 and 
Class 3 mutations was ~20.9% and ~21.5%, respectively 
(Figure 3A).

The proportion of Class 1 mutations was highly 
variable across patients (range from 25% to 92%, 
Figure 3A), indicating that clonal selection processes 
during metastasis across patients might be different. 
Therefore, we analyzed the clonality of the PTs and CLMs 
of each patient using SciClone analysis (Supplementary 

Figure S4). Notably, patients with decreased clonality 
during metastasis showed high mutational concordance 
between PTs and CLMs (Figure 3B). In contrast, increased 
clonality during metastasis was associated with low 
mutational concordance between PTs and CLMs and a 
high proportion of CLM-specific mutations (Figure 3B 
and 3C).

Then, we assessed whether Class 1 and Class 2 
mutations exhibit distinct clinical association. The 
comparison of the two classes revealed that Class 1 
mutations were more frequently detected in the patients 
with lymphovascular invasion (LVI), a phenomenon that 
is an indicator of poor prognosis as well as tumor cell 
intravasation into blood or lymphatic vessels [17]. The 
comparison revealed that 34.1% of Class 1 mutations 
were detected in patients with LVI, whereas 22.2% of 
Class 2 mutations were detected in the patients with 
LVI (Figure 3D, P = 1.98E-08). In particular, Class 1 
mutations that exhibited higher VAFs in CLMs than 
PTs (hereafter referred to as Class 1-H) were detected in 
higher proportions in the patients with LVI (Figure 3D, 
37.2% for 15% VAF difference, 38.2% for 30% VAF 
difference). Furthermore, Class 1-H mutations were more 
frequently detected in the patients with advanced tumor 
stages compared with Class 2 mutations (Figure 3E, 
P = 8.29E-07 for 15% VAF difference, P = 1.33E-08 for 
30% VAF difference).

We also examined whether Class 1 and Class 2 
mutations exhibited distinct biological association. Gene 
ontology analysis revealed that the gene set harboring 
Class 1 mutations significantly overrepresented the 
hallmarks of cancer [18], including cell proliferation, 
cell cycle, apoptosis, cell migration, tumor 
immunity, and epithelial-to-mesenchymal transition 

Figure 1: Molecular patterns of PTs and CLMs. A. The number of mutations and base substitutions detected in 19 CRCs with 
CLMs. B. Percentage of base substitutions (left panel) and proportion of transversions (Tv) and transitions (Ts) (right panel) detected during 
the progression from normal tissues to PTs and ultimately to CLMs. C. Distribution of LOH counts occurring at heterozygote SNPs of PTs 
and CLMs. D. Distribution of the standard deviations of gene expression levels in normal tissues, PTs, and CLMs.
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Figure 3: Mutational classes and their clinical associations. A. Fraction of mutational classes in each patient. B. Correlation 
between clonality changes during metastasis and the proportion of shared mutations (Class 1). C. Correlation between clonality changes 
during metastasis and the proportion of CLM-specific mutations (Class 3). D. Percentage of Class 1 and 2 mutations detected in patients 
with or without LVI. Class 1_15 (30) indicates Class 1-H mutations that exhibit ≥ 15 (30)% higher VAFs in CLMs than PTs. E. Percentage 
of Class 1 and 2 mutations detected in patients in stage T3 or T4. F. Scatter plots for VAFs of CRC driver mutations presented as VAFs in 
PTs versus VAFs in CLMs.

Figure 2: Significantly mutated genes in 34 Korean CRC patients with CLMs. A. Significantly mutated genes analyzed by 
MutSig 1.4. B. NRG1, CARD11, and BMI1 mutations found in Korean and TCGA CRC cohorts.
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(Supplementary Table S6). Cancer-associated signaling 
pathways, including MAPK, WNT, and ERBB signaling, 
and well-known cancer genes involved in various cancer 
types were also overrepresented in the gene set harboring 
Class 1 mutations (Supplementary Table S6). Importantly, 
most mutations of the known CRC driver genes were shared 
between PTs and CLMs: 38 of 43 driver mutations from 
APC, TP53, PIK3CA, and KRAS were classified into Class 1 
(Figure 3F). Only one APC mutation was PT-specific 
(Class 2), whereas one KRAS mutation and three TP53 
mutations were CLM-specific (Class 3) (Figure 3F).

Co-occurrence of Class 1 mutations with 
chromosomal deletions in CLMs

As presented in Figure 3D and 3E, Class 1-H 
mutations tended to be more significantly associated 
with the clinical characteristics of advanced cancer than 
were the Class 1 or Class 2 mutations. Based on this 
observation, we focused on the Class 1-H mutations that 
exhibit ≥ 15% or ≥ 30% higher VAFs in CLMs than in 
PTs. Class 1-H and Class 2 mutations may occur through 
various molecular processes. Assuming that a mutation 
occurs at a given genomic position in a PT, a subsequent 
deletion occurring at the locus during metastasis would 
generate Class 1-H or Class 2 mutations (Figure 4A, 
Type 1). Alternatively, clonal selection during metastasis 
would also generate Class 1-H or Class 2 mutations 
(Figure 4A, Type 2).

To assess the association of Class 1-H and Class 2 
mutations with chromosomal aberrations, we examined the 
co-occurrence of Class 1-H or Class 2 mutations with copy 
number alterations (CNAs). Here, the copy number of the 
chromosomal regions was estimated from the exome-seq 
data using VarScan 2, and the chromosomal regions that 
deviated by more than a ± 0.5-fold-change (log2 ratio) 
from the normal chromosomal counts were selected 
as tumor CNAs. Examination of the co-occurrence 
of mutations with CNA regions revealed that Class 1 
mutations occurred more frequently with chromosomal 
deletions (5.80%) than Class 2 (4.13%) or Class 3 
mutations (4.23%) (Figure 4B, left panel). Remarkably, 
Class 1-H mutations were more frequently superimposed 
with chromosomal deletions than with the other mutation 
classes (Figure 4B, left panel, 17.47% for 15% VAF 
difference, 21.43% for 30% VAF difference). However, 
this phenomenon was not observed in the chromosomal 
amplification regions (Figure 4B, right panel).

We also analyzed the LOH density at nearby 
heterozygote SNPs around mutations as an indicator of 
chromosomal aberrations. The examination of ± 1-Mb 
regions relative to the mutations revealed a higher LOH 
density in regions encompassing Class 1-H mutations 
than in the other classes (Figure 4C). Importantly, many 
Class 1-H mutations superimposed with chromosomal 
deletions were found in the known tumor suppressors, 

including APC, TP53, SMAD4, and ATM, and the CRC-
associated genes, including CSMD1 [19], FLCN [20], and 
DSG2 [21] (Figure 4D). Among them, multiple mutations 
in CSMD1 and TP53 co-occurred with chromosomal 
deletions (Figure 4D), suggesting that both mutations and 
chromosomal deletions may occasionally inactivate both 
alleles of these genes, as proposed by Knudson’s two-hit 
hypothesis [22]. Supporting the importance of CSMD1 
mutations, TCGA CRC patients harboring CSMD1 
mutations had poorer survival rates than patients without 
CSMD1 mutations (Supplementary Figure S5). Among the 
candidate genes (Figure 4D), FLCN was recently reported 
to be a recurrently mutated gene in an African American 
CRC cohort [20].

Selective expression of mutant alleles in the 
transcriptomes of CLMs

We compared mutation profiles in the exomes and 
transcriptomes of PTs and CLMs. The intersection of 
exome-seq and RNA-seq revealed that 661 mutations 
in PTs (36% of exome-seq mutations, 47% of RNA-seq 
mutations) and 713 mutations in CLMs (39% of exome-
seq mutations, 56% of RNA-seq mutations) were common 
between the two data sets (Figure 5A). The comparison 
also presented the discordance between exomes and 
transcriptomes. According to our analysis, exome-seq 
specific mutations were mainly generated due to the 
low RNA expression of mutated genes: ~65% of genes 
harboring exome-seq-specific mutations were estimated 
as below 1 (log2 RPKM) in normal samples, PTs, and 
CLMs (Supplementary Figure S6A and S6B). On the 
other hand, RNA-seq-specific mutations might be derived 
from the low coverage of the mutations in exome-seq 
(Supplementary Figure S6C, ~18% in our study) or RNA 
editing.

Recently, the integration of exome-seq with RNA-
seq revealed that the VAFs of oncogenic driver mutations 
were higher in transcriptomes than in exomes [14]. To 
extend this observation, we compared the mutational 
VAFs detected from the exomes and transcriptomes. 
This analysis identified 89 mutations that exhibit ≥ 15% 
higher VAFs in transcriptomes than in exomes in both PTs 
and CLMs (Supplementary Table S7). The list contained 
several genes responsible for CRC development or 
metastasis, including BMI1 [23], HOXB9 [24], PLXNB1 
[25], POLD1 [26], TGIF1 [27], SOX9 [28], as well as 
TP53 (Supplementary Table S7). Remarkably, the VAFs 
of the TP53 mutations were higher in the transcriptomes 
of PTs and CLMs than in their exomes, except for two 
mutations in PTs (Figure 5B). Notably, TP53 VAFs from 
six CRC patients (326, 2557, 9399, 5853, 4989, and 
8665) were ~50% in the exomes of CLMs, whereas the 
VAFs were up to ~100% in the transcriptomes of CLMs 
(Supplementary Figure S7), suggesting the selective 
expression of TP53 mutant alleles in CLMs.
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Figure 4: Co-occurrence of Class 1-H or Class 2 mutations with chromosomal aberrations. A. Two types of molecular 
processes that potentially generate Class 1-H or Class 2 mutations. B. Frequency of the co-occurrence of chromosomal deletions (left) or 
amplification (right) with mutations. C. A LOH density plot presented as LOH counts at heterozygote SNPs per distance within ± 1-Mb 
regions relative to mutations. D. List of Class 1-H mutations superimposed with chromosomal deletions.

Figure 5: Integration of exome-seq with RNA-seq and functional implication of selective expression of mutant 
alleles. A. Intersection of exome-seq and RNA-seq mutations. B. VAFs of TP53 mutations in the exomes and transcriptomes of PTs and CLMs. 
C. Correlation between TP53 VAFs and the expression level of p53-target genes (BBC3, BAX, FAS, APAF1, CCNG1, CDKN1A, GADD45A, 
PTEN, SFN, TSC2, and TP53i3). D. Correlation between APC VAFs and the expression level of WNT-target genes (MYC, CCND1, HNF1A, 
LEF1, PPARD, JUN, FOSL1, MMP7, AXIN2, NRCAM, TCF4, CLDN1, VEGFA, FGF18, MYCBP, ID2, TERT, LGR5, and FZD7).
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Next, we assessed whether the selective expression 
of mutant alleles has functional association. Given that 
TP53 mutations can lead to the decreased expression 
of p53-target genes, we expected a negative correlation 
between TP53 VAFs and p53-target gene expression levels. 
As expected, the correlation analysis revealed that the 
average expression level of 11 p53-target genes obtained 
from the KEGG pathway displayed a significant negative 
correlation with TP53 VAFs from RNA-seq (Figure 5C). 
However, this phenomenon was not observed with TP53 
VAFs from exome-seq (Figure 5C). For the APC mutations, 
we expected a positive correlation between the APC VAFs 
and WNT-target gene expression levels because APC is a 
negative regulator of the WNT signaling pathway. Indeed, 
the APC VAFs from RNA-seq exhibited a stronger positive 
correlation with the average expression level of 19 WNT-
target genes than those from exome-seq (Figure 5D). The 
expression level of MYC, a well-characterized WNT-target, 
showed a significant positive correlation with the APC VAFs 
from RNA-seq (Figure 5D). These results might suggest the 

functional implication for the selective expression of mutant 
alleles at the transcriptome level.

Candidate CLM mutations enriched in the 
transcriptome of CLMs

In general, mutations exhibiting strong functional 
effects may have a high chance of being negatively or 
positively selected during tumor progression. Therefore, we 
explored whether mutations having a high functional impact 
are enriched in CLMs during metastasis as a consequence 
of positive selection. Scoring the functional impact of the 
mutations by Mutation Assessor (MA) [29], we found 
that mutations exhibiting higher MA scores tended to be 
detected with higher VAFs in the transcriptome of CLMs 
(Figure 6A, upper panel). However, the phenomenon was 
not observed in the exomes of CLMs (Figure 6A, bottom 
panel).

Figure 6A (upper panel) demonstrates that mutations 
exhibiting ≥ 60% VAFs in CLMs displayed a distinctly 
high average MA score (greater than 2), which typically 

Figure 6: Enrichment of mutations exhibiting high functional impact in the transcriptomes of CLMs. A. Distribution 
of mutational functional impact scores according to increasing VAFs in RNA-seq (upper) and exome-seq (bottom) analysis of CLMs. 
B. Candidate CLM mutations enriched in the transcriptomes of CLMs.
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indicates ‘functional mutations’ [29]. Based on this 
observation, we selected candidate CLM mutations that 
satisfy the following conditions: mutations that exhibit 
≥ 60% VAFs in CLMs and ≥ 15% higher VAFs in the 
transcriptomes than in the exomes of PTs or CLMs. The 
list contained up to seven TP53 mutations (Figure 6B), 
indicating the functional relevance of TP53 mutations 
in CLMs. The list also included a substantial number 
of mutations located in well-established cancer- or 
metastasis-associated genes (Figure 6B): BCL9L [30], 
DSG2, FLCN, FLNA [31], ITGB4 [32], PIK3CA, PIK3CD 
[33], PLEC [34], SMAD3, SOX9, SRSF6 [35], TGIF1, and 
TOP2A [36].

Splicing events occurring in CRCs

To further assess the functional mutations by 
integrating the exomes and transcriptomes, we analyzed 
mutation-dependent splicing events in CRCs. Forty-two 
mutations were annotated as 5′ or 3′ splice-site mutations 
from the exome-seq data (Supplementary Table S8), and 
exon–exon junction reads, which may indicate branches 
between exons by splicing, were selected and counted 
from the RNA-seq data (data not shown). The integration 
of both data sets revealed that 11 of the 42 splice-site 
mutations might change the splicing patterns in PTs and 
CLMs (indicated in red in Supplementary Table S8).

For instance, a GPR56 mutation at a 5′ splice-site 
adjacent to exon 5 (exon 5:c.620 + 1G > A in NM_005682) 
correlated with exon 5 skipping in patient 8804, who 
harbored the mutation, but not in other patients lacking 

the mutation (Figure 7A). Because exon 5 skipping by 
the mutation may give rise to a premature stop codon that 
abrogates all functional domains of GPR56 (Figure 7B), 
which has been known to play a tumor-suppressive role 
[37], the GPR56 splice-site mutation is likely involved 
in CRC development. We also found a MTRF1 splice-
site mutation (exon 4:c.416–2A > T in NM_004294) 
in patient 326, which correlated with exon 4 skipping 
and may introduce a premature stop codon (Figure 7C 
and 7D). Splice-site mutations in the cancer-associated 
genes RNF31 [38] and ATM [39] also correlated with the 
skipping of exons harboring these mutations and may 
lead to a partial deletion of these proteins (Supplementary 
Figure S8A and S8B).

DISCUSSION

By combining two methods (exome-seq and RNA-
seq) with two different types of tumor samples (PTs and 
CLMs), this study demonstrated the mutation profiles of 
PTs and CLMs at the exome and transcriptome levels. In 
this study, we used VAF as a parameter that depends on 
mutation prevalence, genetic heterogeneity, and copy-
number alterations. Because VAF also highly depends on 
normal cell contamination, we used high-purity tumors to 
minimize the interference from normal cell contamination.

PTs and CLMs displayed different global 
molecular patterns, including base substitutions, LOHs 
at heterozygote SNPs, and gene expression variability. 
Nonetheless, they shared the majority of mutations, 
indicating the common clonal origin of PTs and CLMs. 

Figure 7: Mutation-dependent splicing events occurring in CRCs. A. Exon 5 skipping associated with a GPR56 splice site 
mutation in patient 8804. Curved lines between exons indicate exon-exon junction reads. An arrow denotes the position of a splice-site 
mutation. B. A predicted GPR56 protein generated by a GPR56 splice-site mutation. C. Exon 4 skipping associated with a MTRF1 splice 
site mutation in patient 326. D. A predicted MTRF1 protein generated by a MTRF1 splice site mutation.



Oncotarget22187www.impactjournals.com/oncotarget

This phenomenon was apparent in driver mutations in 
APC, KRAS, PIK3CA, and TP53. This is because the 
driver mutations that occur in the early stages of CRC 
development may expand through sustained tumor growth 
[9]. Notably, the proportion of shared mutations between 
PTs and CLMs was highly correlated with clonality change 
during metastasis. Increased clonality during metastasis, 
which may indicate clonal diversification, was associated 
with a low mutational concordance between PTs and 
CLMs, whereas decreased clonality during metastasis, 
which may indicate convergent clonal transmission, was 
associated with high mutational concordance between PTs 
and CLMs.

Tumor clones compete with each other within 
heterogeneous tumor populations, thus resulting in the 
positive selection of fitter clones harboring advantageous 
mutations during metastasis [40]. Therefore, ubiquitous 
detection of Class 1 mutations, even after metastases, 
might indicate increased fitness for liver metastasis 
compared with Class 2 mutations, which are absent after 
metastases. Supporting this hypothesis, Class 1 contained 
a larger proportion of mutations associated with the traits 
of advanced cancer, including advanced tumor stages or 
LVI, compared with Class 2 mutations. Moreover, genes 
harboring Class 1 mutations were significantly associated 
with the hallmarks of cancer and the known CRC drivers 
were classified into Class 1.

Consistent with a previous report [7], we could 
not identify significant CLM-specific mutations. Instead, 
we found various CRC-associated genes harboring PT-
derived mutations by multiple analyses: significantly 
mutated genes (TP53, KRAS, APC, FBXW7, TCF7L2, 
SMAD4, PIK3CA, NRG1, BMI1, and CARD11), mutations 
superimposed with chromosomal deletions (APC, ATM, 
CSMD1, DSG2, FLCN, SMAD4, and TP53), mutations 
exhibiting greater VAFs in transcriptomes than in exomes 
(BMI1, HOXB9, PLXNB1, POLD1, TGIF1, SOX9, and 
TP53), and mutations enriched in the transcriptomes of 
CLMs (BCL9L, DSG2, FLCN, FLNA, ITGB4, PIK3CA, 
PIK3CD, PLEC, SMAD3, SOX9, SRSF6, TGIF1, TOP2A, 
and TP53). In particular, BMI1, DSG2, FLCN, SOX9, 
and TGIF1 were discovered to be candidate CRC genes 
in multiple analyses described above. BMI1 maintains 
self-renewal and the tumorigenic potential of CRC stem 
cells [41]. DSG2 is involved in CRC tumorigenesis by 
activating EGFR signaling [21]. FLCN has been shown 
to be a causal gene for Birt-Hogg-Dubé syndrome, 
which is associated with an increased risk for renal or 
colorectal cancers [42]. Importantly, FLCN was recently 
reported to be a novel recurrently mutated gene in an 
African American CRC cohort [20]. SOX9 was identified 
to be a frequently mutated gene in a TCGA CRC cohort 
[3]. TGIF1 was degraded by the CRC tumor suppressor 
FBXW7 and enhanced TGFβ-dependent cell growth and 
migration [27]. Therefore, further studies are required to 
demonstrate the metastatic roles of these mutated genes.

In this study, there are several limitations, including 
small sample sizes and the lack of functional validation. 
Nonetheless, our results suggest that the mutation profiles 
of PTs and CLMs at the exome and transcriptome levels 
may be valuable for understanding the underlying 
molecular alterations in CRCs. Further studies employing 
large cohorts followed by functional assessment will 
enable the discovery of useful therapeutic targets 
against CLMs.

MATERIALS AND METHODS

Patients

Nineteen CRC patients with CLMs were recruited 
from Asan Medical Center (Korea) with informed consent. 
A total of 57 tissues were freshly resected from normal 
colorectal tissues, PTs, and the associated CLMs of the 
patients. Normal tissues were collected at areas > 5 cm 
from the tumor margin by sub-epithelial dissection  
(at least 95% epithelial cells on histologic examination), 
and PTs and CLMs were synchronously collected. To 
improve the efficiency of mutation detection, we used 
PTs and CLMs containing approximately > 90% tumor 
cells under triplicate histological reviews (Supplementary 
Figure S1A). Our 19 CRC patients were supplemented 
with 15 CRC patients (SRP034161) [13], constituting 
a total of 34 Korean CRC patients with CLMs. This 
study was approved by the Institutional Review Board 
(No.2014–0150).

Whole-exome sequencing and data analysis

Genomic DNA was extracted using the PuregeneTM 
DNA purification kit (Qiagen, Venlo, Netherlands). 
Libraries were constructed using the Illumina TruSeq 
DNA Sample Prep Kit (San Diego, CA, USA), and exome 
enrichment was performed using the SeqCap EZ Human 
Exome Library v2.0 kit (Roche NimbleGen, Madison, WI, 
USA). After the quantity of the libraries was assessed by 
the CFX96 real-time system (Bio-Rad, Hercules, CA), 
paired-end sequencing was performed using the Illumina 
HiSeq 2000 sequencing system. The resulting FASTQ 
sequencing read files were aligned on the reference human 
genome 19 (hg19) using the Burrows-Wheeler Aligner 
[43]. Using Picard (Broad Institute), the SAM files were 
sorted and converted into BAM files, and duplicate reads 
were removed. Then, the remaining reads were processed 
using the Genome Analysis Toolkit (GATK) to generate 
realigned BAM files [44]. MuTect was used for the highly 
sensitive detection of somatic single-nucleotide variants 
(sSNVs) [45], and Strelka was used to detect insertion/
deletion variants (indels) [46]. VarScan 2 was used to 
identify CNAs and to determine loss of heterozygosity 
(LOH) at heterozygote dbSNPs [47]. MutSig 1.4 (Broad 
Institute) was used to identify the significantly mutated 
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genes, and SciClone was applied to infer tumor clonality 
[48]. ASCAT v2.1 analysis was performed to estimate 
tumor purity [49]. All programs were run under the default 
parameter settings. Coding variants were selected by 
annotation using dbNSFP [50] and ANNOVAR [51], and 
non-pathogenic dbSNPs (dbSNP version 132) were further 
filtered from the list.

RNA sequencing and data analysis

After isolating the total RNA using the RNeasy® 
Mini kit (Qiagen), libraries were constructed using the 
Illumina TruSeq RNA Sample Prep Kit v2 and sequenced 
using the Illumina HiSeq 2000. The reads were mapped 
on hg19 using TopHat v2.0.6 [52]. For detection of 
mutations, after removing duplicates using Picard, the 
resulting BAM files were subjected to MuTect and Strelka 
analyses. For estimation of the transcript expression 
levels, we calculated the reads per kilobase per million 
mapped reads (RPKM) using custom Python scripts. For 
detection of splicing events, the exon–exon junction reads 
were detected and counted using custom JAVA scripts.

Sanger sequencing

To validate mutations, genomic regions containing 
mutations were amplified with primers (Supplementary 
Table S9) using the GeneAmp PCR System 9700 (Thermo 
Fisher Scientific, Waltham, MA). The PCR conditions 
were as follows: 95°C for 3 min, 35 cycles of 95°C for 
20 s, 60°C for 20 s, and 72°C for 1 min. Sanger sequencing 
was performed by GENOTECH (Deajeon, Korea).

Statistical analysis

Student’s t-test, the chi-square test, or linear regression 
was applied to test significant differences or correlations 
between two groups using SPSS v11.5 (SPSS Inc., IL, 
USA). P < 0.05 was considered statistically significant.

Data access

Sequencing data are available from the NCBI 
(http://www.ncbi.nlm.nih.gov/) via the accession numbers 
SRP041725 (exome-seq) and GSE50760 (RNA-seq).
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