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ABSTRACT
We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) 

increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-
dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the 
use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective 
in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts 
antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen 
receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal 
GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert 
a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, 
in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage 
and cell death by the activation of the intrinsic apoptotic mechanism. These events 
required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing 
of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition 
without affecting ERK activation. These data suggest the existence of G-1 activated 
but GPER-independent effects that remain to be clarified. In conclusion, this study 
provides a rational to further study G-1 mechanism of action in order to include this 
drug as a treatment option to the limited therapy of ACC.

INTRODUCTION

Adrenocortical carcinoma (ACC) represents a rare 
malignancy with a very poor prognosis. Resectability is 
the prime determinant of prognosis. For patients with 
disseminated disease, chemotherapy options are few and 
lack sufficient efficacy. Mitotane, a cytotoxic drug with 
a not well documented mechanism of action [1], is the 
conventional therapy. The toxicity of mitotane has been 
a major limit to its suitability in the treatment of ACC 

patients. Severe side-effects, of either the gastrointestinal 
or the nervous system, have been frequently reported, 
and many patients are not able to take the drug regularly 
[2, 3]. Recently, monoclonal antibodies targeting  
insulin-like growth factor (IGF) receptor (IGF1R) have 
been tested in clinical trials, however, they provided a 
limited effectiveness in refractory patients [4]. Rationale 
for targeting IGF1R comes from the observation that IGFII 
[5] is overexpressed in ACC. IGFII effects are mediated 
through its receptor IGF1R resulting in activation of the 
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PI3K/AKT/mTOR cascade, the RAS/MAPK and the 
PLC/PKC pathways [6]. We have recently demonstrated 
that activation of these pathways can be triggered by the 
estrogen receptor alpha (ESR1) [7], a gene overexpressed 
in ACC that mediates estrogen-dependent proliferative 
effects [7, 8]. Our in vitro experiments demonstrated 
that ESR1 knock down was more effective than an 
IGF1R antibody in controlling H295R cell proliferation 
[7]. Targeting ESR1 in vivo using tamoxifen, a selective 
estrogen receptor modulator (SERM), was effective in 
reducing H295R xenografts growth [7].

It is well known that tamoxifen and its active 
metabolite 4-hydroxytamoxifen (OHT), not only exert 
antiestrogenic activity [9], but also act as full agonist on 
the G protein-coupled estrogen receptor GPR30 (from the 
GPER gene) [10–14]. Then, can Tamoxifen effects depend 
on GPER activation? GPER can mediate rapid E2-induced 
non-genomic signaling events, including stimulation of 
adenylyl cyclase, mobilization of intracellular calcium 
(Ca2+) stores and activation of mitogen-activated protein 
kinase (MAPK) and phosphoinositide 3-kinase (PI3K) 
signaling pathways [15–17]. GPER exhibits prognostic 
utility in endometrial [18], ovarian [19], and breast cancer 
[20] and can modulate growth of hormonally responsive 
cancer cells [10, 11, 21, 22]. Expression of GPER has 
been characterized in the outer zona glomerulosa (ZG) 
and in the medulla of the human adrenal [23], however its 
expression status in ACC is not known.

A non-steroidal, high-affinity GPER agonist 
G-1 (1-[4-(6-bromobenzo [1, 3]dioxol-5yl)-3a, 4, 5, 
9b-tetrahydro-3H-cyclopenta-[c]quinolin-8-yl]-ethanone) 
has been developed to dissect GPER-mediated estrogen 
responses from those mediated by classic estrogen receptors 
[24]. The biological effects triggered by G-1 appear cell 
type specific and dependent on the ERs expression pattern  
[25–29]. By using G-1, in this study we wanted to investigate 
the effects of GPER activation on ACC growth.

RESULTS

G-1 treatment decreases H295R cell growth in 
vitro and in vivo

We first examined GPER expression in human ACCs 
and in H295R cells. By western blot analysis (Fig. 1A) 
and real time RT-PCR (Fig. 1B-1C) we demonstrated 
that GPER is expressed in normal adrenal, in human 
ACCs and in H295R cells at variable levels. Effects of 
G-1 on cell viability and proliferation were tested using 
increasing concentrations (0.01-0.1-1 μM) for different 
times (24-48-72 h) (Fig. 1D-1E). Of the different doses 
tested only 1 μM caused a time-dependent reduction in 
H295R cell growth. Doses higher than 1uM did not show 
any more pronounced effect (data not shown). Knocking 
down of GPER gene expression, using a specific shRNA,  
(shGPER) was assessed by western blot analysis and 

revealed a substantial decrease in protein content compared 
to the control shRNA (insert, Fig. 1F). However, GPER 
silencing was able to only partially abrogate the inhibitory 
effects exerted by G-1 on H295R cell proliferation (Fig. 1F)

H295R cells were used to generate xenograft tumors 
in athymic nude mice. Twenty one days after tumor 
grafting all mice developed a detectable tumor and were 
randomized to be treated with either vehicle or G-1. G-1 
administration produced a statistically significant decrease 
in tumor volume from day 14 post treatment (Fig. 2A). 
A trend of growth inhibition was observed thereafter. The 
drug was well tolerated without lethal toxicity or body 
weight loss during treatment (data not shown). Multi-
slices T2-W MRI indicated larger tumor volume in vehicle 
treated animals compared to tumors from G-1 treated mice. 
Hyperintense large cystic area and haemorrahagic regions, 
that appear as dark areas in the tumor sections, were 
present in vehicle treated animals (Fig. 2B). Grafted tumors 
harvested after three-week treatment with G-1 showed a 
significant decrease in tumor weight compared to vehicle 
treated animals (Fig. 2C). Hematoxylin and eosin staining 
of xenograft tumors revealed some picnotic nuclei only 
in G-1 treated tumors (Fig. 2D). Ki-67 immunostaimning 
was significantly lower in G-1-treated tumors compared to 
control mice (value score control: 6, 6 ± 0, 89 (SD); value 
score G-1 treated cells: 3, 1 ± 0.55 * (SD) (*p < 0.05) 
(Fig. 2E).

G-1 induces H295R cell cycle arrest and 
cell death

Cell cycle analysis of H295R cells after 24 h of 
G-1 treatment demonstrated a cell cycle arrest in the G2 
phase (Fig 3A). This effect was further confirmed by a 
change in the expression of cyclins, after G-1 treatment 
(Fig. 3B). Specifically, by western analysis we observed 
that G-1 treatment caused a decrease in Cyclin E (CCNE), 
while Cyclin B1 (CCNB1), involved in the regulation 
of G2 phase, was increased. CCNE and CCNB1 had 
similar expression pattern in protein samples extracted 
from xenografts tumors (Fig. 3C). Collectively these 
events support the idea of cells exiting G1 but remaining 
stuck in G2 phase. In agreement with the observation 
that inappropriate accumulation of B type cyclins is 
associated with the initiation of apoptotic pathways [30], 
we found that G-1 caused cell death by apoptosis. Cells 
were treated for 24 or 48 h with vehicle or G-1, incubated 
with an Annexin-V specific antibody and sorted by flow 
cytometry. As shown in Figure 3D the number of dead 
cells increased in a time dependent manner reaching about 
40% of apoptotic cells 48 h after G-1 treatment (Fig. 3D).

G-1 causes cell nuclei morphological changes, 
DNA damage and apoptosis

G-1 ability to trigger apoptosis in H295R cells was 
further confirmed by evaluation of DNA fragmentation. 
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TUNEL staining demonstrated the presence of increased 
positive cells in cells treated with G-1 (Fig. 4A). In 
addition, Hoechst staining evidenced that untreated 
H295R cells had round nuclei with regular contours; while 
nuclei from cells treated with G-1 appeared shrunken and 
irregularly shaped or degraded with condensed DNA. 
DNA gel electrophoresis extracted from G-1 treated 
H295R cells revealed a classic laddering pattern of inter-
nucleosomal DNA fragmentation that was absent in 
control cells (Fig. 4B). This event was associated with 
an increase in Parp-1 cleavage (Fig. 4C). The presence 
of G-1 increased Bax expression while decreased Bcl-2 
(Fig. 4D). Similarly, data obtained from western blot 

analysis of tumors samples overlap with those obtained 
in H295R cells (Fig. 4E). When the intrinsic apoptotic 
mechanism is triggered, Cytochrome c (Cyt c) is 
released from the mitochondria into the cytosol [31]. 
Therefore we fractionated G-1 treated H295R cell lysates 
into cytosolic and mitochondrial fractions and evaluated 
Cytochrome c release by western blot analysis (Fig. 4F). 
Cytochrome c levels increased in the cytosolic fraction 
of treated samples while decreased in the mitochondrial 
compartment. Cytochrome c release from mitochondria 
into the cytosol triggers caspase activation. After G-1 
treatment we detected active Caspase 9 (Fig. 4G) as well 
as the executioner Caspase 3/7 (Fig. 4H).

Figure 1: G-1 treatment decreases H295R cell growth in vitro. A. Western blot analysis of GPER was performed on 50 μg of total 
proteins extracted from normal adrenal, ACCs and H295R cells. GAPDH was used as a loading control. B-C. GPER mRNA expression 
in normal adrenal and ACCs (B), H295R and SKBR3 (positive control) cells (C) was analyzed by real time RT-PCR. Each sample was 
normalized to its GAPDH RNA content. Final results are expressed as n-fold differences of gene expression relative to calibrator. Data 
represent the mean + SE of values from at least three separate RNA samples; *P < 0.05, versus calibrator). D-E. H295R cells were treated 
with G-1 (0.01–1 μM) for different times (24, 48 and 72 h). Cell proliferation was evaluated by [3H]Thymidine incorporation (D) and MTT 
(E) assays. Results were expressed as mean + SE of three independent experiments each performed in triplicate. Statistically significant 
differences are indicated (*P < 0.05 versus basal). F. MTT assay was performed on H295R cells, which were previously transfected for 
72 h in the presence of control vector (shRNA) or shGPER. Twenty-four hours after transfection cells were treated in 2.5% DCC-FBS 
medium for 48 h with G-1 (1 μM). Results were expressed as mean + SE of three independent experiments each performed in triplicate.  
(*p < 0.05 versus basal). The insert shows a Western blotting assay on H295R protein extracts evaluating the expression of GPER receptor 
in the presence of shRNA or of shGPER. GAPDH was used as a loading control.
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Figure 2: G-1 treatment decreases H295R cell growth in vivo. A. 6 × 106 H295R cells were injected subcutaneously in the flank 
region of immunocompromized mice and the resulting tumors were grown to an average of 200 mm3 twenty one days after inoculation. 
Tumor volumes were calculated, as indicated in Materials and Methods. Values represent the mean + SE of measured tumor volume over 
time in the control group (filled circles, n = 10) and in the G-1-treated group (filled triangles, n = 10). Data represent pooled values from 
two independent experiments. (*P < 0.05 versus control at the same day of treatment). B. In vivo coronal T2-weighted spin-echo MR image 
of primary ACCs. Examples of multi-slices T2-W MRI (section thickness of 1 mm) tumors from vehicle treated mice (control tumors) 
show a larger volume compared to tumors from G-1 treated mice. Hyperintense large cystic area and haemorrhagic regions that appear as 
dark areas in the tumor sections, are present in the control tumors. C. After 3-week treatment tumors were harvested and weighed. Values 
represent the mean + SE of measured tumor weight (n = 10) (* P < 0.05 versus vehicle). D. Hematoxylin and eosin stained histologic 
images of H295R xenograft tumors. E. Representative pictures of Ki-67 immunohistochemical staining of H295R xenograft tumors.
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Figure 3: Effects of G-1 treatment on cell cycle distribution and on cell death. A. H295R cells were synchronized in serum-
free media for 24 h and then exposed to vehicle (basal) or G-1 (1 μM) for the indicated times. The distribution of H295R cells in the cycle 
was determined by Flow Cytometry using Propidium Iodide stained nuclei. Table shows the distribution of H295R cell population (%) in 
the various phases of cell cycle. B-C. Western blot analyses of Cyclin E (CCNE) and Cyclin B1 (CCNB1) were performed equal amounts 
of total proteins extracted from H295R cells treated with G-1 (1 μM) for 24 h (B) and xenografts tumors (C) Blots are representative of 
three independent experiments with similar results. GAPDH was used as a loading control. D. Subconfluent H295R monolayers starved for 
24 h were treated for the indicated times with G-1 (1 μM). Then cells were stained with Annexin V/ FITC plus PI and examined by flow 
cytometer. Graph represents the percentage of cell death at the different times of treatment. (* P < 0.05 versus basal).
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Figure 4: G-1 treatment induces apoptosis in H295R cells. A. Cells were left untreated (basal) or treated with G-1 (1 μM) for 24 h; 
after treatment cells were fixed with paraformaldehyde and processed for TUNEL staining. Nuclei counterstaining was performed using 
Hoechst 33342. Fluorescent signal was observed under a fluorescent microscope (magnification 200X). Images are from a representative 
experiment. B. After 48 h treatment DNA was extracted from cells and analyzed on a 1.5% agarose gel. Images are from a representative 
experiment. C–F. H295R cells were treated with G-1 (1 μM) for 24 h. Western blot analyses of Parp-1 (C), Bax and Bcl-2 (D). Cytochrome c 
(F) were performed on equal amounts of total proteins. Blots are representative of three independent experiments with similar results. Bax 
and Bcl-2 were analyzed on total proteins extracted from xenograft tumors (E). GAPDH was used as a loading. G-H. H295R cells were 
treated with G-1 (1 μM) for 24 h. Caspase 9 (G) and caspase 3/7 (H) activity was determined by a luminescent assay. Results were expressed 
as percentage of enzyme activity. Graphs represent mean + SE of three independent experiments each performed in triplicate. Statistically 
significant differences are indicated (*P < 0.05 versus basal).
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G1 treatment causes sustained 
ERK1/2 phosphorylation

In order to define the molecular mechanism 
associated with G-1-induced apoptosis, we investigated 
the activation of MAPK family members extracellular 
signal-regulated kinase 1/2 (ERK1/2), which have been 
demonstrated to be involved in apoptosis if activated 
for a prolonged time [32]. As shown in Figure 5A, G-1 
treatment activated ERK1/2 in a time-dependent manner 

as seen by the increased levels of their phosphorylation 
status. Activation started after 30-min of G-1 treatment 
and persisted for up to 24 h (Fig. 5A). ShGPER, that 
partially reversed G-1 effects on cell proliferation 
(Fig. 1E) did not affect ERK1/2 activation (Fig. 5B). 
Involvement of ERK1/2 in G-1-induced apoptosis 
of adrenocortical cancer cells was confirmed by the 
observation that MEK1 inhibitor, PD98059, prevented 
the up-regulatory effect exerted by G-1 on Bax 
expression (Fig. 5C).

Figure 5: G-1-induced MAPK activation correlates with an increased protein expression of proapoptotic Bax. H295R 
cells were transfected with shRNA A. or shGPER B. for 72 h. Forty-eight hours after transfection cells were untreated (0) or treated for 
at the indicated time with G-1 (1 μM). Western blot analyses of pERK1/2 were performed on 10 μg of total proteins. ERK1/2 was used 
as a loading control. Blots are representative of three independent experiments with similar results. The insert in (B) shows a Western 
blot on H295R protein extracts evaluating the expression of GPER receptor in the presence of shcontrol or of shGPER. GAPDH was 
used as a loading control. (A-B up panels) Graphs represent means of normalized optical densities from three experiments, bars represent 
SE. *p < 0.05 versus basal. C., H295R cells were treated for 24 h with vehicle (−) or G-1 (1 μM) alone or combined with PD98059 
(10 μM). Western blot analysis of Bax was performed on equal amounts of total proteins. GAPDH was used as a loading control. Blots are 
representative of three independent experiments with similar results.
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DISCUSSION

Here, we demonstrated for the first time that a 
selective non estrogenic ligand of GPER named G-1 is 
able to inhibit H295R cell growth both in vitro and in vivo 
in a xenograft model. Starting from these results we 
investigated the potential role of GPER in this event.

First, we showed GPER expression both at 
transcriptional and post-transcriptional level in our ACC 
cell model represented by H295R cells as well as in 
normal adrenal and ACC samples. These first analyses 
aimed to assess only if GPER was expressed in normal 
and tumor adrenal and not to indicate any difference in 
expression levels, since overexpression of GPCR is not a 
common event in human diseases [20].

Recent studies have shown that activation of 
GPER initiates signaling cascades that, depending on the 
cell type, are associated with both proliferation [11, 33] 
and apoptosis [29, 32]. Ariazi et al. have highlighted 
the opposite effects played by GPER activation on cell 
proliferation of ERs negative and ERs positive breast 
cancer cells [17]. Specifically, when ERs are expressed, 
activation of GPER leads to inhibition of cell proliferation. 
On the contrary, when cells are ERs negative activation of 
GPER leads to an increase in cell proliferation [17]. Our 
work, demonstrated that micromolar concentrations of G-1 
decrease H295R cell proliferation in vitro, significantly 
reduce ACC tumor volume in vivo and cause a marked 
decrease in the expression of the nuclear proliferation 
antigen Ki-67. Accordingly, flow cytometry analysis 
revealed that G-1 treatment causes changes in cellular 
distribution within the different phases of cell cycle. It is 
well established that cell cycle progression is dynamically 
and strictly regulated by complexes containing cyclins 
and cyclin dependent kinases (CDKs) [34]. Here, we 
found that after G-1 treatment expression of G1 phase 
 cyclin CCNE was reduced, while G2 phase cyclin CCNB1 
was increased. This observation indicates that H295R cells 
do not bypass G2 checkpoint. Similar data were reported 
for prostate cancer cells, where GPER activation by 1 μM 
G-1 caused cell cycle arrest at the G2 phase [35]. G2 phase 
arrest was followed by apoptotic cell death as indicated 
by positive staining for Annexin-V, nuclei morphological 
changes and appearance of DNA ladder pattern.

Apoptosis can be induced by extrinsic [36] and 
intrinsic [37] mechanisms; the latter is strictly controlled 
by bcl-2 family of proteins [38] that consists of both 
pro- (Bax, Bad, Bak, Bid) and anti-apoptotic (Bcl-2, 
Bcl-xl) proteins able to modulate the execution phase 
of the cell death pathway. Bax exerts pro-apoptotic 
activity by allowing Cytochrome c translocation from the 
mitochondria to the cytosol [39]. Cytochrome c then binds 
to apoptotic protease-activating factor-1 (Apaf-1) [40], 
which in turn associates with Procaspase 9 resulting in the 
activation of its enzymatic activity [41], responsible for 
the proteolytic activation of executioner Caspase 3 [42]. 

The active Caspase 3 is then involved in the cleavage of a 
set of proteins including Poly-(ADP) ribose polymerase-1 
(Parp-1) [43]. Bcl-2, instead, exerts its anti-apoptotic 
activity, at least in part, by inhibiting the translocation 
of Bax to the mitochondria [40]. Changes in expression 
and/or activation of all the above mentioned biochemical 
markers of mitochondrial apoptotic pathway were 
observed in H295R cells in response to G-1 treatment.

MAPK family members ERK1/2 are part of 
GPER signaling [14]. Despite the well-defined role 
of ERK1/2 activation in proliferative pathways [44], 
sustained ERK1/2 phosphorylation is involved in 
apoptotic events [29, 32, 45]. Cagnol and Chambard 
have summarized more than 50 publications showing a 
link between prolonged ERK activation and apoptosis 
[46]. Specifically it can be appreciated that duration of 
ERK activation in promoting cell death can be different 
depending on cell type and stimuli. G-1 caused sustained 
ERK1/2 activation in H295R, this event was clearly 
involved in the induction of apoptosis, since chemical 
inhibition of MEK1/2 using PD98059 abrogated G-1 
ability to induce the expression of proapoptotic factor 
Bax. Several reports pointed out that ERK1/2 activity 
can be associated with upregulation of proapoptotic 
members of the Bcl-2 family, such as Bax [47–49]. 
Moreover, ERK activity has been shown to directly affect 
mitochondrial function [46] by decreasing mitochondrial 
respiration [50, 51] and mitochondrial membrane 
potential [51, 52], causing mitochondrial membrane 
disruption and Cytochrome c release [52–54].

Interestingly, GPER silencing was not able to 
prevent G-1 induced ERK phosphorylation, underlying 
the existence of alternative targets for G-1. These targets, 
similarly to GPER, are able to activate ERK1/2 signaling, 
however for a prolonged period, and clearly deserve 
further investigation.

Other papers evidenced inhibitory effects exerted by 
G-1 on the growth of different tumor cell types in a GPER 
independent manner [55–57], but a precise mechanism has 
not been defined. Although further studies are needed to 
clarify the molecular mechanisms behind G-1-dependent 
effects, this molecule could be a viable alternative to the 
current limited treatment options and therapeutic efficacy 
for adrenocortical cancer.

In conclusion, we demonstrated that treatment of 
H295R cells with G-1 reduced tumor growth in vitro and 
in vivo through a mechanism involving not only GPER 
activation. G-1 clearly causes cell-cycle arrest at the G2 
phase and apoptosis through a mechanism that requires 
sustained ERK1/2 activation. Our previously published 
results highlighting the ability of OHT, a known GPER 
agonist and ESR1 antagonist, to reduce ACC cell growth, 
together with the present findings indicating the inhibitory 
effects exerted by G-1, open up new perspectives for the 
development of therapies with molecules modulating 
estrogen receptors action for the treatment of ACC.
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MATERIALS AND METHODS

Cell culture and tissues

H295R cells were obtained from Dr W.E. Rainey 
(University of Michigan at Ann Arbor, USA) [58]. Cells were 
cultured as previously described [9]. Cell monolayers were 
subcultured onto 100 mm dishes for phosphatase activity and 
laddering assay (8 × 106 cells/plate), 60 mm dishes for protein 
and RNA extraction (4 × 106 cells/plate) and 24 well culture 
dishes for proliferation experiments (2 × 105 cells/well) 
and grown for 2 days. Prior to experiments, cells were 
starved overnight in DMEM/F-12 medium without phenol 
red and containing antibiotics. Cells were treated with 
(±)-1-[(3aR*, 4S*, 9bS*)-4-(6-Bromo-1, 3-benzodioxol- 
5-yl)-3a, 4, 5, 9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-
ethanone (G-1) (1 μM) (Tocris Bioscience, Bristol, UK) in 
DMEM/F-12 containing FBS-DCC 2, 5% (fetal bovine 
serum dextran-coated charcoal-treated). Inhibitors PD98059 
(PD) (10 μM) (Calbiochem, Merck KGaA, Darmstadt, 
Germany) was used 1 h prior to G-1. Adrenocortical 
tumors, removed at surgery, and normal adrenal cortex, 
macroscopically dissected from adrenal glands of kidney 
donors, were collected at the hospital-based Divisions of the 
University of Padua (Italy). Tissue samples were obtained 
with the approval of local ethics committees and consent 
from patients, in accordance with the Declaration of Helsinki 
guidelines as revised in 1983. Diagnosis of malignancy was 
performed according to the histopathologic criteria proposed 
by Weiss et al. [59] and the modification proposed by Aubert 
et al. [60]. Clinical data of the six ACC patients included 
in this study are shown in Table 1. Patient C6 terminated 
mitotane treatment six months after beginning of therapy 
for severe gastrointestinal side effects. Patients C1 and C2 
were treated with chemotherapy EAP protocol (etoposide, 
doxorubicin, and cisplatin) + mitotane.

RNA extraction, reverse transcription and real 
time PCR

TRizol RNA isolation system (Invitrogen, Carlsbad, 
CA, USA) was used to extract total RNA from H295R, 

SKBR3 and ACCs. Each RNA sample was treated 
with DNase I (Invitrogen), and purity and integrity of 
the RNA were confirmed spectroscopically and by gel 
electrophoresis before use. One microgram of total 
RNA was reverse transcribed in a final volume of 30 μl 
using the ImProm-II Reverse transcription system kit 
(Promega Italia S.r.l., Milano, Italia); cDNA was diluted 
1:2 in nuclease-free water, aliquoted, and stored at − 20°C. 
The nucleotide sequences for GPER amplification were 
forward, 5′-CGCTCTTCCTGCAGGTCAA-3′, and 
reverse, 5′-ATGTAGCGGTCGAAGCTCATC-3′ ; the 
nucleotide sequences for GAPDH amplification were 
forward, 5′-CCCACTCCTCCACCTTTGAC-3′, and 
reverse, 5′-TGTTGCTGTAGCCAAATTCGTT-3′. PCR 
reactions were performed in the iCycler iQ Detection 
System (Bio-Rad Laboratories S.r.l., Milano, Italia) 
using 0.1 μmol/L of each primer, in a total volume of 
30 μl reaction mixture following the manufacturer’s 
recommendations. SYBR Green Universal PCR Master 
Mix (Bio-Rad) with the dissociation protocol was used 
for gene amplification; negative controls contained water 
instead of first-strand cDNA. Each sample was normalized 
to its GAPDH content. The relative gene expression levels 
were normalized to a calibrator (normal tissue for ACC 
tissues or SKBR3 for H295R cells). Final results were 
expressed as n-fold differences in gene expression relative 
to GAPDH and calibrator, calculated using the ΔΔCt 
method as previously shown [61].

Western blot analysis

Fifty μg of protein was subjected to western 
blot analysis [62]. Blots were incubated overnight at 
4°C with antibodies against GPER, Cyclin E (CCNE), 
Cyclin B1 (CCNB1), phospho-Rb, Cytochrome c, Bax, 
Bcl-2, Parp1, pERK1/2-ERK2 (all from Santa Cruz 
Biotechnology, Santa Cruz CA, USA). Membranes 
were incubated with horseradish peroxidase (HRP)-
conjugated secondary antibodies (Amersham Pharmacia 
Biotech, Piscataway, NJ) and immunoreactive bands 
were visualized with the ECL western blotting detection 
system (Amersham Pharmacia Biotech, Piscataway, NJ). 

Table 1: Clinical data of the 6 ACC patients analyzed in this study
Sample ID Age(years) Gender Stage at 

surgery
Syndrome Weiss 

score
Size 
(cm)

Outcome

C1 41 M IV Cushing 9 16 Died, 1 year

C2 17 F IV Cushing 9 14 Died, 18 months

C3 43 F III None 4 9 Died, 8 years

C4 46 M III None 3 18 Remission, 7 years

C5 47 M IV Cushing 9 14 Died, 1 year

C6 57 M II SubclinicalCushing 5 14 Remission, 4 years
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To assure equal loading of proteins, membranes were 
stripped and incubated overnight with Glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) antibody (Santa 
Cruz Biotechnology).

Histopathological analysis

Tumors were fixed in 4% formalin, sectioned at 
5 μm and stained with hematoxylin and eosin, as suggested 
by the manufacturer (Bio-Optica, Milan, Italy).

Immunohistochemical analysis

Paraffin-embedded sections, 5 mm thick, were 
mounted on slides precoated with poly-lysine, and then 
they were deparaffinized and dehydrated (seven to eight 
serial sections). Immunohistochemical experiments 
were performed as described [63], using mouse 
monoclonal Ki-67 primary antibody at 4°C over-night 
(Dako Italia Spa, Milano, Italy). Then, a biotinylated  
goat-anti-mouse IgG was applied for 1 h at room 
temperature, to form the avidin biotin-horseradish 
peroxidase complex (Vector Laboratories, CA, 
USA). Immunoreactivity was visualized by using the 
diaminobenzi-dine chromogen (Vector Laboratories). 
Counterstaining was carried out with hematoxylin (Bio-
Optica, Milano, Italy). The primary antibody was replaced 
by normal rabbit serum in negative control sections.

Cytochrome c detection

Cells were treated for 24 h, fractioned and processed 
for Cytochrome c detection as previously reported 
[26]. Briefly, cells were harvested by centrifugation at 
2500 rpm for 10 min at 4°C. Pellets were resuspended 
in 50 μl of sucrose buffer (250 mM sucrose; 10 mM 
Hepes; 10 mM KCl; 1.5 mM MgCl2; 1 mM EDTA; 1 mM 
EGTA) (all from Sigma-Aldrich, Milano, Italy) containing 
20 μg/ml aprotinin, 20 μg/ml leupeptin, 1 mM PMSF and 
0.05% digitonine (Sigma-Aldrich). Cells were incubated 
for 20 min at 4°C and then centrifuged at 13,000 rpm for 
15 min at 4°C. Supernatants containing cytosolic protein 
fraction were transferred to new tubes and the resulting 
mitochondrial pellets were resuspended in 50 μl of lysis 
buffer (1% Triton X-100; 1 mM EDTA; 1 mM EGTA; 
10 mM Tris-HCl, pH 7.4) (all from Sigma-Aldrich) 
containing 20 μg/ml aprotinin, 20 μg/ml leupeptin, 
1 mM PMSF (Sigma-Aldrich) and then centrifuged at 
13,000 rpm for 10 min at 4°C. Equal amounts of proteins 
were resolved by 11% SDS/polyacrylamide gel as 
indicated in the Western blot analysis paragraph.

Cell cycle analysis and evaluation of cell death

Subconfluent monolayers growing in 60 mm plates 
were depleted of serum for 24 h and treated for an additional 
24 h with G-1. The cells were harvested by trypsinization 

and resuspended with 0.5 ml of Propidium Iodide solution 
(PI) (100 μg/ml) (Sigma-Aldrich) after treatment with 
RNase A (20 μg/ml). The DNA content was measured 
using a FACScan flow cytometer (Becton Dickinson, 
Mountain View, CA, USA) and the data acquired using 
CellQuest software. Cell cycle profiles were determined 
using ModFit LT program. Subconfluent monolayers 
growing in 60 mm plates were depleted of serum for 
24 h and treated for 24 and 48 h with G-1. Trypsinized 
cells were incubated with Ligation Buffer (10 mM Hepes 
(pH = 7.4), 150 mM NaCl, 5 mM KCl, 1 mM MgCl2 and 
1.8 mM CaCl2) containing Annexin-V-FITC (1:5000) 
(Santa Cruz) and with Propidium Iodide. Twenty minutes 
post-incubation at room temperature (RT) protected from 
light, samples were examined in a FACSCalibur cytometer 
(Becton Dickinson, Milano, Italy). Results were analyzed 
using CellQuest program.

Caspases 9 and 3/7 activity assay

H295R cells after treatments were subjected to 
caspases 9 and 3/7 activity measurement with Caspase-
Glo 9 and 3/7 assay kits (Promega) and modified protocol. 
Briefly, the proluminescent substrate containing LEHD or 
DEVD sequences (sequences are in a single-letter amino 
acid code) are respectively cleaved by Caspases 9 and 
3/7. After caspases cleavage, a substrate for luciferase 
(aminoluciferin) is released resulting in luciferase reaction 
luminescent signal production. Cells were trypsinized, 
harvested and then suspended in DMEM-F12 before being 
incubated with an equal volume of Caspase-Glo reagent 
(40 μl) at 37°C for 1 h. The luminescence of each sample 
was measured in a plate-reading luminometer (Gen5 2.01) 
with Synergy H1 Hybrid Reader.

TUNEL (terminal deoxynucleotidyltransferase-
mediated dUTP nick-end labelling) assay

Cells were grown on glass coverslips, treated 
for 24 h and then washed with PBS and fixed in 4% 
formaldehyde for 15 min at room temperature. Fixed 
cells were washed with PBS and then soaked for 
20 min with 0.25% of Triton X-100 in PBS. After two 
washes in deionized water, they were stained using the  
Click-iT® TUNEL Alexa Fluor® Imaging Assay 
(Invitrogen) according to the manufacturer’s protocol. 
Co-staining with Hoechst33342 was performed to analyze 
the nuclear morphology of the cells after the treatment. 
Cell nuclei were observed and imaged under an inverted 
fluorescence microscope (200X magnification).

Determination of DNA fragmentation

To determine the occurrence of DNA 
fragmentation, total DNA was extracted from control 
and G-1 (1 μM) treated (48 h) cells as previously 
described [26]. Equal amounts of DNA were analyzed 
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by electrophoresis on a 2% agarose gel stained with 
Ethidium Bromide (Sigma-Aldrich).

Assessment of cell proliferation

[3H]Thymidine incorporation assay

H295R cell proliferation after G-1 treatment was 
directly evaluated after a 6 h incubation with 1 μCi of 
[3H]thymidine (Perkin- Elmer Life Sciences, Boston, 
MA, USA) per well as previously described [64]. Each 
experiment was performed in triplicate and results are 
expressed as percent (%) of basal.
MTT assay

The effect of G-1 on cell viability was measured 
using 3-[4, 5-Dimethylthiaoly]-2, 5-diphenyltetrazolium 
bromide (MTT) assay as previously described [7]. Briefly, 
cells were treated for different times as indicated in 
figure legends. At the end of each time point fresh MTT 
(Sigma-Aldrich), re-suspended in PBS, was added to each 
well (final concentration 0.33 mg/ml). After 30 minutes 
incubation, cells were lysed with 1 ml of DMSO (Sigma-
Aldrich). Each experiment was performed in triplicate 
and the optical density was measured at 570 nm in a 
spectrophotometer.

Gene silencing experiments

For the gene silencing experiments, cells were plated 
in 12 well plates (1 × 105 cells/well) for proliferation 
experiments or in 6 well plates (2 × 105 cells/well) for 
Western blot analysis; cells were transfected with control 
vector (shRNA) or shGPER in 2, 5% DCC-FBS medium 
using lipofectamine 2000 transfection reagent (Invitrogen) 
according to the manufacturer’s recommendations for a 
total of 72 h. For proliferation experiments cells were 
transfected for 24 h and then treated for 48 h before 
performing MTT assay.

Xenograft model

Four-week-old nu/nu − Forkhead box N1nu female 
mice were obtained from Charles River Laboratories Italia 
(Calco, Lecco, Italy). All animals were maintained in 
groups of five or less and quarantined for two weeks. Mice 
were kept on a 12 h/12 h light/dark regimen and allowed 
access to food and water ad libitum. H295R cells, 6 × 106, 
suspended in 100 μl PBS (Dulbecco’s Phosphate Buffered 
Saline), were combined with 30 μl of Matrigel (4 mg/ml) 
(Becton Dickinson) and injected subcutaneously in the 
shoulder of each animal. Resulting tumors were measured 
at regular intervals using a caliper, and tumor volume was 
calculated as previously described [65], using the formula: 
V = 0.52 (L × W 2), where L is the longest axis of the tumor 
and W is perpendicular to the long axis. Mice were treated 
21 days after cell injection, when tumors had reached 
an average volume of about 200 mm3. Animals were 

randomly assigned to be treated with vehicle or G-1 
(Tocris Bioscience) at a concentration of 2 mg/kg/daily. 
Drug tolerability was assessed in tumor-bearing mice in 
terms of: a) lethal toxicity, i.e. any death in treated mice 
occurring before any death in control mice; b) body weight 
loss percentage = 100 − [(body weight on day x/body 
weight on day 1) × 100], where x represents a day during 
the treatment period [66, 67]. Animals were sacrificed by 
cervical dislocation 42 days after cell injection. All animal 
procedures were approved by Local Ethics Committee for 
Animal Research.

In vivo magnetic resonance analyses

Mice were anesthetized with 1–2% isofluorane 
in O2, 1 L/min (Forane, Abbott SpA, Latina, Italia) 
and underwent MRI/MRS study. MR analyses were 
performed at 4.7 T on Agilent Technologies system (Palo 
Alto, CA, USA). T2-weighted MRI was acquired using 
a spin echo sequence with the following parameters: 
TR/TE = 3000/70 ms, section thickness of 1.0 mm, 
number of acquisitions = 4, point resolution of 256 μm.

Scoring system

The immunostained slides of tumor samples were 
evaluated by light microscopy using the Allred Score [68] 
which combines a proportion score and an intensity score. 
A proportion score was assigned representing the estimated 
proportion of positively stained tumor cells (0 = none; 
1 = 1/100; 2 = 1/100 to < 1/10; 3 = 1/10 to < 1/3; 4 = 1/3 
to 2/3; 5 = > 2/3). An intensity score was assigned by the 
average estimated intensity of staining in positive cells 
(0 = none; 1 = weak; 2 = moderate; 3 = strong). Proportion 
score and intensity score were added to obtain a total score 
that ranged from 0 to 8. A minimum of 100 cells were 
evaluated in each slide. Six to seven serial sections were 
scored in a blinded manner for each sample.

Data analysis and statistical methods

All experiments were performed at least three times. 
Data were expressed as mean values + standard error 
(SE), statistical significance between control (basal) and 
treated samples was analyzed using GraphPad Prism 5.0 
(GraphPad Software, Inc.; La Jolla, CA) software. Control 
and treated groups were compared using the analysis of 
variance (ANOVA) with Bonferroni or Dunn’s post hoc 
testing. A comparison of individual treatments was also 
performed, using Student’s t test. Significance was defined 
as p < 0.05.
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