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AbstrAct
With ever-increasing elder population, the high incidence of age-related diseases 

such as neurodegenerative disorders has turned out to be a huge public concern. 
Especially the elders and their families dreadfully suffer from the learning, behavioral 
and cognitive impairments. The lack of effective therapies for such a horrible symptom 
makes a great demanding for biological mechanism study for cognitive aging. 
Epigenetics is an emerging field that broadens the dimensions of mammalian genome 
blueprint. It is, unlike genetics, not only inheritable but also reversible. Recent 
studies suggest that DNA methylation, one of major epigenetic mechanisms, plays 
a pivotal role in the pathogenesis of age-related neurodegenerations and cognitive 
defects. In this review, the evolving knowledge of age-related cognitive functions 
and the potential DNA methylation mechanism of cognitive aging are discussed. 
That indicates the impairment of DNA methylation may be a crucial but reversible 
mechanism of behavioral and cognitive related neurodegeneration. The methods to 
examine the dynamics of DNA methylation patterns at tissue and single cell level and 
at the representative scale as well as the whole genome single base resolution are 
also briefly discussed. Importantly, the challenges of DNA methylation mechanism of 
cognitive aging research are brought up, and the possible solutions to tackle these 
difficulties are put forward.

HippocAmpus is A key region in 
brAin counting for Age-relAted 
functionAl decline in leArning, 
memory And cognition

The hippocampus is an extremely important 
component in the brain and is closely associated with 
the cerebral cortex for learning, memory and cognitive 
functions. Two major functions of the hippocampus are 
the storage and interpreter of spatial information, and a 
mediator of consolidation of short-term memory into 
long-term memory [1]. Nearly any structural, metabolic 
or psychological disturbances affecting these areas may 
result in cognitive behavioral abnormalities such as 
dementia [2]. Especially, during the normal aging process, 
humans and animals experience age-related memory and 

cognitive impairments [1, 3-4]. It was initially thought 
that the major impact to the etiology of hippocampus 
function decline with age was a massive loss of neurons 
and substantial changes in neuronal morphology in 
pyramidal cell layers [5-7]. However, when it was 
possible to eliminate many confounding factors of the 
previous studies, this was proved to be a misconception 
[8]. As a matter of fact, neuron numbers and morphologies 
do not change considerably with normal aging in the 
hippocampus, suggesting that the functional weakening 
of hippocampal neurons with age is the crucial alteration, 
which may result from defects in synapse functions, or, 
in other words, the neuronal plasticity. The mechanisms 
involved in the regulation of neuronal plasticity in aging 
as well as other neurological disorders are thus believed 
to support cognitive functions [8, 9]. Maintenance of 
long term potentiation (LTP), a cellular indicator of 
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brain cognitive function, requires gene expression and 
de novo protein synthesis [10]; therefore, changes of 
gene expression/function in neurons are expected to take 
place with functional deterioration of learning, memory 
and cognition. Changes in gene sequence as a cause of 
gene dysfunction leading to mental health disorders were 
attracted most attention in last few decades, however, 
sequence changes/variations explain only a small portion 
of the clinical cases such as Alzheimer’s and Parkinson’s 
diseases [11-13]. We and others have found altered 
synaptic plasticity gene expression in the hippocampus 
and frontal cortex neuronal cells/tissues with advancing 
age and age-related neurodegenerative diseases, though 
molecular mechanisms underlying this altered gene 
expression are largely unknown [14-16]. 

Heterogeneity of HippocAmpAl 
subregionAl neurons And tHeir 
responses to Aging

It is important to understand that the hippocampus 
is not a unitary structure—there are three primary cell 

groups within the hippocampus that combine to make 
up an internal circuit (Figure 1, adapted from Santiago 
Ramón Cajal’s drawing [17]). These include subregions of 
cornu ammonis 1 (CA1) and cornu ammonis 3 (CA3) with 
pyramidal cells and dentate gyrus (DG) with granule cells. 
Information mostly travels uni-directionally through the 
hippocampus, beginning with inputs from the entorhinal 
cortex to the dentate gyrus, then from the dentate gyrus 
to the CA3 layer, then to the CA1 layer and back to the 
entorhinal cortex. Other outputs go to several areas of the 
brain including septal areas and the hypothalamus. High-
throughput gene expression investigations in hippocampal 
CA1, CA3 and DG show regional disparity in response 
to age and reduced food intake relates to differences in 
vulnerability to stressors, the availability of neurotrophic, 
and cell survival mechanisms, and differences in 
cell function[18, 19]. Major types of hippocampus 
subregional neurons including CA1 pyramidal neurons, 
CA3 pyramidal neurons, and DG granule neurons have 
been studied extensively, and are believed to play central 
roles for learning and memory and cognitive functions 
of the hippocampus. Since hippocampal neurons are 

figure 1: basic circuit of the hippocampus subregions. DG: dentate gyrus. CA1: cornu ammonis 1. CA3: cornu ammonis 3. 
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the main effectors of age-associated neurodegeneration. 
More importantly, CA1 and CA3 pyramidal neurons are 
more susceptible to neurodegenerative disorders such 
as Alzheimer’s disease, whereas granule neurons in DG 
are more vulnerable to age-related damage [1, 20-21]. 
The mechanism of this selective subregion neuronal 
vulnerability in hippocampal aging and age-related 
disorders is unknown yet. 

Neuronal recordings from the hippocampus of 
adult rats reveal that when a rat explores an environment, 
pyramidal and granule cells show patterned neural activity 
that is highly correlated with a rat’s position in space [22, 
23]. Between 30% and 50% of CA1 pyramidal cells show 
place-specific firing in a given environment [24]. The 
first demonstration that hippocampal pyramidal cells are 
functionally heterogeneous in relation to the generation 
of theta-band oscillation and synchrony was reported 
with intracellular recordings, which were made in the 
dorsal hippocampal formation of urethane-anesthetized 
rats. CA1 pyramidal cells formed theta-related subsets 
of phasic theta-ON cells and tonic theta-ON cells and 
non-theta-related subsets of simple spike discharging 
cells, complex spike discharging cells and ‘‘silent’’ cells. 
Similar findings were evident for CA3 pyramidal cells 
[25]. In response to aging, as the number and morphology 
of cells for the most part do not change, impairment of 
neuronal functions will further extend the complexity 
and heterogeneity of neurons in the hippocampus. There 
is currently little information available on the molecular 
basis of functional and structural variability between and 
within different populations of hippocampal neurons. In 
addition, the variation of gene expression in these cells are 
believed to be increased with age from cell to cell [26, 27], 
and the further investigation is urgently needed. Again, 
the regulation mechanisms underlying this altered gene 
expression at subregional neuron population and single 
cell levels are not known.

tHe plAsticity of cognitive Aging

Favorable interventions such as dietary restriction, 
physical exercise, and enriched environment have been 
identified as potential means to slow brain ageing and 
forestall neurodegeneration and cognition, and act in 
part by increasing BDNF expression and enhancing 
neurogenesis in hippocampus [28-32]. Inhibiting target 
of rapamycin (TOR) activity acts to extend lifespan in a 
range of model organisms, including yeast, worms, and 
flies [33-37]. Evidence also indicates that mechanistic 
TOR (mTOR) plays a key role in regulating mammalian 
lifespan. Treatment of mice with rapamycin at 9 months 
and 20 months of age all results in an extension of lifespan 
[38-39]. Rapamycin treatment of mice also achieves an 
improvement of age-related brain cognition, and abolishes 

cognitive deficits and reduces the level of amyloid-beta, 
a widely blamed culprit for neuronal death that causes 
neuronal degeneration in the hippocampus, in a mouse 
model of Alzheimer’s disease [40-43]. Using a genetic 
model (mTOR∆/∆) of reduced mTOR expression, Finkel 
lab found that reducing mTOR activity at 25% of wild-
type levels produces a significant increase (20%) in 
overall lifespan and a tissue-specific age-related functional 
preservation in many but not all tissues. The brain was 
one area where reducing mTOR activity appeared to have 
a marked functional benefit including spatial learning 
activity [44]. 

dnA metHylAtion And cognitive 
Aging

DNA cytosine methylation, involving the addition/
removal of a methyl group to/from the 5 position of 
the cytosine pyrimidine ring, is one of main epigenetic 
mechanisms in higher eukaryotes including plants, 
rodents, human, and plays a key role in maintaining 
genome stability and regulating gene expression [45-48]. 
It has been long believed that DNA methylation, a gene 
transcription regulation mechanism, does not exist in 
yeast, worm and fly because the DNA methyltransferases 
(DNMTs) had been lost during evolution millions of 
years ago for those lower organisms [49-51]. There are 
four major dynamic waves of DNA methylation that 
occur throughout the life of the organism: (i) erasure in 
primordial germ cells, (ii) parental-specific establishment 
in the germ line, (iii) selective maintenance during pre-
implantation and reprogramming, and (iv) general 
life-long maintenance. To establish and maintain DNA 
methylation, nature has evolved an enzymatic toolbox 
for altering cytosine within the genome. Methylation 
of cytosine relies on several catalytically active Dnmts. 
Dnmt1 is a maintenance methyltransferase that copies 
the pre-existing methyl marks during DNA replication. 
In contrast, Dnmt3a and Dnmt3b catalyze de novo 
DNA methylation during development and other 
pathophysiological conditions. The reverse of this process, 
DNA demethylation, is much less studied. But several 
studies imply that Tet enzymes are involved in both global- 
and locus-specific DNA demethylation, by catalyzing 
the conversion of 5-methylcytosine to 5-formylcytosine 
and 5-carboxylcytosine. Those modified cytosines are 
then completely removed by thymine-DNA glycosylase-
initiated DNA base excision repair [52-54]. The dynamics 
of genome-wide DNA methylation are regulated by DNA 
methyltransferases (Dnmts) including Dnmt1, Dnmt3a 
and Dnmt3b. The key DNA demethylation enzymes are 
ten-eleven translocation (Tet) family enzymes such as 
Tet1, Tet2 and Tet3 (Figure 2). The decline of overall 
DNA methylation has been associated with cell and 
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tissue aging including brain [55-57]. The loss of Dnmt1 
and Dnmt3a in the adult brain leads to cognitive deficits 
in mice [48, 58-59]; and mutant Tet1 animal exhibits 
abnormal hippocampal long-term depression and impaired 
memory extinction [60]. In humans, mutations in DNMT1 
are associated with a form of neurodegenerative disease 
[61]. These studies suggest that impairment of DNA 
methylation may play a crucial role and be a fundamental 
mechanism in regulating mouse learning memory and 
cognition. 

Unlike genetics, epigenetics is not only inheritable 
but also reversible. Therefore, strategies aimed to reverse 
age-associated epigenetic alterations may lead to the 
development of a novel therapeutic intervention to delay 
aging or alleviate symptoms of devastating age-associated 
diseases. Recently, a report states that transient over-
expression of Dnmt3a2, a Dnmt3a isoform, in mouse 

hippocampus can restore age-associated cognitive deficits 
and inhibition of hippocampal Dnmt3a2 expression by 
shRNAi leads to a damage in young mouse cognitive 
behavioral [62-63]. It suggests that DNA methylation 
plays a crucial role for maintaining normal hippocampal 
function and confers an epigenetic mechanism for 
learning memory and cognition. Though the further works 
including whole genome DNA methyl-sequencing and 
genetic manipulation of Dnmt3a2 in mouse brain are 
needed immediately to elucidate how DNA methylation 
affects the expression of synaptic plasticity genes and 
thereby impacts the learning memory and cognition.

otHer epigenetic fActors And 
cognitive Aging

Conrad Waddington in 1940s proposed a term 

Figure 2: DNA Cytosine(C) modification pathway that includes cytosine methylation (5mC) by DNMTs and 
the demethylation of 5mC by TETs regulates neuronal gene expression, and thereby cognitive functions. SAM: 
S-adenosylmethionine; SAH, S-adenosylhomocysteine.
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“epigenetics” to describe interactions of genes with their 
environment during development [64]. It has emerged as a 
possible mechanism controlling the gene expression and a 
potential causative factor of brain aging and other memory 
and cognitive abnormalities until recently [65]. Epigenetic 
regulation is primarily mediated by DNA methylation and 
posttranslational modifications of nucleosomal histones. 
Post-translational modifications of nuclear histone tails 
represent one of basic molecular epigenetic mechanisms 
that alter chromatin structure and accessibility of DNA, 
and influence the gene expression and potentially cellular/
organismal phenotypes [66-68]. It has been established 
that regulation of chromatin structure through post-
translational modification of histone proteins is important 
for the induction of synaptic plasticity and formation 
of long-term memory [65]. For example, chromatin 
remodeling via histone acetylation plays a crucial role 
in regulating synaptic and cognitive function in aging 
and age-related neurodegeneration. Increasing histone 
acetylation by inhibition of histone deacetylase (HDAC) 
enhances gene transcription and improves hippocampal 
LTP, a cellular mechanism that underlies learning and 
memory [69-70]. The trimethylation of histone H3 at 
lysine 4 (H3K4), an active mark for transcription, is 
upregulated in hippocampus following contextual fear 
conditioning [71]. Not limited to histone modifications, 
non-coding RNAs and their networks also underlie 
cognitive disorders across the lifespan and favorable 
interventions [72-73].

profiling tHe genome-Wide dnA 
metHylAtion At tissue, cell 
populAtion And individuAl cell 

Accumulated evidence suggested that DNA 
methylation regulation is critical for maintaining 
normal hippocampal function and confers an epigenetic 
mechanism for age-related learning memory and 
cognition [62-64]. It is thus urgently needed appropriate 
methods to measure the dynamics of genome-wide DNA 
methylation in neuronal tissues/cells. Weber M. et al. 
in 2005 was first described a method, methylated DNA 
immunoprecipitation (MeDIP)-chip, to assess the genome-
wide DNA methylation [74]. It consists of enriching 
methylated DNA fragments through an antibody against 
5-methylcytosine (5mC), and detecting the purified 
fraction of methylated DNA with high-throughput DNA 
methylation arrays. MeDIP-chip (e.g., mouse and human 
promoter CpG arrays) can be used to map the dynamic 
alterations of genome-wide promoter CpG methylation in 
aging tissues [45]. Almost in the same time, Meissner et al 
first reported a reduced representation bisulfite sequencing 
(RRBS) method to dissect the methylome of mammalian 
cells [75]. RRBS is based on the lack of even distribution 

and the fact that CpG sites within the mammalian 
genome tend to cluster together as CpG islands (CGIs) 
that are usually located close to the promoters of known 
genes [76]. So, firstly cutting the genome into small 
fragments by a restriction enzyme that recognizes CpG 
and its flanking sequences, then most of the CGIs will be 
collected and sequenced with high coverage even with a 
lower numbers of total sequencing reads (e.g., ~50 million 
reads). RRBS has led to important findings regarding 
global methylation and demethylation process during 
early developmental stages [77]. Lister et al. described a 
whole-genome bisulfite sequencing (WGBS) to map DNA 
methylations at single base resolution [78]. It is currently 
the gold standard for DNA methylome measurement 
and it provides coverage for more than 90% of the 
approximately 28.7 million CpGs in the human genome 
[79]. . However, it demands a much higher sequencing 
reads, the minimum request for sequencing reads coverage 
is about 30X genome size. Those methods not only are 
good for tissue level study but also can be used for cell 
population interrogation for DNA methylome. 

As abovementioned example that neurons from 
one type of populations are possibly different from one 
to another, one is more stable and resistant to stressors 
but another could be vulnerable to the same stressors. 
Single cell transcriptome analysis has been achievable and 
is proved as a powerful tool to understand the variation 
among same type of cells [80]. The methods to examine 
the genome-wide DNA methylation at single level were 
also essentially desired. Guo et al. reported a methylome 
analysis method that enables single-cell at single-base 
resolution DNA methylation analysis based on reduced 
representation bisulfite sequencing (scRRBS) [81]. 
scRRBS is integrated all of the experimental processes in 
a single-tube reaction without including any purification 
steps prior to the bisulfite conversion step, since the 
multiple purification steps are the major problem for 
massive loss of DNA. This technique is sensitive and can 
detect the methylation status of up to 1.5 million CpG 
sited within the genome of an individual embryonic stem 
cell [82]. While Smallwood et al. described a single-cell 
bisulfite sequencing (scBS-seq) method which can be 
applied to accurately measure DNA methylation at up to 
48.4% of CpG sites [83]. In BS-seq protocols, bisulfite 
treatment is performed first then sequencing adaptors that 
are ligated to fragmented DNA minimizing the DNA loss 
from single cell. In brief, those are all powerful tools for us 
to map out the DNA methylation at tissue, cell population 
and single cell level facilitating a better understanding 
the mechanism of DNA methylation in neuronal gene 
regulation and thereby the cognitive function. 
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perspectives And cHAllenges 
to piece out tHe role of dnA 
metHylAtion in trAnscriptionAl 
regulAtion And its impAct on Age-
relAted cognitive function

The complexity of transcriptional regulation by 
DNA methylation

Learning and memory are two intimately linked 
cognitive processes that stem from interactions between 
genes and the environment (experience). These cognitive 
functions have also been associated with changes in gene 
expression, and a number of genes have been found to 
enhance or impair learning and memory. Dysregulation 

of synaptic plasticity genes, such as brain-derived 
neurotrophic factor (Bdnf), cAMP response element 
binding (Creb) and activity regulated cytoskeletal-
associated protein (Arc) have been strongly correlated 
with mammalian brain aging and cognitive decline. 
For instance, polymorphisms in the human BDNF gene 
have been associated with memory and hippocampal 
function [84]. Bdnf-deficient mice display premature 
age-associated decrements [85]. Hippocampus-specific 
deletion of Bdnf in adult mice impairs spatial memory 
and extinction of aversive memories [86]. Mice with Creb 
deficiency have a mild cognitive impairment, and exhibit 
a deficit in condition-dependent learning and memory tests 
[87]. 

Expression of Arc, a neuronal activity-relevant 
gene, decreases with age, and this decreased expression 
correlates with DNA hypermethylation of its promoter 

Figure 3: DNA methylation mechanisms in regulating neuronal gene expression. a. and b. are dominant theories that promoter 
methylation silences gene transcription by blocking the landing of transcription complex. c. proposes an activation of gene transcription by 
a failure landing of neuronal gene repressors. d. is a newly discovered mechanism that exon methylation correlates with gene expression 
augmentation. TF: transcription factor; TR: transcription repressor; TSS: transcription start site.
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([88], Figure 3a and 3b). it is also known that upregulation 
of Dnmt3a2 in hippocampus can restore age-related 
cognitive function, though it is not known yet how 
precisely Dnmt3a2 contributes to cognitive function [62]. 
Higher levels of Dnmt3a2 presumably result in an increase 
of DNA methylation of Dnmt3a2 target genes. The 
expression of synaptic plasticity genes like Bdnf, c-Fos 
and Arc are increased significantly with over-expression of 
Dnmt3a2. This sounds counterintuitive on the basis of the 
traditional view that DNA methylation is associated with 
transcriptional repression (Figure 3a and 3b). However, 
there are reports suggesting that exonic DNA methylation 
may serve as a transcriptional activator that triggers gene 
transcription ([89], Figure 3d). This also could be caused 
by methylation-associated blocking of transcriptional 
repressor (TF) such as neuron restrictive silencer factor 
(Nrst/REST), which has been reported to be involved 
in transcriptional repression of Bdnf. However, BDNF 
expression will be released after NRST/REST being 
inhibited by the promoter methylation ([90], Figure 3c). 
This is just one example, not even mentioning the impact 
of DNA methylation on other DNA elements such as the 
enhancer, and the non-coding RNAs including long non-
coding RNA and miRNA which may result in regulation 
of neuronal gene expression [91]. Taken together, it raises 
additional layers of complexity for understanding the 
role of DNA methylation in neuronal gene expression 
regulation. Deep sequencing methods such as BS-DNA-
methyl-seq and RNA-seq at neuronal tissue and cell 
level will be an effective tool to better understand this 
complexity. 

The functional significance of DNA methylation

Furthermore, the animal models as well as the 
cutting-edge genetic manipulation approaches should 
be employed to determine the biological significance of 
DNA methylation on learning, memory and cognitive 
function [92]. For example, a constitutive and an inducible 
forebrain neuron-specific Dnmt3a2 transgenic mouse line 
could be generated to test if higher level Dnmt3a2 in 
neurons can enhance/restore mouse learning, memory and 
cognitive functions. In contrary, a Dnmt3a2 conditional 
forebrain neuron-specific knock-out mouse line will 
also be useful to measure if Dnmt3a2 is essential for 
maintaining learning and cognition. Besides, genome-wide 
analysis of DNA methylation landscape and transcriptome 
in parallel in neurons at various conditions including age 
and expression level of Dnmt3a2 via bisulfite sequencing 
and RNA-seq would be great to identify neuronal targets 
of Dnmt3a2. 

The coordination of DNA methylation and histone 
modification

The last but not least is to understand the 
coordination of DNA methylation and histone modification 
in regulation of neuronal gene expression and learning, 
memory and cognition. In addition to the significance 
of DNA methylation to cognitive function, several 
laboratories including us discovered that the acetylation 
and methylation of histones (e.g., H4K12ac, H3K9me3 
and H3K27me3) are playing critical roles in age-related 
behavioral and cognitive functions [70-71, 73, 93-94]. The 
Polycomb target genes provide the first example of how 
histone modification and DNA methylation work together 
to achieve silencing, and the mechanism of transcriptional 
repression in such a case involves the generation of local 
heterochromatin- the histone methyltransferase EZH2, 
H3K27me3 and the methylated DNA ‘landing dock’ sites 
[95]. It’s also reported that both histone methylation, 
such as methylation of H3K9 mediated by by G9A, 
and DNA methylation is essential for repression of 
pluripotency-associated genes including Oct4 and Nanog 
during embryonic cell differentiation [96]. Thus, it will 
be interesting and necessary to clarify whether DNA 
methylation and histone modification work synergistically 
or independently to regulate the learning and cognitive 
functions in the mouse model. 
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