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ABSTRACT
In searching for small-molecule compounds that inhibit proliferation and survival 

of diffuse large B-cell lymphoma (DLBCL) cells and may, therefore, be exploited as 
potential therapeutic agents for this disease, we identified the commonly used and 
well-tolerated antibiotic doxycycline as a strong candidate. Here, we demonstrate 
that doxycycline inhibits the growth of DLBCL cells both in vitro and in mouse 
xenograft models. In addition, we show that doxycycline accumulates in DLBCL cells 
to high concentrations and affects multiple signaling pathways that are crucial for 
lymphomagenesis. Our data reveal the deneddylating activity of COP-9 signalosome 
(CSN) as a novel target of doxycycline and suggest that doxycycline may exert its 
effects in DLBCL cells in part through a CSN5-HSP90 pathway. Consistently, knockdown 
of CSN5 exhibited similar effects as doxycycline treatment on DLBCL cell survival and 
HSP90 chaperone function. In addition to DLBCL cells, doxycycline inhibited growth 
of several other types of non-Hodgkin lymphoma cells in vitro. Together, our results 
suggest that doxycycline may represent a promising therapeutic agent for DLBCL and 
other non-Hodgkin lymphomas subtypes.

INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is 
the most common type of non-Hodgkin lymphoma 
(NHL), accounting for about one third of all the cases. 
Although advances in treatment have greatly improved 
the outcome of DLBCL patients, approximately 40% 
of the patients either are refractory to or relapse from 
the current standard immunochemotherapy R-CHOP 

(rituximab plus cyclophosphamide, doxorubicin, 
vincristine, and prednisone) and most of them will 
die of the disease within two years of diagnosis [1–4]. 
Therefore, new therapeutic strategies are urgently 
needed to combat this malignancy. DLBCL comprises 
a heterogeneous mixture of distinct lymphomas with 
different clinical outcomes. Gene expression profiling 
studies have classified DLBCLs into at least three 
major subgroups: the germinal center B-cell (GCB), the 
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activated B-cell (ABC), and the mediastinal large B-cell 
(PMBL) DLBCL [5–7]. Virtually all ABC DLBCL, the 
least curable DLBCL subtype, and a significant fraction 
of GCB DLBCL exhibit constitutive NF-κB pathway 
activity [5, 8–12]. Notably, ABC DLBCL cells depend 
on constitutive NF-κB signaling for proliferation and 
survival [11, 13–15]. Targeting pathways required for 
NF-κB activation thus has been proposed as a novel 
treatment strategy for DLBCL [16, 17].

Doxycycline is an inexpensive, commonly used 
and well-tolerated antimicrobial agent. In addition to 
its antibiotic effect, doxycycline possesses various 
non-antimicrobial activities. These include its well-
studied ability to inhibit the activities of various matrix 
metalloproteinases (MMPs) as well as its inhibition of 
MMP gene expression. Additionally, doxycycline has 
been reported to have anti-inflammatory activity as well 
as potential antineoplastic activity [18–26]. The molecular 
mechanisms underlying the non-antibiotic activities of 
doxycycline have remained poorly understood.

The Connectivity Map, which was generated from 
a collection of genome-wide gene expression profiles 
of cultured human cells treated with various bioactive 
small molecules, including FDA-approved drugs, 
allows the discovery of potential connections between 
drugs and signaling pathways [27]. In order to identify 
drugs that inhibit NF-κB target gene expression and may 
thereby inhibit the proliferation and survival of DLBCL 
cells, we carried out a Connectivity Map analysis and 
identified doxycycline as a strong candidate. Here, we 
demonstrate that doxycycline inhibits proliferation and 
survival of DLBCL cells in vitro as well as tumor growth 
of DLBCL cells xenografted in mice at concentrations 
that may be achievable in human sera with a therapeutic 
dose of the drug, identifying doxycycline as a potential 
low-cost and safe therapeutic agent for DLBCL and 
possibly other NHLs. Additionally, our work uncovers 
CSN5 as a novel target of doxycycline and as a potential 
target in DLBCL therapy.

RESULTS

Connectivity map analysis uncovers doxycycline 
as an inhibitor of NF-κB signaling

To identify potential inhibitors of NF-κB signaling 
that may be exploited as therapeutic agents for DLBCL 
treatment, we queried the Connectivity Map with a set 
of known NF-κB targets. Notably, among the top hit 
compounds that potentially inhibit NF-κB signaling from 
this analysis are members of the tetracycline family of 
antibiotics, including doxycycline (Table 1).

To verify the observation from the Connectivity 
Map analysis that doxycycline inhibits NF-κB target 
gene expression, we examined the effect of doxycycline 
treatment on NF-κB activation in DLBCL cell lines. While 
short (less than 30 minutes) treatment with doxycycline had 
no inhibitory effect on NF-κB activation in OCI-Ly10 cells 
(data not shown), an ABC-DLBCL cell line that displays 
constitutive NF-κB signaling [11, 13], incubation of these 
cells with doxycycline for 12 hours decreased mRNA 
levels of several NF-κB targets (Figure 1A), which had 
been shown previously to be regulated by NF-κ B in these 
cells (cyclin D2, EBI3 and IκBα) [13, 14], or exhibited 
the greatest response to doxycycline treatment among the 
queried NF-κB targets in the cMAP database (MCL-1). 
The decreases in these mRNAs likely resulted from 
an inhibition of NF-κB signaling, rather than the 
consequence of cell death, as the cell viability was not 
affected by doxycycline at this time point (Figure 1B). 
Doxycycline treatment also reduced NF-κB reporter 
activity in OCI-Ly10 cells (Figure 1C) and the levels 
of several proteins, known to be regulated by NF-κB 
(Figure 1D). Moreover, doxycycline treatment of 
ABC-DLBCL cells resulted in a reduction in IKK 
phosphorylation and nuclear levels of the NF-κB 
subunits p65 and c-Rel (Figure 1E and 1F), 
characteristics of inhibition of NF-κB signaling [28, 29]. 
In addition to inhibiting constitutive NF-κB signaling, 

Table 1: Connectivity map database analysis identifies tetracycline family antibiotics as potential 
NF-κB signaling inhibitors

Rank cMAP name Dose Cell Score

6100 lymecycline 7 μM HL60 −1
5636 metacycline 8 μM HL60 −0.617
5579 rolitetracycline 8 μM HL60 −0.603
5138 doxycycline 8 μM HL60 −0.519
5128 tetracycline 8 μM HL60 −0.518
4768 demeclocycline 8 μM HL60 −0.452

A high negative connectivity score indicates that the corresponding compound reversed the expression of the query 
signature. The bottom ranked instance (i.e. “score” = −1, “Rank” = 6100) is the most negatively connected with the query 
signature. Details about the “Rank” and “Score” can be found at www.broadinstitute.org/cmap/#.
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Figure 1: Doxycycline inhibits NF-κB signaling in DLBCL cells. A. The mRNA levels of the indicated NF-κB targets 
in OCI-Ly10 cells treated with doxycycline for 12 hrs were analyzed by quantitative RT-PCR. The mean and standard deviation 
(SD) from triplicate samples are depicted. B. The viability of OCI-Ly10 cells, treated as described in (A), was assessed by Trypan 
blue assay. The assays were carried out in triplicates. C. The OCI-Ly10 cells, which carry a stably integrated NF-κB reporter, were 
treated with indicated concentrations of doxycycline for 22 hrs. The luciferase activity was measured and normalized to protein 
concentration. D. DLBCL cells were treated with the indicated concentrations of doxycycline for 24 hrs. The protein levels of the 
NF-κB-regulated targets were analyzed by western blotting. Analysis of actin was included as a loading control. E. OCI-Ly10 cells 
were treated with doxycycline for 8 hrs. The levels of the indicated proteins were analyzed by western blotting. F. OCI-Ly10 and 
HBL-1 cells, both ABC-DLBCL cell lines, were treated with doxycycline for 24 hrs. The levels of indicated NF-κB subunits in 
cytoplasmic and nuclear fractions, prepared as previously described [86], were analyzed by western blotting (top panels). Lack of 
GAPDH signal in the nuclear fraction (low panels) indicates the clean preparation of the nuclear fraction. Nucleolin, which is present 
in both cytosolic and nuclear fractions in cancer cells [87], was used as a loading control. G. Two GCB-DLBCL cell lines, OCI-Ly7 
and SUDHL-6, were treated with the indicated concentrations of doxycycline overnight and stimulated with PMA. The levels of the 
indicated proteins were analyzed by western blotting.
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doxycycline inhibited signal-induced NF-κB activation 
in GCB-DLBCL cell lines (Figure 1G), which exhibit 
minimum constitutive NF-κB activity [11, 13]. 
Together, these results confirm our observation from 
the Connectivity Map analysis that doxycycline inhibits 
NF-κB signaling.

Doxycycline inhibits the proliferation and 
survival of DLBCL cells in vitro

Since ABC-DLBCL cells depend on constitutive 
NF-κB signaling for proliferation and survival [11, 13–15], 
our observation that doxycycline inhibits NF-κB signaling 
predicts the drug would inhibit the growth of these cells. 
Indeed, doxycycline treatment for over 24 hours inhibited 
the growth of ABC-DLBCL cell lines (Figure 2A and 2C, 
and data not shown). Notably, doxycycline also inhibited 
the growth of multiple GCB-DLBCL cell lines (Figure 2A 
and 2C), which do not rely on NF-κB signaling for growth 
in vitro [11, 13–15], suggesting that doxycycline affects 
other pathways in addition to NF-κB signaling.

As primary DLBCL cells may have different 
requirements for growth than established cell lines, 
we examined the effect of doxycycline on the survival 
of primary DLBCL samples. The viability of primary 
DLBCL cells was also inhibited by doxycycline, indicating 
that the cytotoxic effect of doxycycline is not limited to 
the established cell lines (Figure 2B and 2C).

We also examined the effects of doxycycline on the 
growth of other types of B-lymphoma cells. We found 
that the growth of Burkitt lymphoma (Daudi and Ramos) 
and mantle cell lymphoma (Granta, JEKO-1, Mino and 
Rec-1) cells were also inhibited by doxycycline at similar 
concentrations observed for DLBCL cells (Figure 2D and 
2E), suggesting that doxycycline inhibits the growth of a 
broad range of aggressive B-lymphoma cells in culture.

The average peak concentration of doxycycline 
in human serum is 3–6 μg/ml with a single dose of 200 
mg/day, and the peak concentration can be higher with 
multiple dosing [30–33]. As the elimination half-life of 
doxycycline in human serum is about 20 hours [34, 35], 
our results thus suggest that growth of the lymphoma 
cells in vitro is inhibited by a level of doxycycline that 
is maintained in the sera of human patients receiving a 
normal dose of the drug.

To investigate the effects of doxycycline on cell 
proliferation and/or survival, we examined cell cycle 
distribution and apoptosis of DLBCL cells following drug 
exposure. Doxycycline treatment resulted in a reduction of 
DLBCL cells in S phase and an accumulation of cells in 
G1 phase (Figure 2F), indicating that doxycycline inhibits 
cell cycle progression of DLBCL cells. Doxycycline 
also increased apoptosis of DLBCL cells, as judged by a 
doxycycline-induced increase in annexin V-positive cells 
and an elevated cleavage of PARP (Figure 2G and 2H), 
hallmarks of apoptosis [36–38]. Therefore, doxycycline 
inhibits both proliferation and survival of DLBCL cells.

Doxycycline inhibits tumor growth of ABC and 
GCB DLBCL cells

To investigate whether doxycycline inhibits DLBCL 
tumor growth in vivo, we examined the effect of doxycycline 
on the tumor growth of OCI-Ly7 and OCI-Ly10 cells 
implanted into immunodeficient mice. The tumor-bearing 
mice were injected intraperitoneally either with saline as a 
control or with doxycycline at a dose that was suggested to 
result in a serum concentration of doxycycline similar to that 
found in the sera of human patients given the standard dose 
of the drug [25, 39]. While the administration of doxycycline 
had no effect on the body weight of the treated mice (Figure 
3A and 3B), doxycycline treatment significantly inhibited 
DLBCL tumor growth (Figure 3C and 3D). We measured 
the concentrations of doxycycline in the mouse sera 3 hours 
after the last drug administration and found that the serum 
doxycycline concentrations varied from 2.3 μg/ml to 5.5 
μg/ml in the drug-treated mice (Supplementary Figure 1). 
These results suggest that doxycycline inhibits DLBCL 
tumor growth xenografted in mice at concentrations that 
may be potentially achievable in patient sera with a clinically 
relevant drug dose.

Doxycycline inhibits multiple signaling events in 
DLBCL cells

It is unlikely that the growth inhibitory effect of 
doxycycline on DLBCL cells results merely from the 
inhibition of MMPs, as Prinomastat, a highly potent MMP 
inhibitor with Ki values in the pM to nM range [40], only 
exhibited inhibitory effects on the growth of DLBCL cell 
at concentrations about 10, 000 times above the Ki values 
of the compound (Supplementary Figure 2A). Moreover, 
expression of several proteins such as MCL-1 and MMP9, 
shown to be inhibited by doxycycline in DLBCL cells, was 
unaffected by high concentrations of Prinomastat in these 
cells (Supplementary Figure 2B). Therefore, we set out to 
identify the target(s) of doxycycline in DLBCL cells that 
might be relevant to the observed growth-inhibitory effect 
of the drug. Since the expression of several NF-κB regulated 
targets such as MCL-1 and MYC is also regulated by the 
signal transducer and transcription factor 3 (STAT3) [41], 
and since there is potent cooperation between NF-κB and 
STAT3 signaling [42, 43], we investigated the possibility 
that doxycycline may inhibit STAT3 signaling. STAT3 
activity is critically regulated by two phosphorylation 
events. Phosphorylation of tyrosine-705 is required for 
STAT3 dimerization and subsequent nuclear translocation, 
while phosphorylation of serine-727 positively regulates 
STAT3 transcriptional activity [44, 45]. Interestingly, 
phosphorylation of both tyrosine-705 and serine-727 of 
STAT3 was inhibited by doxycycline in OCI-Ly10 cells 
(Figure 4A). Additionally, doxycycline treatment reduced the 
nuclear levels of STAT3 protein in DLBCL cells (Figure 4B). 
Thus, doxycycline also inhibits STAT3 activation in DLBCL 
cells, apparently through more than one mechanism.
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Figure 2: Doxycycline inhibits the proliferation and survival of DLBCL cells. A. The DLBCL cell lines were treated with the indicated 
concentrations of doxycycline for 96 hrs. The viable cells were counted by the trypan blue exclusion assay. Shown are the mean and SD from 
at least three independent experiments. The mean from the samples without exposure to doxycycline was set at 100. B. Primary tumor cells 
from DLBCL patients were plated at 5 × 105 cells/ml for patient samples A–C or at 3 × 105 cell/ml for patient samples D–G and treated with the 
indicated concentrations of doxycycline for 96 hrs. The live cells were measured as described in (A). The cells from patients A–C were subjected 
to doxycycline treatment without prior passage in vitro, while the cells from patients D–G had been cultured in vitro for 3–5 doublings before being 
treated with doxycycline. Samples D–F and G were classified as GCB and non-GCB subtypes, respectively, by Hans staining. The subtypes for 
samples A–C were unknown. Mean and SD from triplicate samples are depicted. C. The estimated IC50 values of doxycycline against DLBCL 
cell lines and primary cells. The IC50 values were calculated from the dose response at 96 hours in experiments described in 2A and 2B. D. The 
Burkitt lymphoma cell lines and E. the mantle cell lymphoma cell lines were treated as described in (A). Results from triplicate samples are 
depicted. F. Doxycycline inhibits cell cycle progression. OCI-Ly7 (top panels) and OCI-Ly10 (bottom panels) cells were treated with the indicated 
concentrations of doxycycline for 48 hrs. Ethynyl-deoxyuridine (EdU) was added into the culture medium for 2 hr before the cells were harvested 
for cell-cycle distribution analysis. G. Doxycycline induces apoptosis of DLBCL cells. OCI-Ly7 (top panels) and OCI-Ly10 cells (bottom panels) 
were treated with the indicated concentrations of doxycycline for 66 hrs. The apoptotic (annexin V-positive) cells were measured by flow cytometry. 
H. DLBCL cells were treated with doxycycline for the indicated time. The cleavage of PARP1 was analyzed by western blotting.
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Phosphorylation of tyrosine-705 of STAT3 is carried 
out by members of the Janus kinase (JAK) family, which 
includes JAK1, JAK2, JAK3 and TYK2 [45]. Treatment 
of OCI-Ly10 cells with doxycycline for a short time 
(4 hours) decreased the protein levels of JAK1, JAK2 and 
TYK2 at varying degrees (Figure 4C). STAT3 serine-727 
phosphorylation can be mediated by different kinases, 
including RIP1K and ERK, depending on cellular context 
[46, 47]. As shown in Figure 4C and 4D, doxycycline 
treatment inhibited both RIP1 expression and ERK 
activation in DLBCL cells. Collectively, our results 
suggest that doxycycline exhibits pleotropic effects in 
DLBCL cells.

Doxycycline appears to affect HSP90 chaperone 
function in DLBCL cells via an indirect 
mechanism

The molecular chaperone heat shock protein 90 
(HSP90) promotes the folding and function of a large number 
of substrate proteins, referred to as HSP90 clients, many of 
which are crucial regulators of diverse cellular functions [48–
50]. Dysregulation of HSP90 expression and activity has been 
observed in a variety of cancers including DLBCL [51, 52]. 
HSP90 inhibitors can induce proliferation arrest and apoptosis 
in DLBCL cells [53, 54]. Inhibition of HSP90 activity in 
cancer cells results in degradation of client proteins, such as 

Figure 3: Doxycycline inhibits the growth of DLBCL tumors xenografted in mice. Mice bearing tumors from OCI-Ly7 
cells A. or OCI-Ly10 cells B. were injected once daily with either saline (Control) or doxycycline (Dox), starting at day 10 and day 22 
after implantation of OCI-Ly7 and OCI-Ly10 cells, respectively. The whole body weight of the mice at completion of the experiments 
(day 32 and day 50 for OCI-Ly7 and OCI-Ly10, respectively) was measured. The mean and SD are depicted. C. The mean and SD of 
tumor volume from the mice described in (A) are shown. **indicates significant difference between the control group and doxycycline-
treated group (p < 0.01, n = 4 for each group). D. The mean and SD of tumor volume from the mice described in (B) are presented. 
**p < 0.01 (n = 4 for each group).
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Figure 4: Doxycycline inhibits multiple signaling events in DLBCL cells. A. OCI-Ly10 cells were treated with the indicated 
concentrations of doxycycline for 8 hrs. The levels of STAT3 phosphorylation at tyrosine-705 (pY-STAT3) and serine-727 (pS-STAT3) 
residues were analyzed by western blotting. B. Western blot analysis of the STAT3 levels in cytoplasmic and nuclear fractions of the 
indicated DLBCL cells treated with doxycycline for 24 hrs. The clean nuclear preparations are indicated by the lack of GAPDH signal in 
the nuclear fractions. The same cytoplasmic and nuclear preparations from HBL-1 cells, described in Figure 1F, were used in this study. 
C. and D. OCI-Ly10 cells were treated with doxycycline for 4 hrs (C) or 24 hrs (D). The levels of the indicated proteins were analyzed by 
western blotting. For detection of phospho-ERK, the cells were treated with IL-6 (10 ng/ml) for 15 minutes before the analysis.



Oncotarget14803www.impactjournals.com/oncotarget

TYK2 and RIPK1, and reduction in NF-κB signaling, STAT3 
phosphorylation and ERK activation [55–60], the changes seen 
in DLBCL cells treated with doxycycline (Figures 1 and 4). 
We therefore investigated the possibility that doxycycline 
might affect HSP90 chaperone function. Similar to the effects 
of HSP90 inhibitors, doxycycline treatment decreased the 
levels of several known HSP90 client proteins in DLBCL 
cells (Figure 5A, Supplementary Figure 3A and 4A), while 
such treatment had no inhibitory effect on the mRNA levels 
of these proteins (Supplementary Figure 5A). Doxycycline 
treatment also resulted in reduction of HSP90 client proteins 
in other types of NHL cells (Supplementary Figure 3A). 

Moreover, as observed with the HSP90 inhibitor 17-AAG, 
doxycycline treatment led to a decrease of the RIPK1 protein 
in OCI-Ly10 cells, but not in OCI-Ly7 cells (Figure 5A and 
Supplementary Figure 4A). Thus, doxycycline treatment 
exhibits similar pleotropic and cell-type specific effects as 
HSP90 inhibitors [61]. Taken together, our results suggest that 
doxycycline affects HSP90 function.

One class of HSP90 inhibitors, which have been 
most extensively studied, interact with the nucleotide 
pocket at the N-terminus of HSP90 and interfere with 
the conformational changes required for normal HSP90 
chaperone function [48]. To test whether doxycycline acts 

Figure 5: Doxycycline treatment reduces HSP90 activity in DLBCL cells. A. Doxycycline treatment decreases the levels of 
HSP90 client proteins in DLBCL cells. The DLBCL cells were treated with the indicated concentrations of doxycycline for 24 hrs. The 
levels of HSP90 client proteins in these cells were analyzed by western blotting. B. Reduced protein levels of HSP70 and HSP90 in DLBCL 
cells treated with doxycycline. DLBCL cells were treated with doxycycline for 24 hrs, and the levels of HSP70 and HSP90 were analyzed 
by western blotting. C. Doxycycline treatment leads to HSP90 protein modification. Western blotting analysis of HSP90 protein in OCI-Ly7 
cells treated with doxycycline for 2 hrs. D. Doxycycline induces HSP90 ubiquitination. The cell lysates from OCI-Ly7 cells were subjected 
to immunoprecipitation with an HSP90-specific antibody. The products were then analyzed by western blotting with a ubiquitin antibody 
(top panel) or an HSP90 antibody (bottom panel).
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on HSP90 in a similar fashion as these HSP90 inhibitors, 
we examined whether doxycycline affects the nucleotide 
pocket of HSP90, using HSP90 binding to GA-beads 
as the readout [62]. We found that doxycycline has no 
inhibitory effect on binding of HSP90 to the GA-beads 
(Supplementary Figure 4C), indicating that doxycycline 
may affect HSP90 function through a mechanism other than 
a direct binding to the HSP90 nucleotide pocket. In contrast 
to the nucleotide pocket-binding HSP90 inhibitors, which 
increase expression of HSP70 ( [48, 63], and Supplementary 
Figure 4B), doxycycline treatment resulted in a decrease in 
the levels of HSP70 protein (Figure 5B and Supplementary 
Figure 3A), further suggesting that doxycycline acts 
differently than the N-terminal HSP90 inhibitors.

Notably, doxycycline treatment also caused a 
reduction in the levels of HSP90 protein (Figure 5B and 
Supplementary Figure 3A), indicating that doxycycline acts 
differently than common HSP90 inhibitors, which in general 
have no effect on the levels of HSP90 protein. Prior to the 
decrease in HSP90 protein, an increase in ubiquitination 
of HSP90 was observed following doxycycline treatment 
(Figure 5C and 5D), suggesting that the reduction of this 
protein may result from proteasome degradation. The 
modification of HSP90 as well as the reduction in the 
levels of HSP70 and HSP90 protein may contribute to 
the decreased HSP90 function in DLBCL cells. Thus, 
doxycycline appears to interfere with HSP90 function 
through an indirect mechanism. Similarly, reduction in the 
levels of HSP70, HSP90 and HSP90 client proteins were 
also observed in the xenografted DLBCL tumors treated 
with doxycycline (Supplementary Figure 3B), suggesting 
that doxycycline may inhibit DLBCL cell growth through 
similar mechanism(s) in vitro and in vivo.

Doxycycline inhibits CSN5 activity in vitro

In addition to increased ubiquitination of HSP90, we 
frequently detected small increases in total cellular protein 
ubiquitination in DLBCL cells treated with doxycycline 
(Supplementary Figure 5B). These observations led us 
to consider the possibility that doxycycline may target a 
molecule that regulates the levels of protein ubiquitination. 
Interestingly, members of the zinc-dependent JAMM family 
of metalloproteinases are deubiquitinating or deneddylating 
enzymes that play important roles in various cellular 
processes [64–68]. Given that doxycycline is a known 
zinc chelator and inhibits MMPs through chelating the 
essential zinc ions of these enzymes [23], it is possible that 
doxycycline may inhibit JAMM family metalloproteinases 
through a similar mechanism. Among the six characterized 
members of the JAMM family, CSN5 functions as a 
deneddylating enzyme in the COP-9 signalosome (CSN) 
complex [69], while the other members of the family are 
deubiquitinating enzymes that preferentially cleave lysine 
63-linked polyubiquitin chains. Because the CSN complex 
regulates the activities of a large number of cullin-RING 

E3 ubiquitin ligases (CRLs) through deneddylation of 
cullin proteins, a change of CSN5 activity will likely affect 
protein ubiquitination in the cells [70, 71]. Therefore, we 
examined the effect of doxycycline on the activity of CSN5. 
We developed an in vitro assay in which deneddylation 
of Cullin-1 in the SCFSkp2 complex by the purified CSN 
complex is assessed. In this in vitro system, doxycycline 
inhibited CSN5 catalyzed-deneddylation with an IC50 about 
110 μM (Figure 6A).

To investigate the specificity of doxycycline 
inhibition among the members of the JAMM family, we 
examined the effects of doxycycline on the activities 
of Rpn11 (Poh1) and ASMH in vitro. In contrast to the 
inhibition of CSN5, doxycycline had no inhibitory effect 
on the activity of Rpn11 up to 10 mM concentration 
(Figure 6B), nor did it inhibit the activity of AMSH at a 
concentration up to 500 μM (Figure 6C). The inhibition 
of AMSH activity seen at 1mM concentration likely 
resulted from precipitation caused by the high level of 
doxycycline in the reaction mixture, rather than from 
a specific enzymatic inhibition. Thus, doxycycline 
selectively inhibits CSN5, instead of being a general 
inhibitor of the JAMM family, likely through a 
mechanism more than mere zinc chelation.

Doxycycline accumulates in DLBCL cells and 
inhibits CSN5 function in these cells

We observed significant growth inhibition of 
DLBCL cells at doxycycline concentrations below 6 
μg/ml (approximately 12 μM) (Figure 2). The fact that 
doxycycline inhibited CSN5 activity significantly in vitro 
only at relatively high drug concentrations (IC50: ~110 
μM) thus raised the question whether the concentrations of 
doxycycline in the DLBCL cells under our experimental 
conditions were sufficient to inhibit CSN5 activity. 
To address the issue, we measured the doxycycline 
concentration in DLBCL cells treated with the drug. 
Notably, doxycycline was enriched in DLBCL cells up to 
more than 40 fold, compared to the drug concentrations 
added initially to the medium (Figure 6D). Therefore, 
the cellular concentrations of doxycycline under the 
experimental conditions reached a level sufficient to 
inhibit CSN5 activity in the DLBCL cells.

To investigate whether doxycycline indeed inhibits 
the activity of CSN5 in DLBCL cells, we examined the 
effect of doxycycline treatment on cullin neddylation. We 
previously showed that neddylation of cullin proteins causes 
a mobility shift that can be detected on western blots and 
that loss of CSN5 function leads to an increase in neddylated 
cullin proteins [72, 73]. We thus used this assay to assess 
the effect of doxycycline on CSN5 activity. Doxycycline 
treatment resulted in an increase in the neddylated (slower-
migrating) forms of Cullin-1 and Cullin-2 in the DLBCL 
cells (Figure 6E and Supplementary Figure 6), indicating 
that doxycycline inhibits CSN5 activity in DLBCL cells.
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Figure 6: Doxycycline inhibits the deneddylase activity of CSN5 in vitro and in DLBCL cells. A. Doxycycline inhibits 
CSN5 deneddylase activity in vitro. SCFSkp2 conjugated with Oregon Green-labeled Nedd8 (5 nM) was incubated with purified CSN 
complex (0.14 nM) at 30°C in the presence of different concentrations of doxycycline (5000 μM, 2000 μM, 800 μM, 320 μM, 128 μM, 
51.2 μM, 20.48 μM, and 8.192 μM). Deconjugation of Nedd8 was monitored by a decrease in fluorescence polarization using a Pherastar 
fluorescence plate reader over 40 minutes. Initial reaction rates at different concentrations of doxycycline were estimated from the 
progress curves to determine the percent of activity remaining, which is plotted against doxycycline concentration. B. Doxycycline 
has no inhibitory effect on Rpn11 activity in vitro. 5 nM model substrate Ub4-pepOG was incubated with 3 nM 26S proteasome in the 
presence of the indicated concentrations of doxycycline at 30°C. The polarization was monitored using a Pherastar fluorescence plate 
reader for 40 minutes. The rate of deubiquitination (Rpn11 activity) is determined by linear regression of the polarization value and 
normalize to the DMSO control. C. The effect of doxycycline on AMSH activity in vitro. Purified AMSH was incubated with K63-linked 
tetra-ubiquitin (Ub4) in the presence of the indicated concentrations of doxycycline. The reaction products were analyzed by western 
blotting using a ubiquitin-specific antibody. D. Accumulation of doxycycline in DLBCL cells. OCI-Ly7 and OCI-Ly10 cells were 
cultured in the presence of the indicated concentrations of doxycycline for 4 hrs. The doxycycline amount in the cells was determined 
by mass spectrometry. The intracellular doxycycline concentrations were calculated based on the cell diameters of 17.1 μm and 13.9 
μm for OCI-Ly7 and OCI-Ly10 cell, respectively. E. Effect of doxycycline treatment on neddylation of cullin proteins in DLBCL cells. 
OCI-Ly7 (left panels) and OCI-Ly10 (right panels) cells were treated with the indicated concentrations of doxycycline for 30 minutes. 
The cell lysates were immunoblotted with antibodies specific for Cullin-1 and Cullin-2, respectively. Analysis of cells treated with 
MLN4924, a specific inhibitor of the Nedd8-activating enzyme (NAE), was included to confirm the identities of the slow-migrating 
forms of the Cullin proteins. F. Doxycycline treatment increases protein neddylation in DLBCL cells. DLBCL cells were treated as 
described in (E). The cell lysates were subject to western blot analysis with an anti-NEDD8 antibody. Analysis of OCI-Ly10 cells treated 
with MLN4924 was included as an antibody specificity control.
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We also examined the effect of doxycycline on 
neddylation using a NEDD8-specific antibody, which 
recognizes neddylated proteins in the 80–95 kDa range 
[74]. Doxycycline treatment increased protein neddylation 
in DLBCL cells (Figure 6F and Supplementary Figure 6). 
Collectively, the results support the idea that doxycycline 
inhibits CSN5 function in cultured DLBCL cells.

Knockdown of CSN5 impairs the survival of 
DLBCL cells

The observations presented above suggest that 
doxycycline may exert its growth inhibitory effect on 

DLBCL cells through inhibition of CSN5. This view 
predicts that CSN5 is required for the survival of DLBCL 
cells. To test this predication, we examined the effects of 
CSN5 knockdown in DLBCL cells. Depletion of CSN5 
led to marked increases in DLBCL cell death (Figure 7A), 
demonstrating that CSN5 is an essential survival factor for 
DLBCL cells. As observed with doxycycline treatment, 
CSN5 knockdown resulted in reduction in the levels 
of several HSP90 client proteins as well as HSP70 and 
HSP90 proteins in both DLBCL cells (Figure 7B) and 
non-lymphoma cells (Supplementary Figure 7). Thus, 
CSN5 depletion exhibits the biological and biochemical 
effects shown for doxycycline treatment in DLBCL cells, 

Figure 7: CSN5 is required for the survival in DLBCL cells. A. DLBCL cells were infected with lentiviruses that express 
shControl, shCSN5-A or shCSN5-B. Seventy-two (for OCI-Ly7) or 96 hours (for OCI-Ly10) after infection, the viability of the infected 
cells, which express GFP from the viral vector, were analyzed by flow cytometry. Shown are mean and SD from a representative experiment 
with triplicate samples. B. DLBCL cells were infected with the indicated shRNA-expressing lentiviruses. The levels of the indicated 
proteins in the infected cells were analyzed by western blotting.
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consistent with the suggestion that CSN5 is a critical target 
of the antineoplastic action of doxycycline in DLBCL cells.

DISCUSSION

This work demonstrates that doxycycline accu-
mulates in DLBCL cells and exhibits potent growth 
inhibitory activity towards DLBCL cells both in vitro and 
in mouse xenograft models. In addition, we show that 
doxycycline affects several oncogenic signaling pathways, 
including the NF-κB, STAT3, ERK and AKT pathways, 
critical for lymphomagenesis in DLBCL cells. Moreover, 
the present study identified the deneddylating activity 
of the COP-9 signalosome CSN5, which is essential for 
DLBCL cell survival, as a novel target of doxycycline. 
Together, our results suggest that doxycycline may 
represent a potential therapeutic agent for DLBCL.

Inhibition of CSN5 deneddylating activity by 
doxycycline may cause downstream effects through 
several pathways. Our data suggest that HSP90 levels and 
function are affected as a result of impairment of CSN5 
activity, which may in turn affects downstream oncogenic 
signaling pathways. As neddylation plays a key role in 
the regulation of the activities of the CRL E3 ubiquitin 
ligases, the effects of doxycycline in the lymphoma cells 
may also result from perturbations in the functions of these 
enzymes. Additionally, inhibition of CSN5 may affect 
the function of signaling molecules whose activities are 
regulated by direct protein neddylation.

Alternatively, given that DLBCL cells accumulates 
doxycycline to such high concentrations (Figure 6D), 
it may be possible that doxycycline acts in these cells 
through additional targets independent of CSN5, although 
our data are inconsistent with the idea that MMP inhibition 
is responsible for the growth inhibition by doxycycline 
in these cells (Supplementary Figure 2). Regardless of 
whether doxycycline may have additional targets in 
DLBCL cells, our work presented here indicates that 
CSN5 is a critical target of doxycycline in DLBCL cells. 
In addition, our work suggests that CSN5 may represent a 
potential therapeutic target in DLBCL.

How doxycycline exerts its non-antibiotic activities 
in human diseases has not been fully elucidated, although 
in some cases this has been attributed to the ability of 
doxycycline to inhibit the expression and activities of 
MMPs and inflammation. In addition, the mechanisms 
underlying the inhibition of MMP expression and 
inflammation by doxycycline have not been identified. 
As NF-κB and STAT3 are major transcriptional regulators 
of MMPs and inflammatory cytokines, our findings that 
doxycycline treatment impairs the activation of NF-κB 
and STAT3 provide new insights into mechanisms of 
doxycycline action in human diseases.

In a brief communication published previously, it was 
reported that doxycycline injected intraperitoneally at a dosage 
of 25 mg/kg/day failed to inhibit the tumor growth of DLBCL 

xenografted in mice [75]. This study employed six-fold 
lower doxycycline dosage than what was used in our study. 
Achieving sufficient in vivo concentrations of doxycycline will 
thus be critical for effective inhibition of lymphoma growth.

Our preclinical studies presented here suggest 
that doxycycline has antineoplastic activity in DLBCL, 
as well as in several other types of NHL. Remarkably, 
doxycycline inhibited growth of all tested DLBCL cells, 
including cells that are resistant to several currently-tested 
inhibitors that target HSP90 or the upstream regulators 
of the BCR signaling pathway in B-cell lymphomas 
[53, 76]. As doxycycline interferes with the survival 
pathways in DLBCL cells, it may sensitize the cancer cells 
to chemotherapy agents. Indeed, we have observed that 
doxycycline exhibited cooperative cytotoxic effects on 
DLBCL cells with several chemotherapeutic agents (data 
not shown). These observations, together with the fact 
that doxycycline is concentrated in lymphoma cells, raise 
the possibility that doxycycline may represent a safe and 
inexpensive drug for NHL therapy either as a single agent 
or, given the minimal toxicity profile, in combination with 
standard chemotherapy or rationally targeted agents.

Our results suggest that doxycycline exhibits 
anti-DLBCL activities in vitro and in mouse xenograft 
models at concentrations that may be achievable in the 
blood of patients receiving a therapeutic dose of the 
drug. It should be noted, however, that human cancer in 
a clinical setting may respond differently than cultured 
cancer cells or mouse models to the treatment of a drug. 
Whether doxycycline has therapeutic efficacy in DLBCL 
patients needs to be tested in clinical studies. Based on our 
observations, a clinical trail of single agent doxycycline 
for patients with relapsed or refractory NHL is now 
ongoing (NCT02086591).

MATERIALS AND METHODS

Cells, chemicals, antibodies and buffers

DLBCL cell lines HBL-1, OCI-Ly7, OCI-Ly10, 
OCI-Ly19, SUDHL-6 and Toledo were cultured as 
previously described [77]. Primary DLBCL cells were 
prepared as previously described [77]. All procedures with 
primary DLBCL cells were carried out with a protocol 
approved by the University of Rochester Research 
Subjects Review Board. Burkitt lymphoma cell lines 
Ramos and Daudi, mantle cell lymphoma cell lines Mino, 
JEKO-1, Granta and Rec-1 were grown in RPMI medium 
supplemented with 10% FBS.

Doxycycline was purchased from Sigma, and a stock 
solution of 10 mg/ml or 40 mg/ml was prepared and stored 
at −20°C until use. The NAE inhibitor MLN4924 was from 
Active Biochem. The zinc chelator and CSN5 inhibitor OPT 
(1, 10-o-phenanthroline) was from Acros Organics. The 
HSP90 inhibitor 17-AAG was from Selleck Chemicals. The 
MMP inhibitor Prinomastat was from Sigma.
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Antibodies specific for actin (sc-1616), Bcl-6 (sc-
858), CUL-1 (sc-11384), Cyclin D2 (sc-452), HDAC2 
(sc-7899), HDAC3 (sc-11417), HSP90α/β (sc-7947), 
IκBα (sc-371), IKKα (sc-7606), CSN5/JAB1 (sc-9074), 
Mcl-1 (sc-819), MCM7 (sc-22782), MMP9 (sc-6841), 
NEMO/IKKγ (sc-8032), p65 (sc-372), PARP-1 (sc-7150), 
c-Rel (sc-70), RIPK1 (sc-7881), STAT3 (rabbit, sc-482), 
STAT3 (mouse, sc-7179), TGFβR1 (sc-398), TGFβR2 
(sc-220), and ubiquitin (sc-8017) were from Santa Cruz 
Biotechnology. Antibodies specific for AKT (9272), 
Bcl-xL (2762), CUL-4A (2699), ERK (4695), HSP90β 
(5087), JAK1 (3344), JAK2 (3230), c-Myc (9402), 
NEDD8 (polyclonal, 2745), NEDD8 (monoclonal, 2754), 
nucleolin (12247), phospho-ERK (9101), phospho-
IκBα (9241), phospho-IKKα/β (2694), phospho-STAT3 
(Tyr705, 9145), phospho-STAT3 (Ser727, 9134), STAT3a 
(8768), and STAT3 (9139) were from Cell Signaling 
Technology. CUL-2 antibody was from Invitrogen. 
GAPDH antibody was from Sigma. Antibodies specific 
for HSP70 (610607), JAK1 (J24320) and TYK2 (T20220) 
were from BD Biosciences.

For regular western blotting analysis, cells were 
lysed in RIPA buffer [78] with proteinase and kinase 
inhibitors [79]. For the analysis of protein neddylation, the 
cell lysis buffer contained 2 mM zinc chelator and CSN5 
inhibitor OPT (1, 10-o-phenanthroline) [66].

Connectivity map analysis for drugs that 
potentially inhibit NF-κB signaling

To indentify compounds that may antagonize NF-κB 
target gene expression, we queried the Connectivity Map 
(http://www.broadinstitute.org/cMAP) with the following 
thirteen NF-κ B target genes [80] as the up-regulated 
genes: BIRC3, TNFAIP3, NFKB2, IL2RG, NFKB1E, 
RELB, NFKB1A, CD74, PLEK, MALT1, WNT10A, 
IRF4, and MCL1. For running the analysis program, two 
EZH2 target genes [81] CXL12 and CDH6 were included 
as the down-regulated genes.

Analysis of mRNA expression of NF-κ B target 
genes and HSP90 client proteins by quantitative 
RT-PCR

OCI-Ly10 cells, plated at 3 × 105 cell/ml, were 
treated with doxycycline for the indicated times. Total 
RNA from the cells was isolated and treated with DNase I 
using RNeasy Kit (Qiagen). Standard reverse transcriptase 
reactions were carried out using reagents from Invitrogen 
following the manufacturer’s suggestion. Two-Step 
Quantitative PCR reactions with SYBR Green were 
performed in triplicate on a Bio-Rad MyIQ thermalcycler. 
For quantitation, expression of each gene was normalized 
to the level of RhoA. The normalized mRNA levels in 
the cells not treated with doxycycline were set as 1. The 
following primer sets were used for the PCR reactions:

NF-κB-luciferase reporter OCI-Ly10 cell line

The NF-κB reporter OCI-Ly10 cell line was 
generously provided by Dr. John Aston (University of 
Rochester). The cells carry a stably integrated firefly 
luciferase reporter under the control of 5 copies of the 
NF-κB response element (Invitrogen). The cells exhibit 
high basal luciferase activity, responding to both NF-κB 
activating (such as TNFα and PMA) and inhibiting (IKK 
inhibitors) factors.

Analyses of cell viability, apoptosis and cell 
proliferation

Cells were plated in triplicates at a concentration 
of 2–3 × 105 cells/ml. Doxycycline (dissolved in sterile 
water) was added into the culture medium, and the 
cells were incubated at 37°C. Forty-eight hours after 
incubation, an equal volume of fresh medium with the 
original concentrations of doxycycline was added. Cell 
viability was measured by Trypan blue exclusion assay 
[77]. Apoptosis was assayed as previously described 
[82]. Analysis of the cell-cycle distribution was carried 
out essentially as described previously [83], except 
that 5-ethynyl-2′-deoxyuridine (EdU) was used in 

Genes Primers

Cyclin D2 5′-ATGGTGGTGTCTGCAATGAA-3′
5′-ATTGAACCATTTGGGATGGA-3′

EBI3 5′-TGTTCTCCATGGCTCCCTAC-3′
5′-AGCTCCCTGACGCTTGTAAC-3′

IκBα 5′-GCCATTGTAGTTGGTAGCCTTCA-3′
5′-CTCCGAGACTTTCGAGGAAATAC-3′

MCL-1 5′-AGTCCCGTTTTGTCCTTACGA-3′
5′-GTGCCTTTGTGGCTAAACACT-3′

RhoA 5′-TGGAAAGACATGCTTGCTCAT-3′
5′-GCCTCAG GCGATCATAATCTTC-3′

AKT 5′-cgacgtggctattgtgaagg-3′
5′-ttgaggaggaagtagcgtgg-3′

BCL6 5′-taaaacggtcctcatggcct-3′
5′-atctctgcttcactggcctt-3′

HDAC2 5′-ATAAAGCCACTGCCGAAGAA-3′
5′-TCCTCCAGCCCAATTAACAG-3′

HDAC3 5′-ggagctggacaccctatgaa-3′
5′-gactcttggtgaagccttgc-3′

NEMO 5′-aggtggagcacctgaagaga-3′
5′-cagagcctggcattccttag-3′

RIPK1 5′-ccgagatgagtactccgctt-3′
5′-ccattcttcttagcggtgcc-3′

TYK2 5′-gcatttctaccagaggcagc-3′
5′-ggtcggatcgtagcagtaca-3′
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place of bromodeoxyuridine (BrdU). Analysis of EdU 
incorporation into DNA was performed with a Click-it 
EdU flow cytometry assay kit (Invitrogen).

In vivo xenograft studies

All animal experiments were performed with 
protocols approved by our Institutional Animal Care 
and Use Committee. Seven-week-old female NSG 
mice (Stock#: 005557, The Jackson Laboratory) were 
subcutaneously injected with OCI-Ly7 cells (5 × 106) 
and OCI-Ly10 cells (3 × 106), respectively. When tumors 
were palpable (40–85 mm3), the tumor-bearing mice 
were randomized and injected intraperitoneally once 
daily with either sterile saline as controls or doxycycline 
prepared in saline. The animals were given a doxycycline 
dose of 95 mg/kg/day for the first two days. Then a dose 
of 150 mg/kg/day was administered afterwards. The 
tumor size was measured with a digital caliper, and 
tumor volumes were calculated according to the formula 
[84]: tumor volume = π/6 × (length) × (width) × (height). 
Statistic significance of the difference was analyzed by 
standard student t test.

Measurement of doxycycline concentrations

For measuring doxycycline concentrations in 
mice sera, mice were sacrificed 3 hours after the last 
administration of doxycycline. Blood was collected 
by cardiac puncture and incubated at 4°C for 2 hours. 
The sera were obtained by centrifugation as previously 
describe [78] and stored at −80°C until analysis. The 
serum samples (15 μl) were mixed with 10 volumes of 
acetonitrile in the Eppendorf LoBind tubes and vortexed 
for 2 minutes at room temperature. The samples were 
centrifuged at 18, 000 g for 5 minutes. The supernatants 
were collected and dried down under a steam of nitrogen 
or in a Speed Vac. The dried samples were dissolved in 
50% methanol, centrifuged (18, 000 g, 2 minutes) to 
remove any debris if necessary and analyzed by liquid 
chromatography tandem mass spectrometry (LC-MS/MS) 
at the University of Rochester Proteomics Center. For 
calculation of extraction efficiencies, sera from untreated 
mice were spiked with appropriate amounts of doxycycline 
and processed as described for the doxycycline-containing 
serum samples.

For measuring intracellular concentrations of 
doxycycline, cells (3–3.3 × 105 cells/ml) were incubated 
with various concentrations of doxycycline for 4 
hours. The cells (4.6–5 × 106 cells) were collected by 
centrifugation at 320 g for 3 minutes. The cell pellets 
were quickly washed once with 1.4 ml culture medium, 
collected by centrifugation at 1500g for 2 minute, frozen 
in a dry ice/ethanol bath and stored at −80°C until 
analysis. The volume of each cell sample was brought to 
40 μl with a solution of 10 mM Tris-HCl, pH 8.0 and 10 
mM KCl, and mixed with 10 volumes of acetonitrile. The 

extraction and mass spectrometry analysis were carried 
out as described above for the analysis of serum samples. 
For preparation of the standard curves, cell lysates (40 μl 
each), prepared from the same numbers of the cells as in 
the cell samples (4.6–5 × 106 cells) by hypotonic buffer 
(10 mM Tris-HCl, pH8.0 and 10 mM KCl) treatment and 
homogenizing in a tight fitting Dounce homogenizer, 
were spiked with varying amounts of doxycycline. The 
extraction and mass spectrometry analysis were then 
carried out as described for cell samples. The data obtained 
were used to generate the standard curves.

For calculating the intracellular doxycycline 
concentrations, we determined the volume of the tested 
cells. The diameters of the cells were measured using a 
Nikon Eclipse TE300 inverted microscope equipped with 
an eyepiece grid reticle. The cell volumes were calculated 
using the formula: V = 4 π/3 × r3, where r is the radius of 
the cells.

In vitro activity assays for CSN5, RPN11 and 
AMSH

Purification of CSN and generation of Nedd8-
conjugated SCFSkp2 substrate have been previously 
described [85]. CSN-mediated deneddylation was 
measured by monitoring a decrease in fluorescence 
polarization upon deconjugation of fluorescent Nedd8 
from SCFskp2 (PubChem Bioassay AID651999). A 
detailed characterization of the assay is being prepared for 
publication elsewhere.

The Rpn11 assay is described in PubChem (AID 
588493).

The in vitro de-ubiquitination activity of AMSH 
was assayed essentially as previously described [67]. 
Briefly, GST-AMSH protein was purified from E. coli 
BL21 cells that harbor the pGEX-AMSH plasmid [67], 
kindly provided by Dr. Sylvie Urbe, using the method 
previously described [86]. The purified GST-AMSH 
was incubated with K63-linked tetra-ubiquitin (Boston 
Biochem) in the DUB buffer with or without the 
presence of doxycycline at 37°C for 4 hr. The reactions 
were terminated with the SDS-PAGE sample buffer, and 
the products were analyzed by western blotting with an 
anti-ubiquitin antibody.

Knockdown of CSN5 expression by RNA 
interference

The lentiviral pGIPZ constructs expressing 
shRNAs specific for human CSN5 (shCSN5-A, 
V3LHS_361326 and shCSN5-B, V3LHS-361327) or 
a non-silencing shRNA (shControl, RHS4346) were 
purchased from Thermo Scientific. Production of 
pseudotyped lentiviruses carrying pGIPZ constructs 
and infection of DLBCL cells with the viruses were 
performed as previously described [77, 82].
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