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ABSTRACT:
MicroRNAs (miRNA) are non-coding RNAs, approximately 22 nucleotides in length, 
which function as post-transcriptional regulators.  A large body of evidence 
indicates that miRNAs regulate the expression of cancer-related genes involved 
in proliferation, migration, invasion, and metastasis. The aim of this study was 
to identify novel cancer networks in renal cell carcinoma (RCC) based on miRNA 
expression signatures obtained from RCC clinical specimens. Expression signatures 
revealed that 103 miRNAs were significantly downregulated (< 0.5-fold change) in 
RCC specimens. Functional screening (cell proliferation assays) was performed to 
identify tumor suppressive activities of 20 downregulated miRNAs. Restoration of 
mature miRNAs in cancer cells showed that 14 miRNAs (miR-1285, miR-206, miR-1, 
miR-135a, miR-429, miR-200c, miR-1291, miR-133b, miR-508-3p, miR-360-3p, miR-
509-5p, miR-218, miR-335, miR-1255b and miR-1285) markedly inhibited cancer 
cell proliferation, suggesting that these miRNAs were candidate tumor suppressive 
miRNAs in RCC. We focused on miR-1285 because it significantly inhibited cancer 
cell proliferation, invasion, and migration following its transfection. We addressed 
miR-1285-regulated cancer networks by using genome-wide gene expression 
analysis and bioinformatics. The data showed that transglutaminase 2 (TGM2) 
was directly regulated by miR-1285. Silencing of the target gene demonstrated 
significant inhibition of cell proliferation and invasion in the RCC cells. Furthermore, 
immunohistochemistry showed that TGM2 expression levels in RCC specimens were 
significantly higher than those in normal renal tissues. Downregulation of tumor 
suppressive miR-1285, which targets oncogenic genes including TGM2, might 
contribute to RCC development. Thus, miR-1285 modulates a novel molecular 
target and provides new insights into potential mechanisms of RCC oncogenesis.

INTRODUCTION

Renal cell carcinoma (RCC) is the most common 
neoplasm of the adult kidney, and clear cell RCC 
represents the most common renal cancer histology [1]. 
Despite increased early detection of RCC and more 
frequent surgery, the mortality rate has not changed 
significantly during the last two decades [2,3]. New 

therapeutic drugs have been developed for treatment of 
metastatic RCC. However it is difficult to treat patients 
with metastatic RCC and prognostic improvement 
cannot be achieved. Therefore, it is crucial to find novel 
molecular mechanisms based on recent genome-wide 
studies including non-coding RNAs (ncRNA) in RCC 
oncogenesis and metastasis. 

RNA can be divided into two categories, protein 
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coding RNA and ncRNA. It is important to examine the 
functions of ncRNAs and their association with human 
disease, including cancer. microRNAs (miRNAs) are 
endogenous small ncRNA molecules (~19 - 22 bases) that 
regulate protein coding gene expression by repressing 
translation or cleaving RNA transcripts in a sequence-
specific manner [4]. A growing body of evidence suggests 
that miRNAs are aberrantly expressed in many human 
cancers, and that they play significant roles in their 
initiation, development, and metastasis [5]. Some highly 
expressed miRNAs could function as oncogenes by 
repressing tumor suppressors, whereas low level miRNAs 
could function as tumor suppressors by negatively 
regulating oncogenes [6].

Genome-wide miRNA expression signatures can 
rapidly and precisely reveal aberrant expression of miRNA 
in cancers. Thus, we have conducted miRNA expression 
signature analyses and searched for tumor suppressive 
miRNAs in various types of cancers [7-9]. Our previous 
studies successfully identified several tumor suppressive 
miRNAs such as miR-1, miR-133a, miR-145, miR-489, 
miR-218, miR-375 and miR-874 [8-13].

The aim of this study was to identify new tumor 
suppressive miRNAs revealed in our expression signature 

analyses of clinical RCC specimens. We focused on miR-
1285, which had the greatest inhibitory effect on cell 
proliferation in our functional analysis. We also used 
genome-wide gene expression analysis to search for novel 
targets regulated by miR-1285 in RCC cells. Our data 
showed that 11 genes had putative target sites for miR-
1285 in their 3’-untranslated regions (3’UTR). Tumor 
suppressive miR-1285 mediates novel molecular targets 
and provides new insights into the potential mechanisms 
of RCC oncogenesis.

RESULTS

Identification of downregulated miRNAs in RCC: 
assessment of miRNA expression signatures

We evaluated mature miRNA expression levels 
of clinical RCC specimens (ten cancer tissues and five 
adjacent non cancerous tissues) by miRNA expression 
signature analysis. Expression signatures revealed that 103 
miRNAs were downregulated (< 0.5-fold change) in RCC 
specimens (Supplementary Table 1). The top 20 miRNAs 

Table 1:  Down-regulated microRNAs in renal cell carcinoma (RCC)

microRNA P-value Normal Cancer Fold Change 
(Cancer/Normal)

hsa-miR-141 0.022 1.237 0.026 0.021 
hsa-miR-200c 0.022 1.104 0.024 0.021 
hsa-miR-187 0.007 1.526 0.043 0.028 

hsa-miR-509-5p 0.003 1.196 0.050 0.042 
hsa-miR-135a 0.003 1.525 0.099 0.065 

hsa-miR-508-3p 0.007 1.321 0.096 0.072 
hsa-miR-1285 0.020 1.777 0.171 0.096 
hsa-miR-206 0.013 1.580 0.192 0.121 
hsa-miR-218 0.005 1.506 0.197 0.130 
hsa-miR-133b 0.006 1.173 0.173 0.147 
hsa-miR-1291 0.019 1.978 0.310 0.157 

hsa-let-7g* 0.031 1.508 0.247 0.164 
hsa-miR-204 0.014 1.468 0.254 0.173 
hsa-miR-429 0.003 1.267 0.222 0.175 
hsa-miR-370 0.042 1.525 0.268 0.176 
hsa-miR-363 0.010 1.377 0.244 0.177 
hsa-miR-335 0.005 1.226 0.224 0.182 
hsa-miR-1 0.005 1.017 0.189 0.186 

hsa-miR-1255B 0.020 1.306 0.248 0.190 
hsa-miR-362-3p 0.010 1.501 0.312 0.208 
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Figure 1: Screening of tumor suppressive microRNAs in RCC. (A-D) Effect of cell proliferation determined by XTT assays 
using mature miRNAs (miR-141, miR-200c, miR-187, miR-509-5p, miR-135a, miR-508-3p, miR-1285, miR-206, miR-218, miR-133b, miR-
1291, let-7g*, miR-204, miR-429, miR-370, miR-363, miR-335, miR-1, miR-1255b, and miR-362-3p) after 72 h transfection of RCC cell 
lines (A498, 786-O, ACHN and caki2). *P < 0.0001. (E) Expression levels of miR-1285 in RCC cell lines. miR-1285 expression levels 
were significantly downregulated in all cell lines in comparison with normal kidney.(F) Expression levels of miR-1285 in clinical RCC 
specimens. Relative miR-1285 expression levels are expressed in box plots. RNU48 was used as the internal control.
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Figure 2: Effect of mature miR-1285 transfection in RCC cell lines.(A) Cell proliferation was determined with XTT assays of 
A498 and 768-O cell lines after 72 h transfection with 10 nM miR-1285, miR-control and mock. Cell proliferation was significantly inhibited 
in miR-1285 transfectants in comparison with the mock cells. Thus, with the Ambion products, the percentage of cell viability relative to 
mock cells was 20.3 ± 1.7% for A498, and 20.1 ± 0.7% for 786-O (both P < 0.0001). For the Thermo products, the percentages were 24.1 
± 1.1% (A498) and 27.1 ± 1.3% (786-O)(both P < 0.0001) (Figure 2A).(B) Cell migration activity was determined with the wound healing 
assay after 48 h transfection of miR-1285. Cell migration was significantly inhibited in miR-1285 transfectants in comparison with the 
mock. Thus, with the Ambion materials, the percentage of wound closure relative to mock was 9 ± 6.7% for A498, and 15.4 ± 7.0 for 786-O 
(both, P < 0.0001). With the Thermo miRNAs, the values were 10.4 ± 6.0% (A498), and 8.2 ± 3.6% (786-O) (both P < 0.0001) (Figure 2B).
(C) Cell invasion activity was determined with the Matrigel invasion assay after 48 h transfection of miR-1285. Cell numbers significantly 
decreased after miR-1285 transfection in comparison with the mock. Thus, using Ambion miRNA, the percentage of cell invasion relative 
to mock was 11.7 ± 0.7 (A498) and 18.6 ± 3.2% (786-O)(both P < 0.0001). With the Thermo products, we observed 3.1 ± 0.5% (A498)and  
0.4 ± 0.7% (786-O) (both P < 0.0001) (Figure 2C).  **P < 0.0001.
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(miR-141, miR-200c, miR-187, miR-509-5p, miR-135a, 
miR-508-3p, miR-1285, miR-206, miR-218, miR-133b, 
miR-1291, miR-let-7g, miR-204, miR-429, miR-370, miR-
363, miR-335, miR-1, miR-1255B and miR-362-3p) in the 
expression list were subjected to further study (Table 1).  

Transfection of 20 downregulated miRNAs: 
effects on cancer cell proliferation

To investigate the functional role of the 20 
downregulated miRNAs, we performed gain-of-function 
studies using mature miRNA transfection in RCC cell 
lines. The XTT assay revealed significant inhibition of 
cell proliferation in several miRNA transfectants (A498, 
786-O, ACHN and caki2) in comparison with mock 
transfectants (transfectant reagent only) (each, P < 0.0001, 
Figure 1A, B, C, and D). Supplementary Table 2 shows 
the extent to which cell proliferation was inhibited in four 
RCC cell lines. miR-1285 transfection showed the greatest 
inhibitory effect among the 20 candidate miRNAs. Thus, 
we focused on miR-1285 and investigated the functional 
significance using RCC cell lines. 

Expression levels of miR-1285 in cancer cell lines 
and RCC clinical specimens

The expression levels of miR-1285 were significantly 
lower in RCC cell lines (A498, 786-O, ACHN and 
caki2) than normal kidney (Figure 1E). Also, miR-1285 
expression was significantly reduced in RCC clinical 
specimens compared with adjacent non-cancerous tissues 
(P < 0.0001, Figure 1F).

Effect of miR-1285 restoration on cell 
proliferation, migration and invasion in RCC cell 
lines

To investigate the functional significance of miR-
1285, we performed gain-of-function studies using 
transient transfection with mature miR-1285. We utilized 
two sources of mature miR-1285 (Ambion and Thermo) to 
ensure reproducibility of the data.   

The XTT assay demonstrated that cell proliferation 
was significantly inhibited in miR-1285 transfectants in 
comparison with the mock cells (Figure 2A).

The wound healing assay demonstrated that cell 

Table 2:  Down-regulated genes in miR-1285 transfectants

Fold change (log 2 ratio)

Entrez gene ID Symbol A498 786-O Average Gene name Target site

64077 LHPP -2.98 -3.92 -3.45 Phospholysine phosphohistidine inorganic 
pyrophosphate phosphatase +

4771 NF2 -2.99 -3.02 -3.01 Neurofibromin 2 +

1979 EIF4EBP2 -2.79 -3.11 -2.95 Eukaryotic translation initiation factor 4E 
binding protein 2 -

7052 TGM2 -2.44 -3.12 -2.78 Transglutaminase 2 +

114902 C1QTNF5 -2.64 -2.83 -2.74 C1q and tumor necrosis factor related 
protein 5 -

3773 KCNJ16 -2.45 -3.00 -2.72 Potassium inwardly-rectifying channel, 
subfamily J, member 16 +

54901 CDKAL1 -2.96 -2.31 -2.64 CDK5 regulatory subunit associated protein 
1-like 1 -

51148 CERCAM -2.52 -2.61 -2.56 Cerebral endothelial cell adhesion 
molecule +

11346 SYNPO -2.41 -2.58 -2.49 Synaptopodin +

441518 FAM127C -2.09 -2.67 -2.38 Family with sequence similarity 127, 
member C +

254439 C11orf86 -2.41 -2.29 -2.35 Chromosome 11 open reading frame 86 -
83742 MARVELD1 -2.26 -2.41 -2.34 MARVEL domain containing 1 -
9718 ECE2 -2.14 -2.50 -2.32 Endothelin converting enzyme 2 -
4907 NT5E -2.27 -2.31 -2.29 5'-nucleotidase, ecto (CD73) +
11313 LYPLA2 -2.09 -2.31 -2.19 Lysophospholipase II +
79026 AHNAK -2.07 -2.26 -2.16 AHNAK nucleoprotein +

51313 FAM198B -2.03 -2.11 -2.07 Family with sequence similarity 198, 
member B +
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migration was significantly inhibited in miR-1285 
transfectants in comparison with the mock (Figure 2B).

The Matrigel invasion assay demonstrated that 
invading cell numbers significantly decreased after miR-
1285 transfection in comparison with the mock (Figure 
2C).

Identification of miR-1285 regulated target genes 
by genome-wide gene expression analysis and 
validation of target genes using clinical RCC 
specimens

To gain further insight into which genes were 
affected by miR-1285 transfection, we performed 
microarray analysis of miR-1285 transfectants (A498 and 
786-O). A total of 17 genes were downregulated (less than 
-2.0-fold changes) in miR-1285 transfectants compared 
with the controls. The TargetScan program revealed that 
seven of 17 downregulated genes had putative target sites 
of miR-1285 in their 3’UTRs (Table 2).

Seven of the downregulated genes in miR1285-
transfectants (LHPP, TGM2, NF2, CERCAM, SYNPO, 
LYPLA2, and AHNAK) were selected and we measured 
the mRNA expression levels in the clinical RCC samples 
by quantitative real-time RT-PCR. Among them, TGM2 
was the only gene that was expressed significantly higher 
in RCC specimens than in adjacent non-cancerous tissues 
(P < 0.0037, Figure 3A). Therefore, we focused on TGM2 
as a promising candidate target of miR-1285.

miR-1285 directly regulates TGM2 in RCC cell 
lines

Quantitative real-time RT-PCR analyses showed that 
mRNA expression levels of TGM2 in the A498 and 786-O 
cell lines were higher than those in normal human kidney 
(Figure 3B). Furthermore, both TGM2 mRNA and TGM2 
protein expression levels were markedly downregulated 
in miR-1285 transfectants in comparison with the control 
transfectants (A498 and 786-O) (Figure 3C, D).

To determine whether the 3’-UTR of TGM2 had an 
actual target site for miR-1285, we performed a luciferase 
reporter assay by using a vector encoding the full-length 
3’UTR of TGM2 mRNA and found that the luminescence 
intensity was significantly reduced in the miR-1285 
transfectants compared to the control-transfectant (Figure 
3E).

Effect of TGM2 silencing on cell proliferation, 
migration and invasion in RCC cell lines

To examine the functional role of TGM2, we 
performed loss-of-function studies in A498 and 786-O cell 
lines transfected with two different sequences of si-TGM2. 

The mRNA and protein expression levels of TGM2 were 
markedly repressed by these si-TGM2 transfections 
(Figure 4A, B).

The XTT assay revealed that significant inhibition 
of cell proliferation was observed in the two si-TGM2 
transfectants in comparison with the untransfectants 
(mock) and the si-control transfectants (Figure 5A). 

The wound healing assay also demonstrated 
significant cell migration inhibitions in the two si-TGM2 
transfectants compared with the counterparts (Figure 5B). 

The matrigel invasion assay demonstrated that the 
number of invading cell was significantly decreased in the 
two si-TGM2 transfectants compared with the counterparts 
(Figure 5C).

Immunohistochemistry of TGM2

Figure 6 shows the representative results of 
immunohistochemical staining of TGM2. TGM2 was 
strongly expressed in tumor lesions A (T1N0M0), B 
(T2N0M0) and C (T3N0M0), whereas no expression was 
observed in normal tissue (D). The expression score of 
the tumor was significantly higher than that of normal 
tissues (P = 0.0004) (E, upper). We found that there were 
significant correlations between the expression scores and 
tumor stage (P = 0.0111) (E, lower).

DISCUSSION

In this study, we constructed miRNA expression 
signatures of clinical RCC specimens using 778 miRNAs 
by PCR-based analysis. Among them, 103 miRNAs 
were downregulated (0.5-fold change) and the top 20 
downregulated miRNAs were evaluated to determine 
whether these miRNAs had potential tumor suppressor 
functions. Our functional screening revealed that 14 
miRNAs (miR-1285, miR-206, miR-1, miR-135a, miR-429, 
miR-200c, mR-1291, miR-133b, miR-508-3p, miR-362-3p, 
miR-509-5p, miR-218, miR-335, miR-1255b and miR-141) 
significantly inhibited cancer cell proliferation in RCC 
cell lines, suggesting that these miRNAs were potentially 
promising candidate tumor suppressive miRNAs. 

In our previous studies of miRNA signatures, miR-
206, miR-1, miR-133b and miR-218 were significantly 
reduced in various types of cancers. We also observed 
that restoration of these miRNAs inhibited cancer cell 
proliferation, invasion and migration [10-16]. Our 
data strongly suggested that these miRNAs function 
as tumor suppressors in human cancers [10-16]. Of 
particular interest, miR-1-1/miR-133a-2, miR-1-2/miR-
133a-1, and miR-206/miR-133b form clusters on three 
different chromosomal regions in the human genome, 
20q13.33, 18q11.2, and 6p12.1, respectively [17, 18]. We 
and other groups also demonstrated that these clusters 
were frequently downregulated in human cancers and 
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significantly contributed to human oncogenesis [8,10,19-
22]. Our present signature of RCC supports previous 
results and it is expected that these function as tumor 
suppressors in RCC. 

In this signature, miR-141, miR-200c, miR-429, 
miR-200b and miR-200a were significantly reduced in 
RCC. It is well known that the miR-200 family consists of 
five members organized as two clusters, miR-200b/miR-
200a/miR-429 and miR-200c/miR-141, on chromosomes 
1p36.33 and 12p13.31, respectively. The miR-200 
family contains closely related seed sequences. It has 
been reported that one can inhibit the initiation of the 
epithelial-mesenchymal transition (EMT) by targeting 
ZEB1 and ZEB2 [23,24]. Downregulation of the miR-
200 family in our signature is supported by other reports 
of RCC signatures [25], and this fact suggests that the 
EMT pathway is a main theme of RCC oncogenesis. 
Our miRNA expression signature provides the important 
information for miRNA research fields of RCC 
oncogenesis and metastasis.

In this study, we focused on miR-1285 because it had 

the greatest inhibitory effect on cancer cell proliferation 
among 20 downregulated miRNAs in our signature. 
We investigated its functional significance and how it 
regulated molecular targets in RCC cells. miR-1285 was 
discovered from massive parallel sequencing of human 
embryonic stem cells [26], and it is a unique miRNA 
that exists in a limited group of animals including Homo 
sapiens, Pan troglodytes, Sus scrofa and Pongo pygmaeus 
(miRBase: http://www.mirbase.org/index.shtml). In 
the human genome, miR-1285 mapped on two different 
chromosomes (miR-1285-1 at 7q21.2 and miR-1285-2 at 
2p13.3), and the mature miRNA sequences are identical. 
There are few publications focused on miR-1285. This is 
the first report that miR-1285 is downregulated in clinical 
RCC specimens and demonstrates that it functions as a 
tumor suppressor.

miRNAs are unique in their ability to regulate many 
protein coding genes. Bioinformatic predictions indicate 
that miRNAs regulate more than 30% of protein coding 
genes [27]. The elucidation of new molecular targets 
regulated by tumor suppressive miR-1285 is important 

Figure 3: miR-1285 directly regulates TGM2 in RCC cells. (A) Expression level of TGM2 mRNA in clinical RCC cell specimens. 
Relative TGM2 mRNA expression levels are expressed in box plots. (B) The mRNA expression levels of TGM2 in RCC cell lines (A498 
and 786-O) compared to normal kidney RNA. GUSB was used as an internal control.(C) TGM2 mRNA expression in RCC cell lines (A498 
and 786-O). TGM2 mRNA expression 24 h after transfection with 10 nM miR-1285. GUSB was used as an internal control. (D) TGM2 
protein expression in RCC cell lines (A498 and 786-O).TGM2 protein expression 72 h after transfection with 10 nM miR-1285. GAPDH 
was used as a loading control.E) miRNA-1285 binding sites in the 3’UTR of TGM2 mRNA. A luciferase assay using the vector encoding 
full-length 3’UTR of TGM2 mRNA. The Renilla luciferase values were normalized to firefly luciferase values. *P < 0.0001



Oncotarget 2012; 3:  44 - 5751www.impactjournals.com/oncotarget

for our understanding of RCC oncogenesis. Based on this 
view, we have performed to search miR-1285 regulated 
molecular targets by using genome-wide gene expression 
analysis.

In this study, we identified seven target genes 
(LHPP, TGM2, NF2, CERCAM, SYNPO, LYPLA2, and 
AHNAK) downregulated in miR-1285-transfected cells 
and found they contained miR-1285 target sites in their 3’-
UTR. Next, we investigated the mRNA expression levels 
of seven candidate genes using clinical RCC specimens. 
TGM was the most upregulated gene in cancer cells. Thus, 
we examined the role of TGM2 in RCC cells. TGM2 is 
a family of enzymes that catalyzes the formation of an 
amide bond between the γ-carboxamide groups of peptide-
bound glutamine residues and the primary amino group in 
various compounds [28,29]. TGM2 is known to play an 
important role in cancer. Increased expression of TGM2 
has been observed in many types of cancer, including 
pancreatic cancer [30], breast cancer [31], malignant 

melanoma [32], ovarian cancer [33], lung cancer [34], 
and glioblastoma [35]. In addition, several investigators 
showed that increased expression of TGM2 might be 
linked to increased drug resistance, metastasis, and the 
epithelial to mesenchymal transition (EMT) [36-39]. Our 
present data support reports finding that TGM2 functions 
as an oncogene in RCC.

In conclusion, miR-1285 was significantly 
downregulated in RCC cell lines, was frequently 
reduced in clinical specimens, and functioned as a tumor 
suppressor in RCC. Our data indicated that upregulation of 
oncogenic TGM2 may be due to downregulation of tumor 
suppressive miR-1285 in human RCC progression. This 
novel molecular network may play a critical role in RCC 
oncogenesis and serve as a novel therapeutic strategy for 
patients with RCC.

Figure 4: Silencing of TGM2 in two RCC cell lines by si-TGM2.(A) TGM2 mRNA expression after 24 hr of transfection with 
10 nM si-TGM2 in RCC cell lines (A498 and 786-O). GUSB was used as an internal control. (B) TGM2 protein expression after 72 hr 
transfection with si-TGM2. GAPDH was used a loading control. *P < 0.0001.
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METHODS

RCC Clinical specimens and RCC cell lines 

Following nephrectomies at Kagoshima University 
Hospital, a total of five pairs of clear cell type cancer and 
adjacent non-cancerous tissue, and an additional group 
of five clear cell type cancer were collected for miRNA 
expression analysis (supplementary Table 3, Number 
1-15). The tissue specimens for quantitative RT-PCR were 
from 36 RCC patients who had undergone nephrectomy at 
Kagoshima University Hospital between 2006 and 2009 
(supplementary Table 3, Numbers 6 - 43). These samples 
were staged according to the American Joint Committee 
on Cancer-Union Internationale Contre le Cancer (UICC) 
tumor-node-metastasis classification and histologically 
graded [40]. Our study was approved by the Bioethics 
Committee of Kagoshima University; written prior 
informed consent and approval were given by the patients.

We used four human RCC cell lines: A498, 786-O, 
ACHN and caki-2 that were obtained from the American 
Type Culture Collection (Manassas, VA, USA). These cell 
lines were incubated in RPMI 1640 medium (Invitrogen, 
Carlsbad, CA, USA) supplemented with 10% fetal bovine 
serum and maintained in humidified incubators (5% CO2) 
at 37°C.

Total RNA including miRNA was extracted using 
the mirVana miRNA isolation kit (Ambion, Austin, TX, 
USA) following the manufacturer’s protocol. The integrity 
of the RNA was checked with the RNA 6000 Nano Assay 
Kit and a 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA, USA).

miRNA expression signatures and data 
normalization

MiRNA expression patterns were evaluated using 
the TaqMan LDA Human microRNA Panel v2.0; a 
total of 778 miRNAs were investigated in the screen 
(Applied Biosystems, Foster City, CA, USA). The assay 
was composed of two steps: generation of cDNAs by 
reverse transcription and a TaqMan real-time PCR assay. 
The description of real-time PCR and the list of human 
miRNAs can be found on the company’s website (http://
www.appliedbiosystems.com). An analysis of relative 
miRNA expression data was performed using GeneSpring 
GX version 7.3.1 software (Agilent Technologies) 
according to the manufacturer’s instructions. A cutoff 
P value < 0.05 was used to narrow down the candidates 
after global normalization of the raw data. After global 
normalization, the additional normalization was done with 
RNU48.

Quantitative real-time RT-PCR

TaqMan probes and primers for TGM2 (P/N: 
Hs00190278_m1; Applied Biosystems) were assay-on-
demand gene expression products. All reactions were 
performed in duplicate and a negative control lacking 
cDNA was included. We followed the manufacturer’s 
protocol for PCR conditions. Stem-loop RT–PCR 
(TaqMan MicroRNA Assays; P/N: PM13580 for miR-
1285; Applied Biosystems) was used to quantitate 
miRNAs according to earlier published conditions (11). To 
normalize the data for quantification of TGM2 mRNA and 
the miRNAs, we used human GUSB (P/N: Hs99999908_
m1; Applied Biosystems) and RNU48 (P/N: 001006; 
Applied Biosystems), respectively, and the delta–delta Ct 
method was employed to calculate the fold-change. As a 
control RNA, we used total RNA from our normal human 
kidneys sample.

Mature miRNA and siRNA transfection

As described elsewhere (11), the RCC cell lines 
were transfected with Lipofectamine  RNAiMAX 
transfection reagent (Invitrogen) and Opti-MEM 
(Invitrogen) with 10 nM mature miRNA molecules. Pre-
miR (Applied Biosystems and Thermo Fisher Scientific) 
and negative control miRNA (Applied Biosystems) 
were used in the gain-of-function experiments, whereas 
TGM2 siRNA (Cat numbers, SASI_Hs01_00035266 and 
SASI_Hs02_00338000, Sigma Aldrich) and negative 
control siRNA (MISSION siRNA Universal Negative 
Control, Sigma Aldrich) were used in the loss-of-function 
experiments. Cells were seeded in ten cm dishes for 
protein extraction (8 × 105 cells per dish), in six well plates 
for wound healing assays (20 × 104 cells per well), in a 24 
well plates for mRNA extraction and luciferase reporter 
assays (5 × 104 cells per well), and in 96 well plates for 
XTT assays (3000 cells per well).

Cell proliferation, migration and invasion assays

Cell proliferation was determined using an XTT 
assay (Roche Applied Sciences, Tokyo, Japan) performed 
according to the manufacturer’s instructions. Cell 
migration activity was evaluated with a wound-healing 
assay. Cells were plated in six well dishes, and the cell 
monolayer was scraped using a P-20 micropipette tip. The 
initial gap length (0 h) and the residual gap length 24 h 
after wounding were calculated from photomicrographs. 
A cell invasion assay was carried out using modified 
Boyden Chambers consisting of Transwell-precoated 
Matrigel membrane filter inserts with eight mm pores in 
24 well tissue culture plates (BD Biosciences, Bedford, 
MA, USA). Minimum essential medium containing 
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Figure 5: Effect of silencing of TGM2 in two RCC cell lines.(A) Cell proliferation determined with XTT assays of A498 and 
768-O cell lines after 72 h transfection with 10nM si-TRM2, miR-control or mock. Cell proliferation was significantly inhibited in the two 
si-TGM2 transfectants in comparison with the nontransfectants (mock) and the si-control transfectants. Thus, the percentage of cell viability 
for A498 was 60.6 ± 4.2%, 62.0 ± 5.9%, 100.0 ± 5.5%, and 92.3 ± 6.3%, respectively (P < 0.0001). The percentage of cell viability for  
786-O was 54.7 ± 4.7%, 76.9 ± 17.9%, 100.0 ± 6.7% and 88.1 ± 5.5%, respectively, (P < 0.0001) (Figure 5A).(B) Cell migration activity 
determined with wound healing assays after 48 h transfection with si-TGM2. Cell migration was significantly inhibited in the two si-TGM2 
transfectants compared with the counterparts.  For A498, the percentage of wound closure was 26.3 ± 14.4%, 4.1 ± 3.9%, 100.0 ± 9.4%, 
and 84.3 ± 13.0%, respectively (P < 0.0001). For 786-O, we observed closures of 71.2 ± 4.9%, 20.8 ± 6.4%, 100.0 ± 7.5%, and 92.7 ± 
13.3%, respectively (P < 0.0001) (Figure 5B).(C) Cell invasion activity determined with the Matrigel invasion assay after 48 h transfection 
with si-TGM2. The number of invading cells was significantly decreased in the two si-TGM2 transfectants compared with the counterparts. 
Specifically, the percentage of cell invasion for A498 was 7.3 ± 2.6%, 5.1 ± 1.9%, 100.0 ± 4.0%, and 120.7 ± 4.0%, respectively (P < 
0.0001) and for 786-O, they were 40.7 ± 3.8%, 55.0 ± 51.2%, 100.0 ± 3.7%, and 136.4 ± 8.1%, respectively (P < 0.0001) (Figure 5C).**P 
< 0.0001.
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10% fetal bovine serum in the lower chamber served as 
the chemoattractant as described previously (12). All 
experiments were performed in triplicate.

Screening of miR-1285-regulated genes using 
microarray and database analysis

Oligo-microarray Human 44K (Agilent) was used 
for expression profiling in miR-1285-transfected RCC 
cell lines (A498 and 786-O) in comparison with miR-
negative control transfectants, as previously described 
(12). Briefly, hybridization and washing steps were 
performed in accordance with the manufacturer’s 
instructions. The arrays were scanned using a Packard 

GSI Lumonics ScanArray 4000 (PerkinElmer, Boston, 
MA, USA). The data obtained were analyzed with 
DNASIS array software (Hitachi Software Engineering, 
Tokyo, Japan), which converted the signal intensity for 
each spot into text format. The log2 ratios of the median 
subtracted background intensity were analyzed. Data 
from each microarray study were normalized by global 
normalization.

The predicted target genes and their miRNA binding 
site seed regions were investigated using TargetScan 
(release 5.1, http://www.targetscan.org/). The sequences 
of the predicted mature miRNAs were confirmed using 
miRBase (release 18.0, November 2011; http://microrna.
sanger.ac.uk/).

Figure 6: Immunohistochemical staining of TGM2 in tissue specimens.(A) Positively stained tumor lesion (Grade 1, 
T1N0M0); (B) positively stained tumor lesion (Grade 1, T2N0M0); (C) positively stained tumor lesion (Grade 1, T3N0M0); (D) Negative 
staining in normal urocustis tissue. (A, B, C) positive staining in tumor cells: weak (A), strong (B, C). (E) TGM2 expression levels in 
immunohistochemical staining; upper, TGM2 expression in normal kidney and RCC; lower, correlation between TGM2 expression and 
clinicopathological parameters in RCC. 
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Western blots

After three days of transfection, protein lysates (20 
μg) were separated by NuPAGE on 4–12% bis-tris gels 
(Invitrogen) and transferred to polyvinylidene fluoride 
membranes. Immunoblotting was done with diluted 
(1:200) polyclonal TGM2 antibody (HPA029518; Sigma-
Aldrich, St. Louis, MO, USA) and GAPDH antibody 
(MAB374; Chemicon, Temecula, CA, USA). The 
membrane was washed and then incubated with goat anti-
rabbit IgG (H+L)-HRP conjugate (BIO-RAD, Hercules, 
CA, USA). Specific complexes were visualized with an 
echochemiluminescence (ECL) detection system (GE 
Healthcare, Little Chalfont, UK), and the expression levels 
of these genes were evaluated using ImageJ software (ver. 
1.43; http://rsbweb.nih.gov/ij/index.html).

Plasmid construction and dual-luciferase reporter 
assay

The miRNA target sequences were inserted 
between the XhoI–PmeI restriction sites in the 3’-
UTR of the hRluc gene in the psiCHECK-2 vector 
(C8021; Promega, Madison, WI, USA). Primer 
sequences for the full-length 3’UTR of TGM2 mRNA 
(5’-GATCGCTCGAGCCACCTTGATTCCCAATCC-3’ 
and5’-CTTAAACTGTGACTCTTTCCTGTGCAA-3’) 
were designed. 786-O cells were transfected with 15 ng 
vector, 10 nM microRNAs, and one μL  Lipofectamine 

2000 (Invitrogen) in 100 μL Opti-MEM (Invitrogen). The 
activities of firefly and Renilla luciferases in cell lysates 
were determined with a dual-luciferase assay system 
(E1910; Promega). Normalized data were calculated as 
the quotient of Renilla/firefly luciferase activities.

Immunohistochemistry 

A tissue microarray of 70 renal cell carcinomas and 
ten normal kidneys was obtained from US Biomax, Inc. 
(KD806; Rockville, MD, USA). Detailed information 
on all tumor specimens can be found at http://www.
biomax.us/index.php. The patients’ backgrounds and 
clinicopathological characteristics are summarized 
in supplementary Table 4. The tissue microarray was 
immunostained following the manufacturer’s protocol 
with an UltraVision Detection System (Thermo 
Scientific). The primary rabbit polyclonal antibodies 
against TGM2 (Sigma-Aldrich) were diluted 1:400. The 
slides were treated with biotinylated goat anti-rabbit 
antibodies. Diaminobenzidine hydrogen peroxidase was 
the chromogen, and counterstaining was done with 0.5% 
hematoxylin. Immunostaining was evaluated according 
to a scoring method  described previously [13]. Each 
case was scored on the basis of the intensity and area 

of staining. The intensity of staining was graded on the 
following scale: 0, no staining; 1+, mild staining; 2+, 
moderate staining; and 3+, intense staining. The area of 
staining was evaluated as follows: 0, no staining of cells 
in any microscopic fields; 1+, < 30% of cells stained 
positive; 2+, 30–60% stained positive; 3+, > 60% stained 
positive. A combined staining score (intensity + extension) 
of < 2 was low expression, a score between 3 and 4 was 
moderate expression, and a score between 5 and 6 was 
high expression.

Statistical analysis

The relationships between two variables and 
the numerical values obtained by real-time RT-PCR 
were analyzed using the Mann-Whitney U test. The 
relationships among three variables and the numerical 
values were analyzed using the Bonferroni-adjusted 
Mann-Whitney U test. The χ2-test was used to evaluate 
the relationships between immunohistochemical scores of 
TGM2 expression and clinicopathological factors. Expert 
StatView analysis software (version 4; SAS Institute Inc., 
Cary, NC, USA) was used in both cases. In the comparison 
among three variables, a nonadjusted statistical level of 
significance of P < 0.05 corresponds to a Bonferroni-
adjusted level of P < 0.0167. 
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