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ABSTRACT:
We have developed a modular scaffold for preparing high-affinity, homo-multivalent 
inhibitors of the prostate-specific membrane antigen (PSMA) for imaging and therapy 
of prostate cancer (PCa). Our system contains a lysine-based (∝-, ε-) dialkyne residue 
for incorporating a PSMA binding Lys-Glu urea motif exploiting click chemistry and 
a second lysine residue for subsequent modification with an imaging or therapeutic 
moiety. The utility of the multivalent scaffold was examined by synthesizing bivalent 
compounds 2 and 3 and comparing them with the monovalent analog 1. Determination 
of inhibition constants (Ki) revealed that bivalent 2 (0.2 nM) and 3 (0.08 nM) are 
significantly more potent (~ 5 fold and ~ 11 fold, respectively) inhibitors of PSMA 
than monovalent 1 (0.9 nM). A single photon emission computed tomography 
(SPECT)-CT imaging study of [111In]3 demonstrated high and specific uptake in 
PSMA+ PC-3 PIP tumor until at least 48 h post-injection, with rapid clearance from 
non-target tissues, including kidney. A biodistribution study revealed that [111In]3 
demonstrated 34.0 ± 7.5 percent injected dose per gram of tissue in PSMA+ tumor 
at 24 h post-injection and was capable of generating target-to-non-target ratios 
of ~ 379 in PSMA+ PC-3 PIP tumors vs. isogenic PSMA-negative PC3-flu tumors in 
vivo. The click chemistry approach affords a convenient strategy toward multivalent 
PSMA inhibitors of enhanced affinity and superior pharmacokinetics for imaging.

INTRODUCTION 

Prostate cancer (PCa) will kill an estimated 33,720 
men in the US alone this year [1]. The integral membrane 
protein prostate-specific membrane antigen (PSMA) is 
becoming increasingly recognized as a viable target for 
imaging and therapy of prostate and other forms of cancer 
[2-4]. PSMA is significantly over-expressed in PCa and 
metastases, particularly with respect to the castration-
resistant form [5]. Accordingly, PSMA may provide 
a negative prognostic indicator for PCa – enabling 
distinction of indolent from aggressive disease. Imaging 
PSMA has also provided insight into androgen signaling 
[6] and information on response to taxane therapy [7].

Recently we and others have demonstrated 
successful PSMA-targeted radionuclide imaging in 

experimental models of PCa using cysteine-glutamate 
or lysine-glutamate ureas. With those agents the 
radionuclide (11C, 125I, 18F) is attached to the cysteine or 
lysine moiety via a small prosthetic group [8-12]. For 
large molecular fragments, such as radiometal (99mTc, 
68Ga, 111In) chelators, organic fluorescent molecules, and 
nanoparticles, we have determined that a linking moiety 
of at least 20 Å (long-linker) between the large molecule 
and the lysine moiety facilitates productive binding [13-
15]. We have also developed a PSMA-targeted, dual 
(radionuclide and optical) modality imaging platform 
that enables sequential, dual modality imaging [16]. As 
an extension of this program, here we prepare bivalent 
ligands with a view to improving the affinity and 
pharmacokinetic properties of the urea class of PSMA 
inhibitors. The strategy we employ can be generalized to 
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multivalent compounds. Because they present multiple 
copies of the pharmacophore, multivalent ligands can bind 
to receptors with high avidity and affinity, thereby serving 
as powerful inhibitors [17, 18]. Various approaches 
have been reported to exploit multivalent scaffolds for 
the construction of molecular imaging probes [19-22]. 
However, the chemistry used to produce them can become 
complicated, even more so when a bifunctional chelator 
must be attached to a separately multimerized construct 
to introduce a radionuclide, for example, for imaging. 
Although, the concept of multimerization for PSMA 
targeted, near-infrared imaging agents has been proffered 
for in vitro cell binding studies [22], to our knowledge 
a multivalent PSMA-binding agent has not yet been 
shown to image PSMA successfully in vivo. Here we use 
click chemistry [23, 24] with our long-linker platform 
as a convenient route to build a modular scaffold for 

multimeric presentation of PSMA targeting species and 
demonstrate the enhanced ability of the bivalent form, 
over the corresponding monomer, to target PSMA in vivo. 

RESULTS AND DISCUSSION

Our modular multivalent scaffold contains a lysine-
based (∝-, ε-) dialkyne residue for incorporating PSMA 
binding Lys-Glu urea moieties exploiting click chemistry 
[23, 24] and a second lysine residue for subsequent 
modification with an imaging and/or therapeutic nuclide 
or a cytotoxic ligand for tumor cell kill. The divalent agent 
was anticipated to have a prolonged biological half-life 
and enhanced specific binding and retention in tissues 
expressing PSMA. To evaluate the anticipated multivalent 
effect, a versatile Lys-Glu-urea-based azide intermediate 
(1) was prepared to serve as a monovalent control 

Chart 1:
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compound (Chart 1) against the bivalent compound 2 and 
the DOTA-chelated bivalent urea analog, 3 to examine 
the effect of adding a chelating agent to bivalent urea 
2. Compounds 2 and 3 were conveniently prepared by 
employing simple peptide coupling and click chemistry 
[23, 24] as shown in Scheme 1. 

Starting with commercially available Fmoc-
Lys(Boc)-Wang resin and using standard Fmoc-based 
solid phase peptide chemistry, 1 - 4 were prepared in 
suitable yields. In brief, Fmoc-Lys(Boc)-Wang was 
treated with 20% piperidine/DMF to remove the Fmoc 
group followed by coupling with commercially available 
Fmoc-Lys(Fmoc)-OH in the presence of benzotriazol-1-
yloxy)tripyrrolidinophosphonium hexafluorophosphate 
(PyBOP) and N,N-diisopropylethylamine (DIEA). In the 
next step, a microwave-assisted coupling reaction was 
performed using propiolic acid in presence of 2-ethoxy-
1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) in DMF 
to improve the yield and purity of the desired product. 
Finally, 4 was isolated in ~ 40% yield after treating the 
resin with a cocktail of TFA/H2O/TES (95/2.5/2.5) at 
ambient temperature for 0.5 h. Compound 4, a Lys-based 
(∝-, ε-) dialkyne peptide, served as the key intermediate 

to introduce multimerization. Copper catalyzed click 
chemistry was employed using the azide intermediate 1 
and dialkyne peptide 4 to produce multivalent compound 
2 in moderate yield after purification by high-performance 
liquid chromatography (HPLC). Compound 3 was 
prepared by coupling the free amine of the lysine residue 
of 2 with the N-hydroxysuccinimide ester of DOTA-
tris-acid using DIEA as a base in DMSO at ambient 
temperature for 4 h. Compound 3 was purified by HPLC 
and obtained in ~15% overall yield. Compound 3 was 
labeled with 111In at 95°C in 0.3 M NaOAc buffer within 
20 min in ~70 - 90% yield and specific radioactivity of ~ 
8.4 – 204.4 GB/µmol.

PSMA inhibition constant (Ki) values for 1 - 3 
were determined using a fluorescence-based PSMA 
inhibition assay [8]. The data are presented in Table 1. 
As revealed from the Ki values, the binding affinity was 
found to increase 5-fold from monovalent 1 to bivalent 
2. Interestingly, there was an 11-fold increase to the 
DOTA-chelated bivalent compound 3 compared to 1 
leading to subnanomolar binding affinity for 3. Under the 
same experimental conditions, the Ki value of the known 
PSMA inhibitor ZJ-43 [25] was 1.16 nM, indicating the 

Scheme 1:
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high inhibitory potency of 3. The inhibition curves of 1 
- 3, which are expressed with respect to the amount of 
glutamate released from hydrolysis of the natural PSMA 
substrate, N-acetylaspartylglutamate (NAAG), are shown 
in Figure 1. A structurally similar triazole version of 1, 
compound 6 (Chart 1, Table 1) was also tested for PSMA 
inhibitory activity in vitro in a previous experiment [34]. 
The Ki value of 6 was 0.92 nM in that experiment, in which 
ZJ-43 demonstrated a Ki value of 0.35 (95% CI, 0.2 – 0.6 
nM), suggesting that the affinity of 6 is likely significantly 
less than the bivalent compounds 2 or 3. Compound 6 
was radiolabeled with 99mTc and its biological properties 
were tested in vivo [34]. A manuscript describing those 
biological data is in preparation.

Figure 2 shows the pharmacokinetic behavior of 
[111In]3 in vivo in SCID mice bearing both PSMA+ PC3-
PIP and PSMA- PC3-flu xenografts [26]. We prefer to use 
the isogenic PSMA+ PIP vs PSMA- flu comparison as 
the two cell lines are phenotypically identical, differing 
only in PSMA expression. In this experiment 44.4 MBq 
(1.2 mCi) of [111In]3 was administered intravenously 

and the animal was imaged repeatedly over an eight day 
period. Intense radiotracer uptake was seen only in the 
PSMA+ PIP tumors and in the kidneys. Kidney uptake 
of the radiotracer is partially due to its route of excretion 
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Figure 1: IC50 curves of compounds 1-3 [8], [37].

Compound Ki [nM] 95% CI of Ki

1 0.91 0.58 nM to 1.45 nM

2 0.10 0.07 nM to 0.16 nM

3 0.08 0.05 nM to 0.12 nM

ZJ43 1.16 0.92 nM to 1.46 nM

6 0.92* 0.06 nM to 12 nM

*Separate experiment (see text)

Table 1: PSMA inhibitory activity

2 H 24 H
blood 0.12 ± 0.04 0.02 ± 0.01

heart 0.16 ± 0.05 0.03 ± 0.01

lung 1.84 ± 0.26 0.17 ± 0.04

liver 0.19 ± 0.03 0.16 ± 0.03

stomach 0.22 ± 0.07 0.03 ± 0.01

pancreas 0.43 ± 0.10 0.05 ± 0.02

spleen 12.33 ± 3.02 0.64 ± 0.22

fat 0.57 ± 0.17 0.19 ± 0.23

kidney 168.67 ± 14.18 66.86 ±14.22

muscle 0.16 ± 0.08 0.03 ± 0.01

small intestine 0.10 ± 0.03 0.04 ± 0.01

large intestine 0.27 ± 0.05 0.05 ± 0.03

bladder 2.61 ± 1.36 0.52 ± 0.27

PC-3 PIP 31.93 ± 5.87 34.03 ± 7.53

PC-3 flu 0.16 ± 0.03 0.09 ± 0.03

PIP:flu 203 379

PIP:blood 257 2,254

PI:muscle 199 1,220
*Results are expressed as the percentage injected 
dose per gram (%ID/g) of tissue; n = 4.

Table 2: Biodistribution of [111In]3.*
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as well as to specific uptake from the expression of 
PSMA in mouse kidneys [27]. Clearance of radioactivity 
from kidney and non-target tissues was more rapid than 
from target tumor such that by 48 h post-injection (p.i.) 
a high tumor/background ratio was observed (Figure 2). 
Significantly, PSMA+ tumor was possible to image out to 
eight days p.i. To validate the in vivo imaging data, [111In]3 
was also assessed for its pharmacokinetics ex vivo. Table 
2 shows the percentage injected dose per gram (%ID/g) of 
radiotracer in selected organs at 2 h and 24 h p.i. Compound 
[111In]3 displayed PSMA-dependent binding in PSMA+ 
PC3-PIP xenografts with continuous accumulation at the 

tumor site out to 24 h. We observed tumor uptake values 
of 31.93 ± 5.87 and 34.03 ±7.53 %ID/g (SEM) at 2 and 
24 h, respectively. The blood, spleen, gastrointestinal 
tract, kidney and bladder displayed the highest uptake at 
2 h. Steady clearance from the kidneys was demonstrated, 
from 168.67 ± 14.12 at 2 h to 66.86 ± 14.22 %ID/g at 24 
h. The tumor uptake values of [111In]3 compare favorably 
with low molecular weight monovalent PSMA imaging 
agents [10, 13, 14, 16, 22, 28-31], including N-[N-[(S)-
1,3-dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-
L-cysteine, [18F]DCFBC [15], which has recently been 
administered to human subjects [30]. We also compared 
the in vivo properties of the bivalent compound [111In]3, 
with that of one of our lead DOTA-chelated monovalent 
compounds, [111In]5 (Figure 3 and Table 3). The synthesis 
and characterization of 5 [32] will be published elsewhere. 
PSMA+ tumor uptake for [111In]5 at 2 h p.i. was 29.72 ± 
8.09 % ID/g, in the same range as that for the bivalent 
compound [111In]3. However at 24 h p.i. monovalent 
[111In]5 showed significantly lower uptake (23.17 ± 3.53 
% ID/g) than bivalent [111In]3 (34.03 ± 7.53 %ID/g). At 
all time points renal retention of [111In]5 was significantly 
lower than that for [111In]3. The prolonged tumor retention 
and rapid clearance from non-target tissues led to very 
high target to non-target ratios for the bivalent [111In]3 
at 24 h: PSMA+ PIP to PSMA- flu tumor ratio of 379; 
tumor to blood ratio of 2,254; and, tumor-to-muscle ratio 
of 1,220. The corresponding monovalent compound 
[111In]5 demonstrated values of 265, 1,027 and 1,136, 
in the respective comparisons. The higher uptake and 
significant retention of [111In]3 compared to [111In]5 in 
tumors reflects the advantages of the multimeric design 
of the former, which affords improved retention in vivo 
in addition to the anticipated multivalent effects on target 
binding affinity. One explanation for those results could 
be that the binding of one PSMA-targeting moiety would 
significantly enhance the local concentration of the other 
PSMA-targeting moiety of the homodimer in the vicinity 
of the active site of PSMA, which may lead to a faster 
rate of receptor binding or a slower rate of dissociation 
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Figure 2: SPECT-CT imaging of [111In]3 using PSMA+ PIP and PSMA- flu tumors in a male SCID mouse. The mouse 
was injected intravenously using a single dose of 44.4 MBq (1.2 mCi) of [111In]3. Radiochemical uptake was followed up to 192 h post-
injection (decay corrected). 

2h 24h
blood 0.28 ± 0.05 0.02 ± 0.01

heart 0.16 ± 0.04 0.03 ± 0.01

lung 1.12 ± 0.32 0.10 ± 0.02

liver 0.25 ± 0.07 0.17 ± 0.02

stomach 0.19 ± 0.05 0.04 ± 0.01

pancreas 0.24 ± 0.05 0.04 ± 0.01

spleen 4.88 ± 2.63 0.32 ± 0.06

fat 0.83 ± 0.61 0.02 ± 0.01

kidney 110.31± 15.96 7.52 ± 2.38

muscle 0.12 ± 0.04 0.02 ± 0.01

small intestine 0.17 ± 0.04 0.05 ± 0.01

large intestine 0.21 ± 0.07 0.06 ± 0.02

bladder 0.91 ± 0.37 0.37 ± 0.16

PC-3 PIP 29.72 ± 8.09 23.17 ± 3.53

PC-3 flu 0.22 ± 0.05 0.09 ± 0.02

PIP:flu 133 264 

PIP:blood 106 1,027 

PIP:muscle 242 1,136
*Results are expressed as the percentage injected 
dose per gram (%ID/g) of tissue; n = 4.

Table 3: Biodistribution of [111In]5.*
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and translate into higher uptake and longer retention 
time in the tumor. The apparent increase in molecular 
size may also prolong circulation time of the dimer and 
consequently reduce the tumor washout rate.

The technique described is able to be generalized 
to other modalities and for molecular radiotherapy. Since 
DOTA is a general chelating agent, 3 may also be used 
with other radiometals such as 68Ga, 64Cu or 86Y for 
positron emission tomography (PET) or 90Y and 177Lu for 
therapy. Technetium-99m can also be incorporated by 
replacing DOTA with standard peptide-based chelating 
agents containing nitrogen and sulfur donors (N3S, 
N2S2), the HYNIC chelator or by use of single amino 
acid chelating (SAAC) agents [33]. Further attesting 
to its utility, bivalent 2 can also be used as a versatile 
intermediate for medically important nonmetals, such as 
the radiohalogenated imaging isotopes 18F, 123I or 211At/131I 
for radiotherapy. Other fluorophores/chelating agents/
radiometals/nonmetals/cytotoxic agent combinations can 
also be envisioned using this approach. Another significant 
aspect of the multivalent scaffold is that it will enable us 
to generate systematically at least 4- and 8-valent urea 
compounds from the lysine-diamine intermediate 4 upon 
repeated conjugation of 4 with Fmoc-Lys(Fmoc-OH) to 
produce a lysine-based multimeric urea dendron.

METHODS

Chemistry

Solvents and chemicals obtained from commercial 
sources were of analytical grade or better and used without 
further purification. All 9-fluorenylmethyloxycarbonyl 
(Fmoc) protected amino acids including the Fmoc-
Lys(Boc)-Wang resin and benzotriazol-1-yloxy)
tripyrrolidinophosphonium hexafluorophosphate 
(PyBOP) were purchased from Chem Impex International, 
Inc. (Wooddale, IL). Boc-Lys(Azide)-OH was purchased 
from Anaspec. Carrier-free [111In]InCl3 was purchased 
from MDS Nordion (Ottawa, ON, Canada). DOTA-
NHS-ester (1,4,7,10-Tetraazacyclododecane-1,4,7,10-
tetraacetic acid mono N-hydroxysuccinimide ester) 
was purchased from Macrocyclics, Inc. (Dallas, TX). 

Indium (III) nitrate, 2-ethoxy-1-ethoxycarbonyl-1,2-
dihydroquinoline (EEDQ), triethylsilane (Et3SiH), N,N-
diisopropylethylamine (DIEA) and triethylamine (TEA) 
were purchased from Sigma-Aldrich (Saint Louis, 
MO). All other chemicals were purchased from Thermo 
Fisher Scientific (Pittsburgh, PA) unless otherwise 
specified. Analytical thin-layer chromatography (TLC) 
was performed using Aldrich aluminum-backed 0.2 mm 
silica gel Z19, 329-1 plates and visualized by ultraviolet 
light (254 nm), I2 and 1% ninhydrin in EtOH. Flash 
chromatography was performed using MP SiliTech 32-63 
D 60Å silica gel purchased from Bodman (Aston, PA). All 
experiments were performed in duplicate or triplicate to 
ensure reproducibility. 1H NMR spectra were recorded on 
a Bruker UltrashieldTM 400 MHz spectrometer. Chemical 
shifts (δ) are reported in ppm downfield by reference to 
proton resonances resulting from incomplete deuteration 
of the NMR solvent. Low resolution ESI mass spectra 
were obtained on a Bruker Daltonics Esquire 3000 Plus 
spectrometer. High resolution mass spectra were obtained 
by the University of Notre Dame Mass Spectrometry & 
Proteomics Facility, Notre Dame, IN using ESI by direct 
infusion on a Bruker micrOTOF-II.

High-performance liquid chromatographic 
purification of 1 - 3 were performed using a Phenomenex 
C18 Luna 10 × 250 mm2 column on a Waters 600E Delta 
LC system with a Waters 486 variable wavelength UV/Vis 
detector, both controlled by Empower software. For HPLC 
purification of radiolabeled [111In]3, a Waters Novapak C18 
150 x 3.9 mm2 column was used. HPLC was performed 
using the following methods. Method 1: Solvent A (0.1% 
TFA in water) and solvent B (0.1% TFA in CH3CN), flow 
rate 8 mL/min. The elution gradient was 95% A and 5% B 
for 5 min and 95% A to 50% A and 5% B to 50% B over 
5 - 35 min; Method 2: The elution gradient was 95% A and 
5% B for 5 min and 95% A to 70% A and 5% B to 30% B 
over 5 - 35 min, Method 3: Solvent A (0.1% TFA in water) 
and solvent B (0.1% TFA in methanol), flow rate 8 mL/
min. The elution gradient was 0 - 5 min, 77% A and 23% 
B for 0 – 5 min, 77% A to 70% A and 23% B to 30% B 
for 5 - 35 min, and 70% A to 77% A and 30% B to 23% B 
for 35 min. Method 4: Solvent A (0.1%TFA in water) and 
solvent B (0.1%TFA in CH3CN), flow rate 1 mL/min. The 
elution gradient was 83% A and 17% B for 0 - 5 min, and 

Figure 3: Structure of compound [111In]5.
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83% A to 70% A and 17% B to 30% B for 5 - 25 min. 
( 3 S , 7 S ) - 2 6 - A z i d o - 5 , 1 3 , 2 0 - t r i o x o - 4 , 6 , 1 2 , 2 1 -
tetraazahexacosane-1,3,7,22-tetracarboxylic acid, 
Compound 1

This compound was prepared following our 
previous report [34]. Briefly, commercially available 
Boc-Lys(Azide)-OH was treated with a solution of TFA/
CH2Cl2 (1:1) at ambient temperature for 4h to remove 
the Boc group. After solvent removal, the crude product, 
H-Lys(azide)-OH, was directly used for the next step. To 
a solution of H-Lys(azide)-OH (50 mg, 0.29 mmol in 500 
µL DMSO) was added NHS-ester of Lys-Glu urea (24 
mg, 0.43 mmol in 500 µL DMSO) [16] and DIEA (100 
µL) and left at ambient temperature for 4 h. Solvent was 
evaporated to dryness and the residue was dissolved in 
water and purified by HPLC (Method 1). Retention time 
(Rt): 17.1 min. 1H NMR (δ, ppm, DMSO): 8.06 (m, 2H), 
7.74 (m, 2H), 6.34-6.29 (m, 2H), 4.16-4.03(m, 3H), 3.00 
(m, 2H), 2.33-1.27(m, 28H). ESI-MS m/Z: 630 [M+H]+.
6-amino-2-(2,6-dipropiolamidohexanamido)hexanoic 
acid, 4

Compound 4 was synthesized using standard Fmoc 
mediated solid phase peptide synthesis. Formation and 
masking of free amines was assessed using the Kaiser test 
[35]. Washing the resin with 3 mL DMF three times, 1 
minute each, before and after each step was performed 
until liberation of the final product from the resin. All steps 
were performed at ambient temperature unless otherwise 
mentioned. After being swollen by 3 mL DMF, Fmoc-Lys- 
(Boc)-Wang resin (500 mg, 0.18 mM) was deprotected by 
settling with 3 mL 20% piperidine in DMF x 2, 5 min 
each time, before coupling with Fmoc-Lys-(Fmoc)-OH 
(318 mg, 0.54 mM) preactivated with DIEA (124 uL, 0.72 
mM) and PyBOP (280 mg, 0.54 mM in 3 mL DMF). The 
last coupling was performed twice, 30 minutes in duration 
each time. The Fmoc groups were removed using 3 mL 
20% piperidine in DMF x 2, 5 min each time. Coupling 
with propiolic acid (75 mg, 1.08 mM) was achieved using 
a solution of EEDQ (268 mg, 1.08 mM) as a coupling 
reagent in 2 mL DMF and accelerated via exposure to 
microwave irradiation x 5, 30 sec each time. Ten percent 
of the maximum power of a standard kitchen microwave 
was enough to achieve complete coupling as indicated 
by a negative Kaiser test [35]. Cleavage of 4 from the 
resin was achieved by settling with 2 mL TFA/H2O/TES 
(95/2.5/2.5) mixture for 30 min followed by washing 
twice with 2 mL 100% TFA. The collected fractions were 
evaporated under vacuum after which the concentrated 
product was purified using a Sep-Pak® Vac 35 cc tC18 tube 
(Waters, WAT043350). Compound 4 was eluted with 5% 
acetonitrile in water (0.1 % TFA). HPLC: Method 2, Rt: 
10 min. 1H NMR (DMSO-d6) (δ, ppm): 8.89 (m, 1H) 8.72 
(m, 1H), 8.21 (m, 2H), 7.73 (m, 2H), 4.23 (m, 1H) 4.16-
4.10 (m, 4H), 3.04 (m, 2H), 2.77 (m, 2H), 1.74-1.27 (m, 

12H). ESIMS m/Z: 379 [M+H]+.
( 7 S ) - 2 6 - ( 4 - ( ( 1 - ( ( 5 - a m i n o - 1 - c a r b o x y p e n t y l )
amino)-1-oxo-6-(1-((7S)-1,3,7,22-tetracarboxy-
5 ,13 ,20-tr ioxo-4 ,6 ,12 ,21-tetraazahexacosan-
2 6 - y l ) - 1 H - 1 , 2 , 3 - t r i a z o l e - 4 - c a r b o x a m i d o )
hexan-2-yl)carbamoyl)-1H-1,2,3-triazol-5-yl)-
5,13,20-trioxo-4,6,12,21-tetraazahexacosane-1,3,7,22-
tetracarboxylic acid, PSMA-targeted homobivalent 
compound 2

Compound 1 (49 mg, 76.7 µM) and 4 (0.5 eq, 14.5 
mg, 38.3 µM) were dissolved in 1 mL H2O/t-BuOH (1/1). 
To that solution, sodium ascorbate (6 mg, 30 µM) and 
Cu(OAc)2 (3 mg, 15 µM) were added consecutively, the 
mixture was purged with N2 gas and stirred at ambient 
temperature overnight. Compound 2 was purified using 
C18 SepPak® Vac 2 g column through which the product 
was successfully eluted using 70/30 water/acetonitrile 
(0.1% TFA). Compound 2 was further purified by HPLC 
(Method 1). Rt: 13.9 min. ESI-MS m/Z: 1638 [M+H]+.
( 7 S ) - 2 6 - ( 4 - ( ( 1 - ( ( 1 - c a r b o x y - 5 - ( 2 -
( 4 , 7 , 1 0 - t r i s ( c a r b o x y m e t h y l ) - 1 , 4 , 7 , 1 0 -
tetraazacyclododecan-1-yl)acetamido)pentyl)
amino)-1-oxo-6-(1-((7S)-1,3,7,22-tetracarboxy-
5,13,20-trioxo-4,6,12,21-tetraazahexacosan-26-yl)-1H-
1,2,3-triazole-4-carboxamido)hexan-2-yl)carbamoyl)-
1H-1,2,3-triazol-5-yl)-5,13,20-trioxo-4,6,12,21-
tetraazahexacosane-1,3,7,22-tetracarboxylic acid, 
DOTA conjugated PSMA- targeted homobivalent 
compound 3

To a solution of 2 (4 mg, 2.44 µM in 500 µL 
DMF) was added DOTA-NHS ester (1.5 mg, 3.66 µM 
in 500 µL DML) and DIEA (50 µL) and left at ambient 
temperature for 4h. Solvent was removed under vacuum 
and the residue was dissolved in 2 mL water and was 
purified using HPLC Method 3. Rt: 26.2 min ESIMS m/Z: 
2024[M+H]+, HRESI-MS (m/z): HRESI-MS m/Z: Calcd. 
for C86H135N22O34, 2023.9824; Found 2023.9820. 

[113/115In]3
To a solution of In(NO3)3 (1 mg, 20 µmol in 100 µL) 

in deionized water was added 3 (1 mg, 0.48 µmol) in 500 
µL 0.3 M NaOAc. The resulting solution was heated at 
95°C for 1 h. The solution was purified by HPLC Method 
3. The retention time for the product was at 25.8 min. 
Yield: ~ 50%. ESIMS m/Z: 1067 [M+H]2+.

[111In]3
For each radiolabeling reaction, approximately 50 - 

70 μg of 3 in 300 mM NaOAc (purged under N2 for 2-3 
min) was incubated with 111-148 MBq (3 - 4 mCi) 111InCl3 
at pH 5.5 - 6 for 20 h at 95°C. The reaction solution was 
diluted with 1 mL water. Complexation was monitored 
by injecting aliquots of 20 - 40 µL of the solution onto 
the HPLC. The radiolabeled product [111In]3 was obtained 
in ~ 70 - 90% radiochemical yield and the radiochemical 
purity was > 98% as measured by ITLC (Gelman ITLC 
strips, 10mM EDTA). HPLC Method 4 was used to purify 
the radiolabeled product [111In]3. Rt: 13.5 min for the 
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desired product and Rt: 15.4 min for the free ligand. The 
specific radioactivity of the agent was ~ 8.4 – 204.4 GB/
µmol. The acidic eluate was neutralized with 100 µL of 
PBS solution and the volume of the eluate was reduced 
under vacuum to dryness. The solid residue was diluted 
with saline to the desired radioactivity concentration for 
biodistribution and imaging studies.

Biological Studies

PSMA Inhibition

The PSMA inhibitory activities of 1 - 3 and [113/115In]3 
were determined using a fluorescence-based assay 
according to a previously reported procedure [8]. Briefly, 
lysates of LNCaP cell extracts (25 µL) were incubated 
with the inhibitor (12.5 µL) in the presence of 4 µM 
NAAG (12.5 µL) for 120 min. The amount of glutamate 
released upon hydrolysis of NAAG was measured by 
incubating with a working solution (50 µL) of the Amplex 
Red Glutamic Acid Kit (Life Technologies, Grand Island, 
NY) for 60 min. Fluorescence was measured with a 
VICTOR3V multilabel plate reader (Perkin Elmer Inc., 
Waltham, MA) with excitation at 530 nm and emission at 
560 nm. Inhibition curves were determined using semi-log 
plots and IC50 values were determined at the concentration 
at which enzyme activity was inhibited by 50%. Assays 
were performed in triplicate. Enzyme inhibitory constants 
(Ki values) were generated using the Cheng-Prusoff 
conversion [36]. Data analysis was performed using 
GraphPad Prism version 4.00 for Windows (GraphPad 
Software, San Diego, CA).
Cell Culture and Animal Models

Sublines of the androgen independent PC-3 human 
prostate cancer xenograft originally derived from an 
advanced androgen independent bone metastasis were 
used. Those sublines have been modified to express high 
(PC-3 PIP) and low (PC-3 flu) PSMA levels and were 
generously provided by Dr. Warren Heston (Cleveland 
Clinic). Both PSMA-expressing (PC-3 PIP) and non-
expressing (PC-3 flu) prostate cancer cell lines were 
grown in RPMI 1640 medium (Mediatech Inc., Manassas, 
VA) containing 10% fetal bovine serum (FBS) (Sigma 
Aldrich, St.Louis, MO) and 1% Pen-Strep (Mediatech 
Inc., Manassas, VA) as previously described [12]. All cell 
cultures were maintained at 5% carbon dioxide (CO2), 
at 37°C in a humidified incubator. Animal studies were 
carried out in full compliance with the regulations of 
the Johns Hopkins Animal Care and Use Committee. 
Six- to eight-week-old male, non-obese diabetic (NOD)/
severe-combined immunodeficient (SCID) mice (Johns 
Hopkins Animal Core, Baltimore, MD) were implanted 
subcutaneously (s.c.) with PC-3 PIP (PSMA+) and 
PC-3 flu (PSMA-) cells (2 x 106 in 100 µL of Matrigel) 
at the forward right and left flanks, respectively. Mice 

were imaged or used in biodistribution assays when the 
xenografts reached 5 to 7 mm in diameter.
Gamma Scintigraphy and SPECT/CT

Compound [111In]3 was imaged using male SCID 
mice. Xenograft models were generated as described 
above. Mice were anesthetized using 1% isoflurane 
in oxygen flowing at 0.6 L/min prior to and during 
radiochemical injection. Mice were injected via the tail 
vein with approximately 1.2 mCi (44.4 MBq) of [111In]3 
formulated in 100 μL of saline, pH 7. After allowing for 30 
- 60 min of radiochemical uptake, anesthetized mice were 
placed on the scanner gantry and secured with medical tape 
while the anesthetic flow was increased to 0.8 L/min. The 
body temperature of the mice was maintained by covering 
them with several layers of absorbent, disposable pads 
and illumination with a dissection lamp during scanning. 
Single-pinhole median-energy (PHME) collimators with 
an aperture size of 1.0 mm, and stepwise rotation for 64 
projection angles in a full 360° rotation, 40 s increments 
were used for SPECT imaging. The radius of rotation 
(ROR) was set at 7 cm, which provided a field of view 
of 7.5 cm to cover the mouse body from head to bladder. 
A CT scan was performed prior to scintigraphy for both 
anatomical co-registration and attenuation correction. 
A total of 512 projections were acquired in a 2 min 
continuous rotation mode covering a full 360° rotation. 
Data were reconstructed and fused using commercial 
software from the vendor (Gamma Medica-Ideas, 
Northridge, CA), which includes a 2D-OSEM algorithm. 
Data were analyzed and volume-rendered images were 
generated using AMIDE software (SourceForge, http://
amide.sourceforge.net/).
Biodistribution

PSMA+ PC-3 PIP and PSMA- PC-3 flu xenograft-
bearing SCID mice were injected via the tail vein with 
0.74 MBq (20 μCi) of [111In]3. Four mice were sacrificed 
by cervical dislocation at 2 and 24 h p.i. The heart, lungs, 
liver, stomach, pancreas, spleen, fat, kidney, muscle, small 
and large intestines, urinary bladder, and PC-3 PIP and 
flu tumors were quickly removed. A 0.1 mL sample of 
blood was also collected. Each organ was weighed, and 
the tissue radioactivity was measured with an automated 
gamma counter (1282 Compugamma CS, Pharmacia/
LKB Nuclear, Inc., Gaithersburg, MD). The percentage 
injected dose per gram of tissue (%ID/g) was calculated 
by comparison with a standard dilution of the initial dose. 
All measurements were corrected for radioactive decay. 
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