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ABSTRACT:
RNAi screening holds the promise of systemizing the search for combination 
therapeutic strategies.  Here we performed a pooled shRNA library screen to 
look for promising targets to inhibit in combination with inhibition of the mitotic 
regulator polo-like kinase (PLK1). The library contained ~4,500 shRNAs targeting 
various signaling and cancer-related genes and was screened in four lung cancer 
cell lines using both high (IC80) and low (IC20) amounts of the PLK1 inhibitor 
GSK461364.  The relative abundance of cells containing individual shRNAs 
following drug treatment was determined by microarray analysis, using the mock 
treatment replicates as the normalizing reference. Overall, the inferred influences 
of individual shRNAs in both high and low drug treatment were remarkably similar 
in all four cell lines and involved a large percentage of the library.  To investigate 
which functional categories of shRNAs were most prominent in influencing drug 
response, we used statistical analysis of microarrays (SAM) in combination with 
a filter for genes that had two or more concordant shRNAs.  The most significant 
functional categories that came out of this analysis included receptor tyrosine 
kinases and nuclear hormone receptors. Through individual validation experiments, 
we determined that the two shRNAs from the library targeting the nuclear retinoic 
acid receptor gene RARA did indeed silence RARA expression and as predicted 
conferred resistance to GSK461364. This led us to test whether activation of RARA 
receptor with retinoids could sensitize cells to GSK461364. We found that retinoids 
did increase the drug sensitivity and enhanced the ability of PLK1 inhibition to 
induce mitotic arrest and apoptosis. These results suggest that retinoids could 
be used to enhance the effectiveness of GSK461364 and provide further evidence 
that RNAi screens can be effective tools to identify combination target strategies.

INTRODUCTION

Developing combinations of chemotherapeutic 
agents that increase tumor cell toxicity was a major 
milestone in cancer treatment [1]. Testing for 
advantageous combinations continues to be a driver 
in improving cancer care, but is limited by a lack of 
comprehensive methodology. RNAi screening has the 

potential to systematize the search for genes to target 
in combination with specific anti-cancer agents. Initial 
screens have pinpointed checkpoint kinase inhibition as 
an effective combination with gemcitabine treatment in 
pancreatic cancer cells [2], MEK inhibition as an effective 
combination with EGFR inhibition in KRAS wild-type cells 
pancreatic cancer cells [3], and inhibition of Wnt/Ca2+/
NFAT signaling as an enhancer of BCR-ABL inhibition 
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in CML cells [4]. Here we used RNAi screening to look 
for sensitizers to the candidate cancer drug GSK461364A, 
a potent inhibitor of polo-like kinase 1 (PLK1) [5]. PLK1 
is expressed during the G2/M phase of the cell cycle 
and together with the Cdk1/Cdc2 kinase regulates key 
events in mitosis [6]. Mitotic arrest and apoptosis have 
been observed in preclinical studies using either RNAi, 
GSK461364A, or other small molecules that inhibit PLK1 
[6]. Initial motivation for developing inhibitors of PLK1 
as candidate cancer drugs was the potential to avoid the 
toxicities of traditional antimitotics that target tubulin 
structures equally in both cancer and nondividing cells 
[6, 7]. Perhaps a more compelling rationale is based on 
findings that PLK1 inhibition is selectively potent for cells 
harboring mutant TP53 or mutant KRAS [8-10], which is 
the reverse of the usual situation where altered TP53 and 
mutant KRAS confer drug resistance.

Several PLK1 inhibitors are in phase I or II clinical 
studies and some patients have achieved clinical response, 
although sometimes only when dosed above the maximum 
tolerated dose defined in the study [6]. Based on this, 
PLK1 inhibitors may need to be used in combination with 
an approved cancer drug in order to be clinically useful. 
In this study looked for PLK1-combination targets in 
non-small cell lung cancer cells (NSCLC), a clinically 
important tumor type that is driven to a significant degree 
by mutations in TP53 and KRAS and that as a whole are 
particularly sensitive to PLK1 inhibition [7]. 

RESULTS

We focused on four NSCLC cell lines, two that 
harbor mutant KRAS but are wild-type for TP53 (A549 
and NCI-H460) and two that harbor mutant TP53 but are 
wild-type for KRAS (NCI-H522 and NCI-H322). Based on 
the belief that high or low concentrations of a drug could 
make a significant impact on the RNAi screening results, 
we want to screen each of the four cell lines for shRNAs 
that could influence the response to GSK461364A at both 
low and high doses (IC20/IC80). Therefore we determined 
the concentrations of GSK461364A that could cause 20% 
and 80% of maximal growth inhibition. All four cell lines 
were sensitive to GSK461364A, but one TP53 mutant and 
one KRAS mutant cell line (NCI-H322 and NCI-H460) 
were more sensitive with IC20/IC80 values of 1 nm / 10 
nM, compared to the other pair (NCI-H522 and A549), 
which both required higher doses to reach 20% and 80% 
maximal inhibition (30 nM / 100 nM).

The RNAi screening methodology we employed 
was the pooled multiplex approach where each shRNA 
is tagged with a molecular barcode that together with 
the shRNA insert itself serve as microarray hybridization 
probes to deconvolute the relative abundance of the 
individual shRNAs (Figure 1) [11]. The 4,603-shRNA 
library was constructed in the retroviral vector MLP that 
expresses shRNAs with endogenous miR-30 flanking 
sequences [12]. This library targets 1,657 genes from 
three functional classes (kinases, cell cycle genes, 
functional cancer genes) with an average of 2 to 3 distinct 
shRNAs per gene [11]. We transfected the shRNA library 
into human cancer cells at a low multiplicity of infection 

Figure 1: Schematic of the pooled shRNA screening methodology. Shown in the blue box insert are features of the MLP retroviral 
vector including the two PCR primers that are used to amplify the shRNA and its linked barcode. Shown in the upper left is a representation 
of the relative abundance of individual shRNAs in the library as it is prepared in E. coli. Following transfection into mammalian cells and 
selection for stable integration, the relative abundance of individual shRNA changes, as it does following mock treatment or treatment with 
an inhibitory drug. 
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(0.25) to ensure that each cell on average was transfected 
with only one distinct shRNA, and for each cell line 
in total we transfected twelve 150 mm. plates each 
containing approximately 107 subconfluent cells [11]. 
Based on averages, each individual shRNA in the library 
was present in approximately 1000 cells. We selected 
for stable transfectants using puromycin (3- 5 days) and 
then used three plates to prepare genomic DNA for three 
biological replicates for the initial time point (t = 0). We 
divided the remaining nine plates into three groups; the 
high and low drug groups which received GSK461364A 
and the mock treatment group (see Methods). 

To readout the relative abundance of individual 
shRNAs by microarray, we used vector primers to PCR 
amplify the shRNA and barcodes from genomic DNA 
prepared from human cells after selection and different 
treatments, and the resultant PCR product was labeled with 
Cy3 dye (Figure 2). We used the same primers to amplify 
the shRNA and barcodes from the library DNA prepared 
in E. coli, and used this as the common Cy5-labeled 
reference hybridization probe. We used competitive two-
color hybridization to a custom microarray to readout 
the relative abundance of individual shRNAs following 

integration into the recipient cell line and its treatment 
with drug or mock treatment (Figure 2). 

Following standard microarray data processing steps 
including PCA analysis to exclude poor hybridizations 
and exclusion of hybridization probes with signals close 
to background levels, we obtained reliable data for 3,003 
shRNAs for all hybridizations except for the three for the 
high-dose GSK461364A treatment of NCI-H322, which 
were excluded. To focus our attention strictly on the drug 
related effects of the individual shRNAs, we normalized 
the log2 fluorescent ratios to the average value of the 
mock treatments, so that on average the log2 ratios of 
mock treatments would be zero. To look at the structure 
of the resultant data, we performed hierarchical clustering 
of both the samples and the shRNAs and visualized the 
results with a heatmap, such that shRNAs that conferred 
sensitivity to GSK461364A are shown in blue, shRNAs 
that conferred resistance to GSK461364A are displayed 
in red, and shRNAs with neutral effects are shown in 
white (Figure 3). As expected, the individual mock treated 
samples appeared largely neutral, and the individual 
replicates for the four different cell lines all clustered by 
cell line identity. However, we were surprised to see that 

Figure 2: Schematic of the array protocol followed to readout the relative abundance of individual shRNAs following 
treatment. The barcoded shRNA inserts from mock or drug treated cells are labeled with Cy3-nucleotides and used as probes in a 
competitive two-color hybridization with Cy5-labeled probe generated from the barcoded shRNA inserts amplified from the E. coli 
generated library.
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there was little if any difference between the IC20 or IC80 
treatments, such that for each cell line the two treatment 
groups were intermingled (Figure 3). Therefore it appears 
that, at least for the response to GSK461364A, there is 
not a significant difference between high or low drug 
concentrations in terms of impact on the RNAi screening 
results.

 We next turned our attention to the individual 
shRNAs. The visual impression (Figure 3) that a major 
portion of the shRNAs had an appreciable effect on 
response to GSK461364A was confirmed by calculating 
the percentage of shRNAs that were significantly gained 
or lost relative to mock treated cells (44%; p < 0.05). This 
high percentage is perhaps not too surprising given that 
the genes targeted by this library encode either functional 
cell cycle or cancer genes, or kinases [11]. The most 
distinct cluster of shRNAs is a set of approximately 300 
shRNAs (on the bottom of the heatmap, cluster 5) that 
appeared to confer resistance to GSK461364A (Figure 3). 
This group included two shRNAs targeting RARA. This 

group behaved similarly in all four cell lines, indicating a 
relative uniformity of response to the individual shRNAs. 
The next most distinct cluster is a set of approximately 
600 shRNAs that for the most part appeared to uniformly 
confer sensitivity to GSK461364A (cluster 4) (Figure 
3). The remaining clusters included a cluster of weaker 
resistance shRNAs (cluster 2), weaker sensitizer shRNAs 
(cluster 3), and a group of shRNAs that appeared to 
have more variable effects on response to GSK461364A 
depending on the cell line (cluster 1) (Figure 3). 

We used the statistical technique SAM to more 
rigorously determine which shRNAs were the most 
significant for causing resistance or sensitivity to 
GSK461364A. Based on the extensive similarity of 
shRNAs in both low and high drug concentrations, these 
treatments were grouped together for all cell lines into 
one class and compared to all the mock treatments as the 
other class. Using a false-discovery rate of 3.5%, 816 
shRNAs were found to significantly affect the response 
to GSK461364A in the four lung cancer cell lines. To 

Figure 3: Heatmap of the relative abundance of 3,003 shRNAs in the genomic DNA isolated from mock-treated or 
GSK461364A-treated lung cancer cell lines. Both individual shRNAs (rows) and individual cell line treatments (columns) were 
hierarchically clustered based on the measured abundance of shRNAs relative to the average of mock treatments. The color key indicating 
relative abundance is on a log2 scale. The mock treatments formed one cluster and each of the GSK461364A treatments clustered according 
to cell line identity but irrespective of low (IC20) or high (IC80) drug treatment (indicated by L and H at the bottom of the heatmap). The five 
clusters of shRNAs that are highlighted are described in the text. 
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Grouped Genes Description shRNA effect
Cell surface receptor linked signal transduction

CSF1R colony stimulating factor 1 receptor -0.30
DDR1 discoidin domain receptor tyrosine kinase 1 -0.41
EGFR epidermal grow th factor receptor -0.50
GUCY2D guanylate cyclase 2D, membrane -0.46
IGF1R insulin-like grow th factor 1 receptor -0.28
KIT proto-oncogene tyrosine-protein kinase Kit -0.45
TGFBR1 transforming grow th factor, beta receptor 1 -0.54
TIE1 tyrosine kinase w ith immunoglobulin-and EGF-like domains -0.52

Protein kinase
BMX BMX non-receptor tyrosine kinase -0.86
CAMKK1 calmodulin-dependent protein kinase kinase -0.86
CDC7 cell division cycle 7 homolog (S. cerevisiae) -0.39
CDK7 cyclin-dependent kinase 7 -0.34
CSF1R colony stimulating factor 1 receptor -0.29
CSNK1G1 casein kinase 1, gamma 1 -0.55
CSNK2A2 casein kinase 2, alpha prime polypeptide -0.44
DDR1 discoidin domain receptor tyrosine kinase 1 -0.41
DYRK4 dual-specif icity tyrosine-(Y)-phosphoryl. regulated kinase 4 -0.47
EIF2AK2 eukaryotic translation initiation factor 2-alpha kinase 2 -0.25
ICK intestinal cell (MAK-like) kinase -0.42
LATS2 LATS, large tumor suppressor, homolog 2 (Drosophila) -0.54
MAP2K6 mitogen-activated protein kinase kinase 6 0.61
MAP2K7 mitogen-activated protein kinase kinase 7 -0.23
MAP3K13 mitogen-activated protein kinase kinase kinase 13 1.11
MAPK10 mitogen-activated protein kinase 10 -0.87
MAPK14 mitogen-activated protein kinase 14 -0.16
MAPK15 mitogen-activated protein kinase 15 -0.39
MAST4 microtubule associated serine/threonine kinase 4 -0.82
PFKP phosphofructokinase, platelet 0.46
SCYL3 SCY1-like 3 (S. cerevisiae) -0.86
SGK3 serum/glucocorticoid regulated kinase 3 0.24
SLK STE20-like kinase (yeast) -0.36
TAOK2 TAO kinase 2 -0.87
TIE1 tyrosine kinase w ith immunoglobulin-and EGF-like domains -0.52

M-phase of mitotic cell cycle
ANAPC5/APC5 anaphase promoting complex subunit 5 -0.36
CDC16 cell division cycle 16 homolog (S. cerevisiae) -0.53
CDC20 cell division cycle 20 homolog (S. cerevisiae) -0.56
CDC27 cell division cycle 27 homolog (S. cerevisiae) -0.44

Nuclear hormone receptor, ligand-binding
NR1I3 nuclear receptor subfamily 1, group I, member 3 -1.28
NR2C1/TR2 nuclear receptor subfamily 2, group C, member 1 -0.75
NR2C2/TR4 nuclear receptor subfamily 2, group C, member 2 -0.65
NR2E3 nuclear receptor subfamily 2, group E, member 3 -0.65
NR3C2 nuclear receptor subfamily 3, group C, member 2 -0.47
NR4A2/NURR1 nuclear receptor subfamily 4, group A, member 2 -1.39
NR4A3/NOR1 nuclear receptor subfamily 4, group A, member 3 0.71
NR5A1 nuclear receptor subfamily 5, group A, member 1 -0.87
RARA retinoic acid receptor, alpha 0.62

Protein-tyrosine phosphatase
DCC deleted in colorectal carcinoma 0.79
PTPRD protein tyrosine phosphatase, receptor type, D -0.72
PTPRF protein tyrosine phosphatase, receptor type, F -0.64
PTPRG protein tyrosine phosphatase, receptor type, G -0.47

Table 1: Functional classification of the 97 genes associated with response to GSK461364A. The DAVID Gene Functional 
Classification Tool was used to analyze the 97 genes targeted by the 201 shRNAs associated with response to GSK461364A. The resultant 
groupings and 50 genes are listed here, together with the average shRNA relative abundance (drug treatment vs. mock treatment) on a log2 
scale.
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help rule out off target effects of individual shRNAs, 
we focused on the subset of the 816 significant shRNAs 
where there were two or more that targeted the same gene 
and caused the same effect (resistance or sensitivity). 201 
shRNAs met this criteria, the majority of which conferred 
sensitivity, although not as uniformly as those conferring 
resistance (Figure 4). 

To gain insight into the biological functions affecting 
by these 201 shRNAs, we examined the corresponding 97 
genes using the DAVID Gene Functional Classification 
Tool, which utilizes multiple sources of functional 
annotation [13] (http://david.abcc.ncifcrf.gov). For an 
appropriate background set of genes for which to perform 
the statistical enrichment tests, we used all 693 genes 
that are targeted by two or more shRNAs in the library. 
This analysis yielded five groups of related genes that 
represented biological processes enriched in the 97 out of 
693 genes [Table 1]. Here we briefly describe these groups 
and postpone addressing biological implications until the 
discussion section. The first group, cell surface receptor 
linked signal transduction, includes eight genes including 

EGFR and IGFR1, where the shRNAs targeting these 
genes enhanced the response to GSK461364A [Table 1]. 
The second group, comprised of 25 protein kinase genes, 
contained mostly sensitizer and a few resistance genes 
[Table 1]. The third group contains four mitotic proteins 
(ANAPC5, CDC16, CDC20, CDC27) and shRNAs 
targeting these mitotic genes are predicted to sensitize 
cancer cells to GSK461364A [Table 1]. The fourth and 
fifth groups are nuclear hormone receptors and protein 
tyrosine phosphatases [Table 1]. Of particular interest to 
us were the five nuclear hormone receptors involved in 
retinoic acid signaling: TR2 [14], TR4 [15], NURR1 [16], 
NOR1 [17], and the retinoic acid receptor alpha gene, 
RARA. Retinoids that activate retinoic acid receptor alpha 
have been shown to be safe and shown some efficacy in 
clinical trials with NSCLC [18]. Based on these findings 
and the relative safety of retinoids, we decided to further 
study this potential for a combination therapy with 
GSK461364A. 

We first validated that the two shRNAs pinpointed 
by the screen did indeed silence expression of RARA 

Figure 4: Heatmap display of the relative abundance of the 201 shRNAs chosen by SAM and independent shRNA 
concordance. A two-class comparison (all mock treatments versus all GSK461364A treatments) by the statistical method SAM pinpointed 
816 shRNAs that were significantly different. From this group of 816, 201 shRNAs showed concordance defined by targeting the same gene 
and showing consistently lower relative abundance or higher relative abundance. The shRNAs (rows) of the heatmap were not clustered 
but were ordered as a group based on relative gain or loss and within that group ordered alphabetically by gene name. Individual cell line 
treatments (columns) were hierarchically clustered as in Figure 4. 
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and confer resistance to GSK461364A when assayed 
individually (Figure 5). We reasoned that if silencing 
RARA could confer resistance to GSK461364A that 
activating its protein product with ligands could confer 
sensitivity. To test this idea, we examined the ability 
of ligands to sensitize lung cancer cells to different 
concentrations of PLK1 inhibitor. We found that the 
combination of RAR-alpha ligand (ATRA) and RXR-
alpha ligand (9-cis-retinoic acid) were more potent at 
sensitizing cells to GSK461364A than single ligand (data 
not shown), in agreement with a previous report [19]. 
Using the combination of ATRA and 9-cis-retinoic acid, 
we found that the four lung cancer cell lines displayed on 
average a one-log increase in sensitivity to GSK461364A 
(Figure 5). Perhaps of greater significance in terms of 
therapeutic benefit is the apparent increase in number 
of cells killed at higher doses of GSK461364A for three 
of the four lung cancer cell lines (Figure 5). Encouraged 
by these results, we next examined whether ATRA and 
9-cis-retinoic acid potentiated cancer cell inhibition by 
GSK461364A by enhancing its previously demonstrated 
ability to cause mitotic arrest and apoptosis. After three 
days of treatment, we examined A549 lung cancer cells 
by flow cytometry to determine their position in the 
cell cycle and by immunofluorescence using antibodies 

to the mitotic marker histone H3 and apoptotic marker 
active caspase-3 to measure mitosis-associated apoptosis. 
This analysis showed that ATRA and 9-cis-retinoic acid 
enhanced the ability of GSK461364A to induce cell 
cycle arrest in G2/M and also significantly increased 
the percentage of cells undergoing mitotic-associated 
apoptosis, from less than 5% for GSK461364A alone to 
32% of the cells (Figure 5). Thus ATRA and 9-cis-retinoic 
acid does not appear to change the cellular mechanism 
of action of GSK461364A but instead act as sensitizers. 
As discussed below, these results establish retinoids are 
interesting candidates for combination therapy strategies 
with GSK461364A.

DISCUSSION

Our results indicate that shRNA screening is an 
effective method for identifying the biological processes 
that are potentially important in anti-cancer drug action as 
well as for identifying combination cancer drug strategies. 
One of the most critical steps in our analysis of the array-
based screening results for the four different lung cancer 
cell lines was to normalize the individual shRNA readouts 
for the drug treatments to the average value of the mock 
treatments. This step eliminated much of the cell line 

Figure 5: Validation of shRNAs targeting RARA and the effect of retinoids on the response of lung cancer cells to 
GSK461364A. Panel A. Confirmation that the two shRNAs directed against RARA knockdown protein expression. NCI-H460 cells were 
stably infected with control vector (lane 1) or the two different shRNAs (lanes 2 and 3), and extracts were immunoblotted with anti-RARα 
antibody. Panel B. Dose-response curves showing the sensitivity of NCI-H460 cells to growth inhibition by GSK461364A that had been 
previously transduced with either control vector (blue line) or the two different shRNAs directed against RARA (red lines; each shRNA 
is shown in a separate graph). Panel C. Dose-response curves showing the sensitivity of four different lung cancer cell lines to varying 
concentrations of GSK461364A in the presence (red) or absence (blue) of 1 micromolar ATRA and 1 micromolar 9-cis-retinoic acid. 1,000-
3,000 cells were plated in 96-well plates and assayed for growth inhibition as described in Methods.

a b
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variability that existed for individual shRNAs and enabled 
us to determine that a substantial portion of shRNAs in 
the library did affect response to the PLK1 inhibitor 
GSK461364A. As our library was focused on kinases 
and cell cycle genes, whether such a high percentage 
of biologically active shRNAs would be observed in 
a true genome-wide shRNA screen is far from certain. 
Nevertheless, by focusing on the statistically significant 
shRNA changes and by filtering against off-target effects 
by requiring two or more significant shRNAs targeting 
the same gene to have the same effect, we were able to 
identify a set of 97 genes that were enriched for important 
biological functions that are likely important mediators 
of the ability of GSK461364A to inhibit cancer cell 
proliferation. Amongst these functions was cell-surface 
tyrosine kinase receptor signaling, including the EGFR 
and IGFR1 genes. It was somewhat surprising that our 
results predicted that silencing EGFR or IGFR1 would 
have an effect in our cell line panel since two cell lines 
harbor mutant KRAS and the current paradigm is that 
mutant KRAS obviates any dependency upon upstream 
receptor tyrosine kinase signaling. However, phenotypic 
effects of inhibiting these two genes in mutant-KRAS 
NSCLC cell line have been observed, suggesting that this 
paradigm may not always accurately reflect cancer biology 
[20]. Another key functional group included the anaphase 
complex proteins CDC20, CDC16, CDC27, and APC5. 
That loss-of-function of these proteins would enhance 

the effects of inhibiting polo-kinase 1 is in line with the 
notion that one PLK1 primary function is to promote the 
activation of the anaphase complex during mitosis [6]. 

Another key group were nuclear hormone receptors 
that affect retinoic acid signaling, including retinoic 
acid receptor alpha (RARA). We picked this group for 
follow-up studies based on the possibility of combining 
GSK461364A with relatively non-toxic retinoids, which 
had previously been established as being tolerated and 
potentially effective in NSCLC [18]. Two shRNAs 
designed against RARA that were pinpointed by the 
array study were validated for their ability to silence 
RARA expression and confer resistance to GSK461364A. 
Conversely, we showed that activating RARA with 
retinoids induced increased sensitivity by an order of 
magnitude to GSK461364A, an effect seen in all four lung 
cancer cell lines. These results provide a strong rationale 
for including a retinoid arm in future clinical trials of 
PLK1 inhibitors. 

In conclusion, our results provide further evidence 
for the utility of shRNA pooled screening in designing 
combination therapy strategies for cancer drugs. Several 
aspects of pooled shRNA screening are being further 
optimized and should lead to even more effective ability 
to uncover combination strategies. These optimizations 
include the use of larger libraries that encompass more of 
the whole genome [21] and next generation sequencing 

Figure 6: Characterization of the cell cycle arrest and mitosis-associated apoptosis induced by GSK461364A and 
retinoids. A. Flow cytometric analysis of DNA content after three-day treatment of A549 cells with either mock treatment, retinoids alone 
(ATRA and 9-cis-retinoic acid both at 1 micromolar), GSK461364A alone [10 nM], or GSK461364A [10nM] plus retinoids (ATRA and 
9-cis-retinoic acid both at 1 micromolar). A549 cells were ethanol-fixed and stained with propidium iodide.

 

 



Oncotarget 2011; 2:   1254 - 12641262www.impactjournals.com/oncotarget

instead of microarrays for a more sensitive and robust 
readout of relative shRNA abundance [22]. 

METHODS

RNAi screen and computational analysis

The RNAi screen was performed according to the 
protocol published by Silva et al. using multiplex Agilent 
microarrays [11]. Probe intensity files for the microarrays 
were generated from Agilent’s Feature Extraction 
software, and we used the column “gMeanSignal” as test 
channel signal, and column “rMeanSignal” as reference 
channel signal. Probes from shRNAs not used in our 
library were used as negative probes for background 
estimation. The array contained two types of probes: 
barcode probes (60 mers) and half hairpin probes (21 
mers). As these probes behaved differently, the barcode 
probe set and half hairpin probe set; they were processed 
separately during the background filter and normalization 
steps. We performed spatial correction to remove spatial 
effects resulting from uneven washing, evaporation edge 

effect and so on. The spatial correction used a window of 
300 probes. Within each window, the intensity of the inside 
probes was scaled to make sure the median probe intensity 
in the window was equal to the median on the whole array. 
We then applied a background filter: for each probe set, 
we calculated the median intensity of background probes 
in each channel for each sample in the mock treatment 
group. These medians are taken to be estimations of the 
background. Next, we removed probes from the dataset 
whose intensity was less than 1.5 times of background in 
red or green channel in more than half of the samples in 
the mock treatment group. We then applied global loess 
normalization to remove the imbalance between the red 
and green channels, using the R package limma (version 
2.8.1) and the function “normalizeWithinArrays”. The 
parameter “method” in that function is chosen as “loess”. 
After normalization, we obtain a log (base 2) ratio between 
green channel and red channel for each probe.

Following normalization, we processed the shRNAs 
that have both barcode probe and half hairpin probe 
printed on the array. To collapse the data from the probe 
level into the shRNA level, one choice would be to take 
the mean of the probe ratios. But as the two types of 
probes are different in probe length and nucleotide 

Figure 6: Characterization of the cell cycle arrest and mitosis-associated apoptosis induced by GSK461364A and 
retinoids. Panel B. The effects of ATRA on the ability of GSK461364A to induce mitosis-associated apoptosis three days post-treatment. 
The concentration of retinoids used was ATRA and 9-cis-retinoic acid both at 1 micromolar and for GSK461364A was 10 nM. A549 cells 
were fixed and reacted sequentially with anti-phosphohistone H3 (phospho-Ser10; Abcam), anti-active Caspase 3 (Cell Signaling), and 
secondary antibodies with fluorescent labels Alexa 488 (for anti-phosphohistone H3) and Alexa 568 (anti-active Caspase3) (Molecular 
Probes). The cells then were counter-stained with DAPI, mounted, sealed, and photographed using a Zeiss AxioVision (20x). 200 cells 
were scored for each condition, and the background percentage of mitotic-associated apoptotic cells for mock treatment was 1%, 4% for 
treatment with 10 nM GSK461364A, 2% for treatment with retinoids alone, and 33% for treatment with both GSK461364A and retinoids.
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sequence, they might have different measurement errors 
and qualities. If we take the average, the good probe might 
be compromised by the relatively bad probe. So we sought 
to use the probe with higher signal to noise to represent 
the shRNA. To determine which probe has higher quality, 
we define an index SNR (signal to noise ratio) as:

SNR=
between group variability
within-group variability
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Where 

� 

X i denotes the sample mean in the ith group 
indicator, ni is the number of observations in the ith group, 

� 

X  denotes the overall mean of the data, xij is the jth 
observation in the ith group out of K groups and N is the 
overall sample size.

Following normalization of the log2 ratios for 
the mock, IC20 and IC80 treatments to the average of 
the mock treatments, the distributions of the ratios 
for the drug treatments for the different cell lines were 
adjusted using normalize.quantile.robust in the R library 
“preprocessCore.” Clustering and heatmaps were 
performed using heatmap.2 in R and SAM was performed 
using the “siggenes” R package.

Cell biology assays

GSK461364A treatment was for three days followed 
by a washout of the compound and recovery in growth 
medium for three to seven days. GSK461364A was 
removed from plates by three washes with 20% FBS-
supplemented complete medium. To test for combination 
treatment of retinoids with GSK461364A, 1,000-3,000 
cells were plated in clear-bottom 96-well plates (Corning). 
Following retinoid (1 micromolar All-trans-retinoic acid, 
ATRA; 1 micromolar 9-cis-retinoic acid, 9cRA, Sigma) 
pre-treatment for 96 hours, the cells were cultured in the 
presence of retinoids and GSK461364A or DMSO vehicle 
for 72 hours. The drugs were then removed by washing 3X 
with cell culture medium supplemented with 20% FBS, 
followed by post-treatment with retinoids or DMSO for 
an additional 72 hours. The cells were stained with MTT 
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide] colorimetric reagent and solubilized following 
the manufacturer’s instructions (Roche) and subjected 
to automated plate reading (Victor3, PerkinElmer) at 
OD 595nm following the manufacturer’s instructions. 
To assay for mitotic arrest and apoptosis, A549 cells 
were plated on cover slips followed by treatment of 1 
micromolar retinoids plus GSK461364A (IC20), retinoids 
alone, or GSK461364A alone, or DMSO. 72 hours 
post drug treatment, the cells were ethanol-fixed and 
propidium iodide stained, followed by flow cytometry 
analysis for DNA content distribution. In parallel, 72 

hours post drug treatment, the cells were fixed in 3.7% 
paraformaldehyde, permeabilized in 0.1% Triton X-100/
PBS, blocked in 1% BSA in PBS, then sequentially 
stained with anti-histone H3 (Ser10, Abcam), 16 hours at 
4o C, and anti-active caspase 3 (Cell Signaling), 16 hours 
at 4o C. Following incubation with fluorescently labeled 
secondary antibodies (Alexa488 for H3 and Alexa 568 for 
Casp3, Molecular Probes), the cells were counter-stained 
with DAPI, mounted, sealed, and photographed using 
AxioVision (Zeiss, 20x).

ACKNOWLEDGEMENTS

The authors would like to thank Barbara Weber, 
Scott Lowe and Cheryl Eifert for helpful discussions 
and Jim Duffy for his help preparing figures. The 
GlaxoSmithKline Oncology Translational Medicine 
Collaborators supported this work.

REFERENCES

1. DeVita VT, Jr., Chu E. A history of cancer chemotherapy. 
Cancer Res. 2008; 68:8643-8653.

2. Azorsa DO, Gonzales IM, Basu GD, Choudhary A, Arora 
S, Bisanz KM, Kiefer JA, Henderson MC, Trent JM, Von 
Hoff DD, Mousses S. Synthetic lethal RNAi screening 
identifies sensitizing targets for gemcitabine therapy in 
pancreatic cancer. J Transl Med. 2009; 7:43.

3. Diep CH, Munoz RM, Choudhary A, Von Hoff DD, Han 
H. Synergistic effect between erlotinib and MEK inhibitors 
in KRAS wild-type human pancreatic cancer cells. Clin 
Cancer Res. 2011; 17:2744-2756.

4. Gregory MA, Phang TL, Neviani P, Alvarez-Calderon F, 
Eide CA, O’Hare T, Zaberezhnyy V, Williams RT, Druker 
BJ, Perrotti D, Degregori J. Wnt/Ca2+/NFAT signaling 
maintains survival of Ph+ leukemia cells upon inhibition of 
Bcr-Abl. Cancer Cell. 2010; 18:74-87.

5. Gilmartin AG, Bleam MR, Richter MC, Erskine SG, 
Kruger RG, Madden L, Hassler DF, Smith GK, Gontarek 
RR, Courtney MP, Sutton D, Diamond MA, Jackson JR, 
Laquerre SG. Distinct concentration-dependent effects of 
the polo-like kinase 1-specific inhibitor GSK461364A, 
including differential effect on apoptosis. Cancer Res. 
2009; 69:6969-6977.

6. Degenhardt Y, Lampkin T. Targeting Polo-like kinase in 
cancer therapy. Clin Cancer Res. 2010; 16:384-389.

7. Medema RH, Lin CC, Yang JC. Polo-like kinase 1 inhibitors 
and their potential role in anticancer therapy, with a focus 
on NSCLC. Clin Cancer Res. 2011; 17:6459-6466.

8. Degenhardt Y, Greshock J, Laquerre S, Gilmartin AG, Jing 
J, Richter M, Zhang X, Bleam M, Halsey W, Hughes A, 
Moy C, Liu-Sullivan N, Powers S, Bachman K, Jackson J, 
Weber B et al. Sensitivity of cancer cells to Plk1 inhibitor 
GSK461364A is associated with loss of p53 function and 



Oncotarget 2011; 2:   1254 - 12641264www.impactjournals.com/oncotarget

chromosome instability. Mol Cancer Ther. 2010; 9:2079-
2089.

9. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, 
Westbrook TF, Wong KK, Elledge SJ. A genome-wide 
RNAi screen identifies multiple synthetic lethal interactions 
with the Ras oncogene. Cell. 2009; 137:835-848.

10. Sur S, Pagliarini R, Bunz F, Rago C, Diaz LA, Jr., Kinzler 
KW, Vogelstein B, Papadopoulos N. A panel of isogenic 
human cancer cells suggests a therapeutic approach for 
cancers with inactivated p53. Proc Natl Acad Sci U S A. 
2009; 106:3964-3969.

11. Silva JM, Marran K, Parker JS, Silva J, Golding M, 
Schlabach MR, Elledge SJ, Hannon GJ, Chang K. Profiling 
essential genes in human mammary cells by multiplex 
RNAi screening. Science. 2008; 319:617-620.

12. Dickins RA, Hemann MT, Zilfou JT, Simpson DR, Ibarra 
I, Hannon GJ, Lowe SW. Probing tumor phenotypes using 
stable and regulated synthetic microRNA precursors. Nat 
Genet. 2005; 37:1289-1295.

13. Huang da W, Sherman BT, Tan Q, Collins JR, Alvord WG, 
Roayaei J, Stephens R, Baseler MW, Lane HC, Lempicki 
RA. The DAVID Gene Functional Classification Tool: a 
novel biological module-centric algorithm to functionally 
analyze large gene lists. Genome Biol. 2007; 8:R183.

14. Lin TM, Young WJ, Chang C. Multiple functions of the 
TR2-11 orphan receptor in modulating activation of two 
key cis-acting elements involved in the retinoic acid signal 
transduction system. J Biol Chem. 1995; 270:30121-30128.

15. Lee YF, Young WJ, Burbach JP, Chang C. Negative 
feedback control of the retinoid-retinoic acid/retinoid X 
receptor pathway by the human TR4 orphan receptor, a 
member of the steroid receptor superfamily. J Biol Chem. 
1998; 273:13437-13443.

16. Wallen-Mackenzie A, Mata de Urquiza A, Petersson S, 
Rodriguez FJ, Friling S, Wagner J, Ordentlich P, Lengqvist 
J, Heyman RA, Arenas E, Perlmann T. Nurr1-RXR 
heterodimers mediate RXR ligand-induced signaling in 
neuronal cells. Genes Dev. 2003; 17:3036-3047.

17. Wansa KD, Harris JM, Muscat GE. The activation 
function-1 domain of Nur77/NR4A1 mediates trans-
activation, cell specificity, and coactivator recruitment. J 
Biol Chem. 2002; 277:33001-33011.

18. Rizvi NA, Marshall JL, Ness E, Hawkins MJ, Kessler C, 
Jacobs H, Brenckman WD, Jr., Lee JS, Petros W, Hong 
WK, Kurie JM. Initial clinical trial of oral TAC-101, a novel 
retinoic acid receptor-alpha selective retinoid, in patients 
with advanced cancer. J Clin Oncol. 2002; 20:3522-3532.

19. Zhu GH, Huang J, Bi Y, Su Y, Tang Y, He BC, He Y, Luo 
J, Wang Y, Chen L, Zuo GW, Jiang W, Luo Q, Shen J, Liu 
B, Zhang WL et al. Activation of RXR and RAR signaling 
promotes myogenic differentiation of myoblastic C2C12 
cells. Differentiation. 2009; 78:195-204.

20. Hurbin A, Wislez M, Busser B, Antoine M, Tenaud 
C, Rabbe N, Dufort S, de Fraipont F, Moro-Sibilot D, 

Cadranel J, Coll JL, Brambilla E. Insulin-like growth 
factor-1 receptor inhibition overcomes gefitinib resistance 
in mucinous lung adenocarcinoma. J Pathol. 2011; 225:83-
95.

21. Cheung HW, Cowley GS, Weir BA, Boehm JS, Rusin S, 
Scott JA, East A, Ali LD, Lizotte PH, Wong TC, Jiang G, 
Hsiao J, Mermel CH, Getz G, Barretina J, Gopal S et al. 
Systematic investigation of genetic vulnerabilities across 
cancer cell lines reveals lineage-specific dependencies 
in ovarian cancer. Proc Natl Acad Sci U S A. 2011; 
108:12372-12377.

22. Sims D, Mendes-Pereira AM, Frankum J, Burgess D, 
Cerone MA, Lombardelli C, Mitsopoulos C, Hakas J, 
Murugaesu N, Isacke CM, Fenwick K, Assiotis I, Kozarewa 
I, Zvelebil M, Ashworth A, Lord CJ. High-throughput RNA 
interference screening using pooled shRNA libraries and 
next generation sequencing. Genome Biol. 2011; 12:R104.


