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ABSTRACT
Significant research has been conducted to better understand the extensive, 

heterogeneous molecular features of triple-negative breast cancer (TNBC). 
We reviewed published TNBC molecular classifications to identify major groupings 
that have potential for clinical trial development. With the ultimate aim to streamline 
translational medicine, we linked these categories of TNBC according to their gene-
expression signatures, biological function, and clinical outcome. To this end, we 
define five potential clinically actionable groupings of TNBC: 1) basal-like TNBC with 
DNA-repair deficiency or growth factor pathways; 2) mesenchymal-like TNBC with 
epithelial-to-mesenchymal transition and cancer stem cell features; 3) immune-
associated TNBC; 4) luminal/apocrine TNBC with androgen-receptor overexpression; 
and 5) HER2-enriched TNBC. For each defined subtype, we highlight the major 
biological pathways and discuss potential targeted therapies in TNBC that might 
abrogate disease progression. However, many of these potential targets need clinical 
validation by clinical trials. We have yet to know how we can enrich the targets by 
molecular classifications.

INTRODUCTION

Triple-negative breast cancer (TNBC), which 
accounts for 10–20% of all breast cancers, does not express 
estrogen receptors (ERs) or progesterone receptors (PRs) 
and lacks human epidermal growth factor receptor-2 (HER2) 
amplification. Patients diagnosed with TNBC have a higher 
risk of disease relapse within 5 years than patients treated 
for other breast cancer subtypes [1]. Thus, identification 
and evaluation of new biomarkers and therapeutic agents 
is a high priority. Because TNBC is a heterogeneous 
disease, many pathological and immunohistochemical 
subclassification have been proposed in the past decade to 
define more homogeneous subtypes. More recent advances 

have focused on disease stratification through the use of 
genome-wide approaches. Such “molecular portraits” 
of breast cancer are envisioned to provide a rationale for 
breast cancer prognosis and prediction to therapy. In this 
article, we sought to understand the classifications of TNBC 
based on similar gene-expression signatures and biological 
functions and their clinical relevancy.

Search strategy and selection criteria

We conducted a Medline search up to December 
2014 with use of the terms “triple negative” and “breast 
neoplasm” and/or search strings connected to the topics of 
interest—e.g., “classification”, “gene expression profiling”, 
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“drug therapy”—without restrictions to date. Furthermore, 
references cited in the retrieved articles were screened 
for additional articles. Moreover, proceedings from the 
American Society of Clinical Oncology conference, the 
European Society of Medical Oncology conference, and the 
San Antonio Breast Cancer Symposium were researched in 
the abstract book for relevant presentations. We excluded 
publications not written in English, with impact factor < 3, 
with less than 10 citations (except for papers published less 
than 12 months ago). We also tried to select only one paper 
per team (except for gene expression profiling papers). 
Then, based on abstract concordance to our subject, we 
reviewed 315 papers. Ongoing clinical trials were searched 
using the http://clinicaltrials.gov site and referenced by 
their National Clinical Trial (NCT) number.

We initially screened for overlapping classifications of 
TNBC in whole-genome gene-expression profiling (GEP) 
papers and identified four majors classifications: the claudin-
low [2], the intrinsic-PAM50 [3], and the molecular subsets 
described by Burstein et al [4]. and Lehmann et al [5]. We 
also searched for validated gene-expression signatures 
and markers of specific biological functions in TNBC 
populations. We cross-referenced the obtained information to 
identify clinically actionable TNBC groupings with similar 
gene-expression signatures, biological functions, and clinical 
outcomes. Although, recent papers highlighted the similarities 

and discrepancies of intrinsic PAM50 subtyping and 
Lehmann’s seven subtypes [6–8], our incomplete knowledge 
of TNBC - validated gene signature, biomarkers or targeted 
therapies - precludes our ability to provide a consensus on 
clinically achievable TNBC subgrouping. Due to the lack of 
consensus on comprehensive treatment strategies for TNBC, 
we tried to re-organize the classification into theranostic 
subgroups with clinical relevance: detectable targets/pathway 
aberrations and available/potential targeted therapy.

TNBC molecular subtypes with future clinical 
relevance and potential therapeutics

We here provide five molecular groupings of 
TNBC that may have the greatest potential for clinical 
trial development using major previously published 
molecular classifications (PAM50 subtyping, claudin-
low, Burstein’s four subtypes and Lehmann’s seven 
subtypes): 1) basal-like TNBC (BL-TNBC), characterized 
predominantly by DNA-repair deficiency but also growth 
factor pathway expression; 2) mesenchymal-like TNBC 
(ML-TNBC), with epithelial to mesenchymal transition 
(EMT) and cancer stem cell (CSC) features; 3) immune-
associated TNBC (I-TNBC); 4) luminal/apocrine TNBC  
(LA-TNBC), with androgen receptor (AR) overexpression; 
and 5) HER2-enriched TNBC (HER2e-TNBC) (Figure 1). 

Figure 1: TNBC classifications. Lehmann’s (yellow), PAM50/claudin-low (blue) classifications and their potent overlaps (green) are 
shown in this figure.
Abbreviations: AR, androgen receptor; BL, basal-like; EGF, epidermal growth factor; HER2, human epidermal growth factor receptor 2; 
IGF, insulin growth factor; IM, immunomodulary; LAR, luminal androgen receptor; M, mesenchymal; MSL mesenchymal stem-like; 
TGFβ, transforming growth factor β.
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Next, we highlighted the key molecular pathways that 
are represented in these groups, with a specific interest 
towards identifying potential therapies that could be 
utilized to target each disease.

Basal-like TNBC

The predominant molecular grouping of TNBC 
is BL-TNBC, which makes up approximately 25% 
to 80% of TNBC cases, depending on the definition 
used. Published definitions have been based on either 
immunohistochemical (IHC) characterization (CK5/6+; 
epidermal growth factor receptor (EGFR)+; ER-; 
HER2-) or GEP, without definitive consensus [9]. 
Although a matter of debate, several common 
characteristics have been observed in both descriptions 
of BL-TNBC, including high proliferative capacity 
and overexpression of BL cytokeratin genes (keratin-5 
and -14) [5, 10].

According to Lehmann et al., BL-TNBC can be 
separated into two subgroups, basal-like 1 (BL1) and 
basal-like 2 (BL2) [5]. Profiling studies indicate that 
the BL1 subgroup is heavily enriched in the cell cycle-
related genes and in DNA-damage repair pathways, 
which may be expected in highly proliferative tumors [5]. 
25% of sporadic breast cancers harbor a deficiency in the 
DNA-repair, mainly in homologous recombination (HR) 
when double stranded DNA breakage occurs – similar 
to the genetic deficiency of BRCA1 or BRCA2 mutation 
carriers—leading to a subtype referred to as “BRCAness” 
[11, 12]. BL2 subgroup on the other hand is uniquely 
enriched in growth factor signaling pathways like EGF, 
MET pathway as well as IGF1R pathway.

BL-TNBC has one of the highest pathologic 
complete response (pCR) rates following chemotherapy 
[13]. As a group, targeting DNA-repair deficiency appears 
to be a promising treatment for BL-TNBC with BRCAness 
characteristics or BRCA-mutations (Table 1, Figure 2, and 

Table 1: Potential therapeutic approaches based on TNBC classification
Potential Therapeutic 
Subgroups

Drug class Drugs (Given alone or with 
standard CHT)

Ongoing Trials 
(Phase)

Published Results of 
Clinical trials

Basal

DNA-repair deficiency Platinum Cisplatin NCT01672671(2)
NCT01982448(2)#

50% of good pathologic 
response (Miller-Payne 
3 to5) [14].

Carboplatin NCT01752686(3)
NCT00532727(3)

48% of pCR when 
associated with 
standard CHT [15].
68% and 33% of ORR 
for carboplatin and 
docetaxel for BRCA 
mutant patients [19].

PARP inhibitors Olaparib NCT00707707(1)

37% of partial 
response when 
associated with weekly 
paclitaxel [99].

Veliparib* NCT02032277(3)

Cell cycle CDK inhibitors Dinaciclib NCT01624441(1)

P276–00* NCT01333137(1)

Mesenchymal

Notch GSI RO4929097 NCT01151449(2)

Hedgehog SMO inhibitors Erismodegib NCT01757327(2)

c-MET c-MET-TKI Tivantinib NCT01542996(2) Inactive as 
monotherapy [100].

(Continued )
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Potential Therapeutic 
Subgroups

Drug class Drugs (Given alone or with 
standard CHT)

Ongoing Trials 
(Phase)

Published Results of 
Clinical trials

MET-mAb Onartuzumab NCT01186991(2)
No PFS improvement 
when added to CHT 
and bevacizumab [38].

Targeted therapies 
combination

GSI – SMO 
inhibitors RO4929097 – Vismodegib NCT01071564(1)

Immune-associated

Tumor vaccine MUC-1 vaccine MUC1 peptide vaccine NCT00986609(0)

Immune checkpoint 
blockade Anti-PD-L1 Pembrolizumab

MPDL3280A
NCT01848834(1)
NCT01375842(1)

ORR of 16.1% in 
advanced TNBC [101].
ORR of 33% in 
metastatic TNBC [102]. 

CSF-1R CSF-1R inhibitors PLX3397 NCT01596751(2)

Luminal/Apocrine

AR
Androgen 
biosynthesis 
inhibitor

Abiraterone acetate NCT01842321(2)#

AR inhibitor Enzalutamide* NCT01889238(2)# 42% CBR after 
16 weeks [60]

Bicalutamide NCT02353988(2)#
NCT02348281(2)#

HDAC HDAC inhibitor – 
Endocrine therapy

Entinostat – Anastrozole
LHB589 – Tamoxifen

NCT01234532(2)
NCT01194908(2)

Overlapping potential targets

EGFR EGFR mAb Cetuximab* NCT00463788(2)
ORR and PFS doubled 
with cetuximab and 
cisplatin [70].

Panitumumab* NCT00894504(2) 80% ORR when added 
to CHT [71].

EGFR-TKI [69] Gefitinib NCT01732276(2)#

Erlotinib NCT00491816(2)

PI3K/AKT/mTOR Pan PI3K inhibitor Buparlisib NCT01629615(2)

NCT01790932(2)

Pictilisib* NCT01918306(2)#

mTOR inhibitor Everolimus* NCT01939418(2)
NCT01931163(2)

MAPK MEK inhibitor Trametinib NCT01467310(B)

VEGF VEGF mAb Bevacizumab* NCT01898117(2)

Adjuvant setting: 
No improvement in 
DFS [85].
Metastatic setting: 
35% reduced risk of 
relapse and a 19% 
RR without improved 
OS [86].

(Continued )
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Figure 2: Basal-like TNBC. Drug classes previously evaluated or currently being investigated in breast cancer clinical trials are shown. 
*More than 100 studies of anti-IGFR1 therapy (anti-receptor Abs, anti-ligand Abs, receptor-TKIs, and metformin) have been conducted. 
**Many combination drugs are currently being investigated: EGFR and HER2-TKIs (e.g., lapatinib and BIBW2992), c-MET and VEGFR-
TKIs (e.g., cabozantinib) or FGFR and VEGFR-TKIs (e.g., lucitanib, dovitinib, BIBF1120). 
Abbreviations: BER, base-excision repair; CDK, cyclin-dependent kinase; EGFR, epidermal growth factor receptor; FGFR, fibroblast 
growth factor receptor; IGFR, insulin growth factor receptor; HR, homologous recombination; mAb, monoclonal antibody; TKI, tyrosine-
kinase inhibitor; VEGFR, vascular endothelial growth factor receptor.

Potential Therapeutic 
Subgroups

Drug class Drugs (Given alone or with 
standard CHT)

Ongoing Trials 
(Phase)

Published Results of 
Clinical trials

VEGFR-TKI Sorafenib* NCT01194869(2)

Sunitinib* NCT00887575(2)

Monotherapy showed 
no efficacy compared 
to SOC in previously 
treated advanced 
TNBC [103].

Tivozanib NCT01745367(2)

Apatinib NCT01176669(2)

VEGFR and 
c-MET-TKI Cabozantinib NCT01738438(2)#

Targeted therapy 
combinations

MEK inhibitor - 
AKT inhibitor Trametinib - GSK2141795 NCT01964924(2)

VEGF inhibitor - 
c-MET inhibitor Bevacizumab – Onartuzumab NCT01186991(2)

Based on our Classification, drugs specially investigated on a cohort of TNBC patients are listed in this table. These drugs 
are presented according to the pathway they target and thus illustrate our TNBC grouping.
* Ongoing trials evaluating targeted therapy in combination with platinum-based regimens.
# Trials enrolling TNBC patients.
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Supplementary Table 1). However, when one takes a close 
look, there was a significantly large difference in pCR rate 
between BL1 (51%) and BL2 (0%) subgroups, raising 
serious concerns about therapeutic applications whether 
to consider BL1 and BL2 as the same entity [8]. However, 
this requires prospective validation in large cohort of 
patients with TNBC. However, we can speculate that BL2 
tumors display a gene signature that suggests activation 
of receptor tyrosine kinase pathways, suggesting that this 
subgroup may need to be grouped together with other 
subgroups harboring enriched growth factor/receptor 
tyrosine kinase pathways like mesenchymal like subgroup 
(see ML-TNBC) [5].
Platinum-based chemotherapy

Given the defective DNA-repair system as 
described above, the targeting DNA-repair deficiency 
appears to be a promising treatment for BL-TNBC 
with BRCAness characteristics or BRCA-mutations  
(more likely BL1: Table 1, Figure 2, and Supplementary 
Table 1). Chemotherapies based on the DNA cross-
linking agent platinum could be effective for sporadic 
or germline DNA-repair-deficient breast cancers. 
Indeed, good response rates (RRs) to such agents have 
been associated with low BRCA1-mRNA expression 
and BRCA1 methylation [14, 15]. Platinum-based che-
motherapy appears to significantly increase the pCR 
rate in TNBC patients [15, 16]. However, these results 
seem to be driven by patients with a family history of 
cancer and/or BRCA-positivity, who have a higher pCR 
rate (49%–64%) than the rest of the population (40%) 
[17]. In the metastatic setting, patients harboring BRCA 
mutations responded better to carboplatin than docetaxel. 
If BRCAness signature (as estimated by HR deficiency 
assay) appeared as a potent biomarkers of platinum 
sensitivity in TBCRC009 trial; it was not predictive of 
platinum response in the phase III TNT trial [18, 19]. 
These data support the use of platinum-based regimens 
for BRCA-mutant TNBC. As a result, carboplatin has 
been incorporated into combinatorial treatment in TNBC 
patients; however more careful selection of patients using 
BRCAness testing should be warranted.

Poly-ADP ribose polymerase (PARP) inhibitor

Alterations in DNA-damage response and 
repair mechanisms can lead to genomic instability and 
carcinogenesis, but may also offer a target for treatment 
in highly proliferative tumors such as BL-TNBC. Indeed, 
HR dysfunction has been shown to sensitize breast cancer 
cells to PARP inhibition, resulting in cell cycle arrest and 
apoptosis [20]. Preclinical data demonstrated that PARP 
inhibitor olaparib has antitumor activity in BRCA-mutant 
cell lines [21], this was later confirmed in a phase II trial 
[22]. The phase III study of iniparib did not meet this 
goal, with the negative result attested to iniparib’s poor 
inhibitory action against PARP [23, 24]. New, highly 

potent PARP inhibitors, such as BMN-673 are in early 
stage development and the results of their clinical utility 
eagerly awaited [25]. Combination treatment appear 
promising based on preliminary results of the I-SPY2 
trial which reported a doubled pCR rate when veliparib 
and carboplatin were added to standard neoadjuvant 
chemotherapy regimens [26]. Another interesting 
observation is that CDK inhibitors provided a therapeutic 
target for PARP inhibitors in BRCA-competent cell 
lines by increasing DNA damage [27]. Therefore, smart 
combination strategy may create a novel susceptibility to 
DNA repair targeting therapeutics in non BL1 TNBC, and 
can be used as one strategy to induce pathologic response 
to the chemotherapy.

Mesenchymal-like TNBC

Mesenchymal, mesenchymal stem like, claudin-
low are generally indicating the subgroups of TNBC 
that harbor mesenchymal like features—represented 
by enriched genes involved in EMT and the biological 
regulation of CSCs [2, 5]. Interestingly, most mesenchymal 
stem-like (MSL) samples are usually classified as 
normal-like, whereas most mesenchymal (M) tumors are 
classified as Basal-like when tested by PAM50 (when the 
“claudin-low” subgroup is not considered) [7]. It could 
actually suggest that the MSL group of tumors is actually 
composed of tumors highly contaminated by normal 
breast tissue. These discrepancies were also noticed in the 
smaller cohort of Burstein et al.: MSL overlapped with a 
mesenchymal subgroup whereas M tumors were mostly 
Basal-Like Immune-suppressed (BLIS) [4].

During EMT, epithelial breast cancer cells acquire 
the expression of mesenchymal markers while losing the 
expression of epithelial-related genes involved in 
the maintenance of cellular junctions. While comparing 
EMT markers, it was recognized that elevated vimentin 
and decreased E-cadherin protein expression in TNBC 
cells could stratify a mesenchymal-TNBC subgroup 
(Supplementary Figure 1). From the signaling pathway 
perspective, the activation of EGFR, which is frequently 
overexpressed in TNBC, has been implicated in EMT, 
as have other tyrosine-kinase receptors (e.g., c-MET, 
fibroblast growth factor, insulin growth factor [IGF], 
platelet-derived growth factor) [28, 29]. Other pathways, 
including the transforming growth factor β (TGFβ), Notch, 
and Wnt/β-catenin signaling pathways [29], are also 
involved in EMT, and many of these are heavily enriched 
in ML-subtype [5]. Mesenchymal cells also harbor CSC-
like features, the hallmarks of metastatic potential. In an 
unsupervised analysis of a collection of breast cancer cell 
lines, Neve et al. described a cluster of TNBC cells that 
exhibited a CSC-like expression profile [30]. Moreover, 
the induction of a CSC profile or the expression of 
mesenchymal markers in breast cancer cells have been 
correlated with chemotherapy resistance [31]. CSC-like 
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features, consistent with EMT phenotype, are known 
to be driven by many well-known signaling pathways 
such as the MAPK and Wnt pathways, which suggest 
that inhibitors of these pathways should be utilized in 
conjunction with standard chemotherapy. Many promising 
EMT-targeted and CSC-targeted treatments are under 
investigation in early stage clinical trials (Table 1, Figure 3 
and Supplementary Table 1).
CSC regulators

Activation of Wnt/β-catenin signaling correlates 
with the expression of CD44+/CD24- [32]. Despite the 
inherent difficulties in developing novel Wnt inhibitors, 
many drugs already approved by the U.S. Food and 
Drug Administration inhibit Wnt pathways, including 
vitamin D3, non-steroidal anti-inflammatory drugs and 
some antibiotics (e.g., salinomycin) [33]. The Notch 
signaling pathway also has a crucial role in maintaining 
breast CSCs, and thus may provide a therapeutic avenue 

in ML-TNBC. To date, two kinds of Notch inhibitors have 
been developed for oncological purposes: γ-secretase 
inhibitors (GSIs) and delta-like ligand 4 monoclonal 
antibodies (mAbs). In preclinical studies, GSIs have 
been found to sensitize chemoresistant cell populations, 
including CSC-like tumor cells [34]. Importantly, 
functional study suggested that PEST domain mutations 
of Notch receptors are frequent in TNBC and active 
Notch pathway conferring GSI sensitivity [35]. Given 
that Hedgehog ligand, GLI expression and SMO are also 
up regulated in TNBC, there is a potential opportunity to 
therapeutically target this pathway; however, no clinical 
trials have been designed specifically for ML-TNBC.
c-MET targeted therapy

Targeting this pathway in ML-TNBC could also 
be successful since c-MET signaling can control EMT 
and CSC phenotypes [29]. Moreover, stromal secretion 
of hepatocyte growth factor was recently demonstrated 

Figure 3: Mesenchymal TNBC. Drug classes previously evaluated or currently being investigated in breast cancer clinical trials 
are shown. *Many combination drugs are currently being investigated: EGFR and HER2-TKIs; c-MET and VEGFR-TKIs or FGFR 
and VEGFR-TKIs. **Not yet in clinical trials. ***PI3K/AKT/mTOR inhibitors are detailed in luminal/apocrine-TNBC part (Figure 4). 
# PDGFR and IGFR are also overexpressed in ML-TNBC and are targetable. However, current therapies targeting PDGFR have a large 
overlap with those that target VEGF. Imatinib, an anti-PDGF agent, had potential immunosuppressive effects and no antitumor activity in 
metastatic breast cancer overexpressing PDGFβ. 
Abbreviations: DKK1, Dickkopf-homolog-1; DLL, delta-like ligand; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth 
factor receptor; FRZ, Frizzle receptor; GSI, γ-secretase inhibitor; HGF, hepatocyte growth factor; HH, Hedgehog ligand; mAb, monoclonal 
antibody; NF-κB, nuclear factor κ-beta; NSAID, non-steroidal anti-inflammatory drug; PTCH, patched receptor; SMO, smoothened; 
TGFβ, transforming growth factor β; TKI, tyrosine-kinase inhibitor; VDR, vitamin D receptor; VEGFR, vascular endothelial growth 
factor receptor.
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to activate the c-MET pathway and leads to resistance 
to EGFR-TKIs in breast cancers, an effect already well-
known in non-small cell lung cancer [36]. Appropriately, 
co-inhibition of EGFR and c-MET suppressed tumor 
growth in preclinical models [37]. However, initial 
results with c-MET inhibitors were disappointing, with 
no improvement of progression-free survival when 
onartuzumab was given with paclitaxel/ bevacizumab-
based regimens in unselected metastatic TNBC patients 
[38]. However, with better understanding of pathway and 
possible expanded target group including BL2 TNBCs 
showing enriched in genes associated with the c-MET 
pathway [5], this pathway still holds future potential.

TGFβ inhibitors

In a preclinical trial, TGFβ tyrosine-kinase inhibitor 
(TKI) induced a tremendous mesenchymal-to-epithelial 
transition (MET) reversing EMT in CD44+ breast 
cancer cells, which justified its further development [39]. 
Initial results from studies of trabedersen, an antisense 
oligodeoxynucleotide directed against TGFβ2 mRNA, 
revealed promising efficacy in solid tumors known to 
overexpress TGFβ2 ligand [40].

Immune modulatory/associated TNBC

The “immunomodulatory” subtype is enriched in 
gene ontologies of the immune cell process including 

immune cell signaling (B, T, and NK cells), cytokine 
signaling, antigen processing-presentation, and core 
immune signal transduction pathways [5]. Compared 
with the other intrinsic groups defined by Sorlie et al. [3], 
claudin-low tumors expressed a high level of immune 
system response genes (B-cell, T-cell, and CD8-signatures) 
[2]. Additionally, Burstein et al., using an RNA-based 
gene profiling, identified a good prognostic subset called 
“Basal-like immune activated” (BLIA), overexpressing 
CTLA-4 on top of other genes overexpressed in 
immunomodulatory TNBC [4].

While different groups proposed slightly different 
analysis to define the group, it is clear that there 
are subset of TNBC that harbor a lot of modulatory 
signatures dictated by immune systems. The immune 
response signature was correlated with enhanced 
levels of immune cell infiltration and resulted in 
good clinical outcome in TNBC [2, 41–44]. Tumor-
infiltrating lymphocytes seem predictive of neoadjuvant 
chemotherapy response [45, 46].

Immune-based therapies are actively developed 
in breast cancer (Table 1, Figure 4, and Supplementary 
Table 1). Whether specific immune system response gene 
amplification and/or immune pathway enrichment is 
predictive of treatment efficiency remains to be known. 
Due to lack of evidence so far, tumors with one of the 
characteristic were gathered in a common immune 
subgroup.

Figure 4: Immune-associated TNBC. Drug classes previously evaluated or currently being investigated in breast cancer clinical trials 
are shown. 
Abbreviations: AMP, adenosine monophosphate; APC, antigen-presenting cell; CSF-1R, colony stimulating factor-1; CTLA-4, cytotoxic-
T-lymphocyte-antigen-4; LT lymphocyte T; LTreg, lymphocyte T regulator; mAb, monoclonal antibody; MAGE-A3, melanoma-associated-
antige3; MHC, major histocompatibility complex; MUC1, mucin-1; PD-1, program-death-1; PDL-1, program-death-ligand-1; TCR, 
T-cell receptor.



Oncotarget12898www.impactjournals.com/oncotarget

Immune checkpoint blockade

Immune checkpoint pathways are an elaborate series 
of cellular interactions that prevent the excessive activity 
of T-cells under normal conditions. In immune-associated 
TNBC, inhibiting these checkpoints and enhancing T-cell 
activity against tumor cells could be used therapeutically. 
Activation of cytotoxic-T-lymphocyte-antigen-4 (CTLA-
4), a cell surface receptor of lymphocyte T regulators, 
down-modulates the amplitude of T-cell activation. Two 
anti-CTLA-4- mAbs, ipilimumab and tremelimumab, are 
currently being evaluated in breast cancer, but no trial 
currently exists to assess their efficacy in the various 
stratifications of TNBC. Programmed-cell-death-1 (PD-1) 
and its ligand, PD-L1, are overexpressed in 20% of TNBCs 
[47]. The PD-L1/PD-1 pathway is a potent mechanism by 
which immunogenic tumors evade host immune response. 
Anti-PD-1 and anti-PD-L1-mAbs disrupt this ligand-
receptor interaction, thereby enhancing T-cell immune 
response. PD-L1 expression appears to be a potential 
predictive biomarker of objective response rate (ORR) 
[48]. Inhibiting PTEN up-regulates PD-L1 expression, 
suggesting that agents targeting the PI3K pathway might 
be effective to enhance the antitumor adaptive immune 
response to TNBC [47]. The combination of cell signaling 
pathway inhibitors plus immune checkpoint blockade 
drugs needs to be explored in TNBC (Table 1 and 
Figure 4).
Tumor vaccines

Breast cancer vaccines targeting tumor antigens 
have been investigated for the past decade. Although no 
TNBC-specific antigen has been validated, several targets 
in breast cancer cells have been identified, including NY-
ESO-1, MAGE-A3, and MUC-1 [49, 50]. NY-ESO-1 
expression has been identified in 12–24% of TNBC 
patients, among whom 73% had high Ab response to 
NY-ESO-1, indicating high immunogenicity [51, 52]. 
Interestingly, immune gene signature was predictive of 
MAGE-A3 specific immunotherapeutic response [53].

Luminal/apocrine TNBC

LA-TNBC, despite lacking ERs and PRs, is 
enriched in hormonally regulated pathways. Indeed, AR 
overexpression can replace ER expression as a major 
component of steroid-related signaling [5, 10, 54]. This 
subgroup, which could include the LAR, the luminal 
A-B, the Burstein’s LAR and molecular apocrine 
subtypes, shares other features including high luminal 
gene expression, lack of basal-cytokeratin markers, and 
low proliferation rate [5, 10, 54]. AR-positivity, defined 
as nuclear staining in at least 10% of cancer cells, has 
been detected in approximately one-third of TNBCs and 
is associated with good prognosis [55–57]. Interestingly, 
a low pCR rate of 6%-10% was observed in the luminal/

apocrine setting, after preoperative chemotherapy but 
there was trend for a better prognosis [8, 56].
AR inhibitors

Sensitivity to bicalutamide, an oral AR inhibitor, 
was better in LAR cell lines than in other subtypes and a 
recent phase II study confirmed the interest of such drug 
showing a 19% of clinical benefit rate at 24 weeks for ER/
PR-negative AR-positive breast cancer patients [5, 58]. 
Enzalutamide, a new generation anti-androgen, abrogated 
AR-mediated proliferation in vitro, and yielded 42% of 
clinical benefit rate at 16 weeks in advanced AR-positive 
TNBC [59, 60]. Another compound, enobosarm, yielded 
a 35% clinical benefit in metastatic AR-positive breast 
cancer [61]. Recent data suggested that even non-LAR 
subtypes with relatively lower AR expression may also 
benefit from AR targeted therapy [62]. Various efforts to 
streamline the testing of AR in breast cancer and develop 
effective AR targeting treatment are currently made by 
researchers.
Histone deacetylase (HDAC) inhibitors

As HDAC regulates AR target genes in prostate 
cancer cells, HDAC-inhibitors were tested in TNBC 
and had low toxicity [63]. Furthermore, in-vivo data 
suggest that HDAC inhibitors cause cells with the 
TNBC phenotype to express ER and become sensitive 
to endocrine therapy [64]. Thus, clinical trials of HDAC-
inhibitors and aromatase inhibitors in TNBC patients are 
underway (Table 1, Figure 5 and Supplementary Table 1).

HER2-enriched TNBC

Six to eight percent of TNBCs are considered to 
be HER2e [3]. In Lehmann’s molecular classification of 
TNBC, HER2 did not appear as an independent classifier, 
but instead the majority of HER2e tumors segregated into 
LAR and BL2 subgroups [5, 10]. Indeed, HER2e-TNBC 
shared characteristics with LA-TNBC including PI3KCA 
mutations and high levels of luminal-like genes such as 
AR [54, 65]. Therefore, while we suggest this subgroup 
as a separate clinical entity, it is possible that LA-TNBC 
and HER2-enriched group can be grouped together 
in near future based on further scientific discoveries. 
Although the clinical role of minimal HER2 expression 
(HER2 1+, 2+ by IHC) in TNBC is largely unknown, there 
are opportunities to evaluate HER2-targeted therapies 
(Figure 5 and Supplementary Table 1).
HER2-targeted therapy

Central IHC analysis of breast cancer samples 
from the NSABP-B31 trial revealed that 10% of patients 
receiving adjuvant trastuzumab were actually HER2-
negative. In this population, trastuzumab had a clinical 
benefit ; however, the results of this subset analyses 
should be taken with extreme caution [66]. The phase III 
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NASBP B47 trial should determine the clinical relevance 
of HER2-targeted therapy in HER2-low expression 
(IHC 1+ or 2+) TNBC.
HER2-directed vaccine

Two recent phase II studies demonstrated a benefit 
of the HER2 peptide vaccine AE37, in patients with 
HER2-low expression, especially those with TNBC (60% 
relative reduction in recurrence). Phase III in TNBC are 
warranted [67, 68].

Overlapping pathways and potential 
therapeutics

In our literature review, we noticed several signaling 
pathways that were common to multiple groups of TNBC. 
While this was not unexpected, it does suggest that 
investigations into therapeutics that inhibit these pathways 
should provide serious consideration to which subgroups 
of TNBC will be tested.

EGFR targeted therapy

EGFR is overexpressed primarily in ML-, BL-, and 
HER2e-TNBC [5, 10, 65]. EGFR and its downstream 

signaling pathways consequently appear as promising 
targets in these TNBC subsets [69]. In a xenograft model 
of ML-TNBC, treatment with an EGFR-TKI induced MET 
transition and subsequent tumor regression [28]. Various 
EGFR-TKIs given as monotherapy did not provide any 
clinical benefit in a cohort of unselected patients [69]. 
More concordant with preclinical results, EGFR mAbs 
combined with chemotherapy showed promising ORRs 
in TNBC patients [70, 71]. Complementary data showed 
minor inactivation of EGFR pathway in TNBC by EGFR 
inhibitors, potent testimony of activation of additional 
resistant pathways [72].
Fibroblast growth factor receptor (FGFR) targeted 
therapy

Because FGF2 ligand is highly express in BL-
[73], and FGFR is highly expressed in ML- and BRCA-
associated tumors [5, 74], two kinds of FGFR inhibitors 
are being investigated in breast cancer: TKIs targeting 
both VEGFRs and FGFRs and pan-FGFR TKIs. In the 
first instance, results from a phase II trial of dovitinib in 
FGFR1-amplified breast cancer suggest that anti-FGFR 
therapy results in stable disease in TNBC [75]. In the 
second instance; since genomic alterations of FGFR are 

Figure 5: Luminal/apocrine TNBC and HER2-enriched TNBC. Drug classes previously evaluated or currently being investigated 
in breast cancer clinical trials are shown. *Dual PI3K/AKT/mTOR inhibitors are on the way. **Current mechanistic-driven combination 
drugs use MEK inhibitors with: AR inhibitors, PI3K inhibitors, AKT inhibitors, and dual PI3K/mTOR inhibitors. ***Inhibition of HSP90, 
a molecular chaperone essential for the stability and integrity of various “client” proteins such as AR, is an attractive therapeutic target 
for cancer. # Anti-HER2, anti-EGFR, and anti-VEGF treatments are more specific for HER2-enriched TNBC. ## AR signaling has an 
important role in the molecular apocrine subgroup, which mainly overlaps the luminal-TNBC subgroup but could also overlap the HER2e-
TNBC subgroup because of the high frequency of HER2 amplification. 
Abbreviations: AR, androgen receptor; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; 
HDAC, histone deacetylase; HSP90, heat-shock protein 90; mAb, monoclonal antibody; MDM2, mouse double minute 2; TKI, tyrosine-
kinase inhibitor; VEGFA, vascular endothelial growth factor A; VEGFR, vascular endothelial growth factor receptor.
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predictive of BCJ398 sensitivity [76], current clinical 
trials have restrictive inclusion criteria for biological 
markers (FGFR1 and/or FGFR2 amplification, or FGFR3 
mutation) but are open to various solid cancers. This 
approach is necessary to obtain a sufficient number of 
patients and significant results.
IGFR-targeted therapy

IGFR-related signaling genes are heavily enriched 
in ML- and BL-TNBC. Excitingly, targeting this pathway 
in BL-TNBC may be highly effective as BRCA-deficient 
cells, unlike wild-type cells, cannot down-regulate 
IGFR expression [77]. However, neither BRCA status 
nor IGFR-1 plasma levels are biomarkers for anti-IGFR 
treatment. The biomarker issue raised for anti-IGFR 
therapy is common in oncology and also applies to studies 
investigating the VEGF pathway. Thus, phase III results in 
unselected patients have been disappointing [78]. 
PI3K/AKT/mTOR pathway targeted therapy

Up to 45%, 39%, and 29% of “intrinsic” luminal-A, 
HER2e, and luminal-B, respectively, have PI3KCA 
mutations [65]. Preliminary data suggest that these 
mutations increase the sensitivity of cancer cells to PI3K/
AKT/mTOR inhibitors [79]. More controversial is the 
impact of PTEN loss as a predictor of treatment efficacy 
[5, 79]. Phase I trials showed that class I pan-PI3K 
inhibitors elicited disease stabilization or partial response 
in TNBC [80]. At the same time, a beta-sparing PI3K 
inhibitor showed promising preliminary clinical activity in 
PI3KCA-mutant breast cancers [81]. Dual PI3K and mTOR 
inhibitor NVP-BEZ235 had a potent effect on ML- and LA-
TNBC cell lines [5]. This sensitivity was confirmed in a 
phase I study [82]. In the future, laboratory marker analysis 
should be performed to determine the precise roles of PI3K 
mutation and PTEN loss and better select patients who 
would benefit from these targeted treatments.
MAPK pathway targeted therapy

MEK inhibitors appear to be a promising agents in 
ML-TNBC because the ERK1/2 pathway is overexpressed 
in this subtype [5]. If only 2% and 5% of all breast 
cancers have BRAF and KRAS mutations, respectively, 
a “RAS-like” transcriptional program confers sensitivity 
to MEK inhibitors in preclinical models of BL-TNBC 
[83]. In contrast, MEK inhibitors should not be relevant 
in LA-TNBC as PTEN loss is a negative predictor of 
MEK-inhibitors’ efficiency [83]. An obvious feedback 
loop between the PI3K/AKT/mTOR and RAS/RAF/
MEK/ERK pathways has direct clinical implications, as 
MEK inhibition leads to PI3K activation and vice versa 
[83]. Moreover, inhibition of MAPK activity restore ER 
expression and endocrine therapy response in vitro [84]. 
Even if single-agent MEK inhibitor may not be the most 
relevant treatment for TNBC, combination therapy using 
this drug may have clinical efficacy in TNBC.

Angiogenesis inhibitors

Three kinds of anti-angiogenic agents are currently 
on the market: anti-VEGF-A mAbs (e.g., bevacizumab), 
pan-VEGFR TKI (e.g., sunitinib, sorafenib, pazopanib), 
and VEGF-trap (e.g., aflibercept). The U.S. Food and 
Drug Administration’s approval of bevacizumab for breast 
cancer was withdrawn because of insufficient benefit and 
consequent adverse effects in the global breast cancer 
population. In the adjuvant setting, adding bevacizumab 
to chemotherapy did not improve disease-free survival in 
unselected TNBC patients [85]. A meta-analysis of three 
phase III trials suggested that bevacizumab reduces the 
risk of progression of metastatic TNBC by 35% [86]. 
Interestingly, claudin-low, basal, and HER2e display a 
VEGF-signature, sign of angiogenesis [87]. Concordant 
data suggest higher intratumoral expression of VEGFA 
in BL-TNBC and HER2e-TNBC, than in the ML-
TNBC [88, 89]. There are no predictive biomarkers for 
angiogenesis inhibitors, yet. To obtain any relevant results 
and improve outcomes with the use of anti-angiogenic 
agents, we will need to preselect patients using predictive 
biomarkers.

TP53 mutation targeting

p53 mutations are detected in 100%, 85% and 40% 
of HER2e-, basal and luminal TNBCs, respectively [10]. 
Targeting the p53 pathway can be both direct and indirect. 
E.g., MDM2 inhibitors could reactivate p53′s tumor 
suppressor function in non-mutant tumors [90]. Defective 
P53-mediated cell-repair lead to G2-M dependency of 
cells, therefore offering a therapeutic strategy to target 
apoptosis in TNBC. Many apoptosis targeting agents 
are currently tested in solid tumor, and are recognized as 
upcoming drugs in TNBC.

Therapeutic strategy and biomarker 
development

There are numerous targets among subtypes as 
we reviewed here in TNBC; however their activity as 
single agents in TNBC has proven or might be limited. 
Further, there is limited number of actionable single 
gene mutation drivers in TNBC. Therefore, biologically 
driven combinatorial therapies should be considered. An 
extensive number of active clinical trials are investigating 
combinatory-targeted treatments on the basis of agents’ 
synergistic effect in preclinical studies [91]. Specifically, 
these combination therapies should be considered in 
TNBC, based on the compensatory pathways activated by 
single pathway inhibition by targeted therapy or preclinical 
data suggesting their synergy: such as, EGFR- and MEK- 
inhibitors; MEK-, MET- or PARP-inhibitors; VEGF- and 
mTOR inhibitors [92]. Further, because of the high rate 
of PI3K mutations in AR-positive tumors, PI3K- and 
AR- inhibitors should be pursued [93]. Although, multiple 
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combination therapies are available to pursue as clinical 
trials, our incomplete knowledge of TNBC precludes our 
ability to provide a rationale for treatment prioritization.

Few clinical trials have assessed combination 
therapies in TNBC alone, and even fewer have assessed 
such therapy in the various TNBC subtypes (Table 1 and 
Supplementary Table 1). Thus, most trials are phase I studies 
involving various solid tumor types or unspecified breast 
cancer subtypes. Therefore, there is an urgent need to design 
clinical trials that assess drug efficacy in TNBC specifically, 
as this effect may be unobserved in studies involving a large 
unspecified population. We speculate that some drugs, such 
as EGFR-TKIs or VEGF-mAbs, may have already suffered 
from designs with incomplete annotation.

Additionally, a large proportion of preclinical studies 
utilize only a handful of established human cell lines 
that commonly do not represent all TNBC subtypes. For 
example, the TNBC cell line, MDA-MB-231, has been the 
workhorse of preclinical investigation for more than three 
decades and has provided much insight into the biology of 
primary tumor and metastases. However, MDA-MB-231 
is a ML-TNBC cell line, and results derived from its study 
should be interpreted in the context of the ML-TNBC 
subgrouping. Preclinical studies assessing drug activity in 
TNBC should use multiple cell lines that encompass all 
molecular subtypes of the disease.

Another important element to consider is tumor 
evolution. Most tumor characterization is based on 
pretreatment core biopsies. However, tumor’s genetic 
instability can cause changes in molecular characteristics 
at various times points of disease, as was demonstrated 
for PI3K pathway mutations [94]. So, despite the 
classification proposed, we do not know whether baseline 
classification will predict response after one treatment or 
even after weeks of natural tumor evolution. Furthermore, 
we do not know how these classifications will affect 
combination targeted therapy or combination treatments 
with conventional chemotherapy. Finally, we need to think 
about performing repeat core biopsies and developing 
less invasive measures of clinical assessment, such as 
monitoring circulating tumor cells and circulating free 
tumor DNA [95], to provide accurate and personalized 
treatment along the course of TNBC. Most clinical trials 
of targeted treatment enrolled heavily pretreated breast 
cancer patients without new characterization, but whether 
this is relevant is unknown. There is an urgent need to 
answer these questions to correctly design future studies.

Lastly, biomarkers for selecting patients 
for treatment are urgently needed [95]. A greater 
understanding of TNBC biology will uncover potential 
biomarkers that will facilitate clinical trials of novel 
treatments and the development of predictive biomarkers 
for these treatments. However, the main issue of how to 
identify biomarkers with high clinical validity and utility 
remains. PI3K mutation, VEGFR2/VEGF-A, BRCA1/2 
mutations and ‘BRCAness’ have all been used to stratify 

patients in studies of anti-angiogenic agents or PARP 
inhibitor. With exception to BRCA1/2 mutations, no 
candidate biomarkers have been proven to have sufficient 
pragmatic validity in TNBC.

CONCLUSIONS

Developing personalized therapies for TNBC 
requires a comprehensive understanding of the molecular 
basis of its oncogenic pathways and microenvironmental 
changes, as well as the effects of the immune system and 
therapies on these pathways. The more we understand 
the biology, the more we are prompt to split TNBC 
disease into multiple subgroups. However, multiplication 
of subtypes could yield to “orphan” TNBC disease and 
unnecessary splitting with major issue to design powerful 
trial with sufficient number of patients. To overcome this 
issue, our review suggests five possible major clusters 
of TNBC based on current knowledge and clinical 
trial development. Each of them harbors a dominant 
biological function/pathway, which could justify the 
above distinction. Our review identified four predominant 
function/pathway: DNA-repair deficiency, EMT and CSC, 
immune-associated, androgen-receptor overexpression. 
Although, multiple papers explored TNBC gene 
expression profiling, our incomplete knowledge of TNBC 
biomarkers precludes our ability to provide clinically 
achievable TNBC grouping with rationale for targeted 
therapies. Thus, in this review, we detailed for each 
pathway, various molecular-based treatments which are 
currently being investigated.

Thus, the first clinical need is to develop robust 
biomarkers that reflect the molecular behavior of TNBC, 
to generate more homogenous TNBC subgroups. To 
discover targetable route, we should also think in term 
of activated pathways and not restrict our research to 
mutational or expression data [96].

The second is to determine whether these 
molecular targets are clinically relevant to the treatments. 
Currently, testing new drugs without any correlated 
biomarkers studies might be a waste of time. Current 
insight of BRCA1/2 mutation and AR expression level in 
management of TNBC illustrate well the discussion.

The third is to prevent resistance to the proposed 
treatment. Many cancer centers are attempting to create 
comprehensive treatment strategies for TNBC so that 
personalization of treatment can be initiated.

Based on our review, one approach could be first to 
select chemo-resistant population which can benefit from 
additional treatment using baseline molecular profiling and 
imaging during standard chemotherapy treatment [97, 98]. 
Secondly, patients could be selected based on their HR 
deficiency status and AR expression level. Remaining 
patients could be segregated into mesenchymal-TNBC or 
non-mesenchymal-TNBC to benefit from investigational 
treatments (Figure 6). Regardless of how you design 
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your personalized treatment in TNBC, multiple specimen 
correction is needed in the course of clinical trials or 
providing standard of care because we have yet to discover 
a robust treatment outcome predictable biomarkers. For 
sure, we see the future of personalized therapy development 
in TNBC as based on biology-oriented comprehensive 
approaches. However, we do not know yet if the biological 
classification based on gene expression profile or gene 
mutation/amplification can truly enrich the targets in TNBC.
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