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ABSTRACT
Dysfunction of the human trabecular meshwork (HTM) plays a central role in 

the age-associated disease glaucoma, a leading cause of irreversible blindness. The 
etiology remains poorly understood but cellular senescence, increased stiffness of 
the tissue, and the expression of Wnt antagonists such as secreted frizzled related 
protein-1 (SFRP1) have been implicated. However, it is not known if senescence is 
causally linked to either stiffness or SFRP1 expression. In this study, we utilized 
in vitro HTM senescence to determine the effect on cellular stiffening and SFRP1 
expression. Stiffness of cultured cells was measured using atomic force microscopy 
and the morphology of the cytoskeleton was determined using immunofluorescent 
analysis. SFRP1 expression was measured using qPCR and immunofluorescent 
analysis. Senescent cell stiffness increased 1.88±0.14 or 2.57±0.14 fold in the 
presence or absence of serum, respectively. This was accompanied by increased 
vimentin expression, stress fiber formation, and SFRP1 expression. In aggregate, 
these data demonstrate that senescence may be a causal factor in HTM stiffening 
and elevated SFRP1 expression, and contribute towards disease progression. These 
findings provide insight into the etiology of glaucoma and, more broadly, suggest a 
causal link between senescence and altered tissue biomechanics in aging-associated 
diseases.

INTRODUCTION

Glaucoma is a family of irreversible blinding 
diseases that are projected to affect 79.6 million people 
worldwide by the year 2020 [1]. The most common 
form of glaucoma, primary open angle glaucoma, is an 
aging associated disease (AAD) often characterized by 
elevated intraocular pressure induced by increased outflow 
resistance of the aqueous humor [2]. The human trabecular 
meshwork (HTM), a complex three-dimensional structure 
comprised of cells, interwoven collagen beams and 
perforated sheets, is believed to provide the majority of 
outflow resistance in both normal and glaucomatous eyes 
[3-7]. HTM cells, depending on the region of the HTM, 

either form sheets covering extracellular matrix (ECM) 
structures or are scattered throughout the ECM [8-11]. 
What changes in the HTM resulting in increased resistance 
is poorly understood, but our recent study showed the 
HTM is ~20 fold stiffer in glaucoma [12], suggesting a 
prominent role of HTM mechanobiology. This tissue-scale 
stiffening is likely a result of biophysical changes to both 
the ECM and constituent cells, as structural changes to 
both the cytoskeleton [13, 14] and ECM [15-19] have long 
been associated with glaucoma.

Building upon these findings, further research has 
led to a growing body of evidence that these biophysical 
changes are not epiphenomena, but upstream of factors 
important in the progression of the disease. In vitro studies 
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by our lab and others have shown that primary HTM cells 
have alterations in expression of genes associated with 
glaucoma, in biophysical properties, and in responsiveness 
to potential therapeutics when grown on hydrogels of 
varying stiffness [20-25]. Importantly, when cultured 
on hydrogels mimicking the stiffness of glaucomatous 
HTM, HTM cells increased expression of genes known 
to be associated with glaucoma progression [26-34], 
including myocilin [21, 23], secreted protein acidic and 
rich in cysteine (SPARC) [23], and secreted frizzled 
related protein-1 (SFRP1) [21]. These studies suggest 
a mechanism by which altered HTM mechanobiology 
reinforces the biological mediators of the glaucomatous 
phenotype. However, it remains unclear what processes 
induce stiffening.

A prime candidate for this process is cellular 
senescence, the irreversible arrest of cellular proliferation. 
Senescence is thought to contribute to many of the 
physiological changes associated with aging as well 
as AAD [35-40]. Induction of senescence generally 
occurs either due to telomere shortening after repeated 
mitosis (“replicative senescence”) or presentation of 
physiological stress (“stress-induced senescence”), 
although the distinction is blurry at best [35, 38, 41-47]. 
Both telomere shortening and cellular senescence are 
correlated with aging [48-52], and this is hypothesized 
as a prime driver of aging and associated diseases [53, 
54]. Increased cell senescence is observed in the HTM 
of glaucoma patients [55], and glaucoma is likewise one 
among many AADs associated with increased rigidity 
of the tissue.  Other AADs known to be associated with 
increased tissue stiffness include atherosclerosis [56-58], 
age-related macular degeneration [59-62], and cancer 
microenvironments [63-65]. Improved understanding 
of the causes of HTM stiffening in glaucoma will likely 
provide insight into other AADs as well.

Senescence is associated with increased expression 
of vimentin [66, 67] and filamentous actin (F-actin) 
[68-70], both of which are key determinants of cellular 
mechanics [71-74]. Both cytoskeletal elements are 
expressed in HTM cells [75-77], and altered F-actin 
morphology has been associated with HTM dysfunction 
[13, 14, 78-80]. Additionally, we have recently shown that 
exogenous SFRP1 induces pronounced and long-lasting 
stiffening of HTM cells [81]. SFRP1 has been shown to be 
necessary and sufficient for the induction of the senescent 
phenotype [82], suggesting SFRP1 induced stiffening 
may be related to senescence as well. In aggregate, there 
is strong support for a hypothesis of cellular senescence 
contributing to the glaucoma phenotype by increasing 
cellular stiffening associated with cytoskeletal changes. 
However, senescence has yet to be directly linked to HTM 
mechanobiology.

In this study, primary HTM cells were serially 
passaged until senescence and atomic force microscopy 
(AFM) was used to measure the intrinsic mechanical 

properties of senescent cells compared to normally 
proliferating controls. We found that stiffness was 
significantly increased in high passage HTM cells, and this 
was associated with increased staining of vimentin and 
F-actin. Further, SFRP1 expression was also elevated in 
senescent cultures. In aggregate, these results demonstrate 
HTM cellular senescence profoundly alters HTM 
mechanobiology and suggest a causal link between HTM 
cell senescence, altered cell mechanics and glaucoma 
progression.

RESULTS

Confirmation of senescence

For all experiments, we serially passaged primary 
HTM cells until a complete loss of proliferative response 
was observed. Failure of proliferation was defined as 
having equal to or fewer viable cells one week after plating 
of a given passage. In these cultures, the cells took on an 
enlarged, flattened morphology, typical of senescent cells 
[83-88]. To confirm this method resulted in senescence, 
we plated cells of three donors (HTM553, HTM667, 
HTM631) on glass coverslips and assayed for senescence 
associated β-galactosidase (SAβGal) activity, a known 
marker of senescence [52, 89, 90]. In terminally passaged 
HTM cells, prominent blue staining indicates SAβGal 
activity which is minimal at earlier passages (Figure 
1). Under these culture conditions, HTM cells typically 
senesced at passages 12-15, although cells isolated from 
some donors senesced earlier.

Measurement of stiffness with increasing passage

Having established an in vitro model of HTM 
senescence, we turned to the primary objective of our 
study, determining if senescent HTM cells are intrinsically 
stiffer. We serially passaged primary HTM cells from 7 
donors and measured cellular mechanics using AFM 
at each passage. Values of representative donor 517 are 
shown for passage 7 through senescence at passage 12 
(Figure 2A). Minimal variation or serum dependence was 
observed at lower passages; the calculated elastic modulus 
of proliferating cells were similar to previously published 
values for HTM cells [25, 81, 91]. At terminal passage 
cells were substantially stiffer in full media, while the 
last three passages of cells in serum free media exhibited 
substantial stiffening. One way ANOVA and Bonferroni 
comparison to the earliest passage revealed these 
differences were significant to at least the p < 0.05 level, 
demonstrating a passage effect with cells from this donor. 
We performed similar experiments with cells derived from 
6 other donors, observing similar results (Figure 2B-2G). 
Stiffness at or immediately before terminal passage was 



Oncotarget15364www.impactjournals.com/oncotarget

typically elevated in full media and/or serum free media, 
although the response in serum free media was more 
robust. Despite the apparent trend, there was substantial 
donor variability both in baseline stiffness and effect 
of passage. To control for donor-to-donor variability, 
we normalized the measurements of the senescent cells 
at terminal passage to proliferative cells at the earliest 
passage (Figure 2H). Senescent cell populations were 
1.88±0.14 (n=7 donors; p < 0.05) or 2.57±0.14 (n=7 
donors; p < 0.01) fold stiffer than proliferative controls in 
the presence or absence of serum, respectively.

Staining of actin and vimentin with passage

As both intermediate filaments and the actin 
cytoskeleton have been linked to cell stiffness and 
senescence [66-74], we fixed and stained proliferative 
and senescent cultures for vimentin and F-actin (Figure 
3A-B). In proliferative cultures, vimentin was minimally 
expressed in the cell body but the expression was greatly 
increased in senescent cells. Similarly, proliferative HTM 
cultures exhibited numerous stress fibers as previously 
reported [14, 75, 79, 80], however, after senescence the 
stress fibers became more prominent. To quantify these 
changes, we averaged staining intensity of vimentin and 
F-actin for both senescent and proliferative cultures from 
4 different donors (Figure 3C-3D). Senescent cultures 
exhibited significantly brighter staining intensity of 
vimentin, both in full (1.46±0.19 fold; p < 0.05) and serum 
free (1.57±0.18 fold; p < 0.05) media. Similar results were 
obtained with F-actin staining for full (1.52±0.25 fold; p = 
0.086) and serum free (1.53±0.17 fold; p < 0.05) culture, 

although the results did not rise to significance in full 
media cultures.

Expression of SFRP1 with passage

Finally, as we have previously linked exogenous 
SFRP1 to increased HTM cellular stiffness, we used 
immunofluorescence and qPCR to assay the expression 
of SFRP1 in proliferative and senescent cultures of 3 
different donors. Proliferative HTM cultures stained 
positive for SFRP1 (Figure 4A), but this was greatly 
increased in senescent cells (Figure 4B). SFRP1 staining 
intensity was increased 1.6131±0.15 fold (p<0.05) in 
full media and 1.7211±0.31 fold (p = 0.080) in serum 
free cultures (Figure 4C). Additionally, we used qPCR to 
quantify SFRP1 mRNA expression. In serum free cultures 
of 3 different donors, SFRP1 was upregulated 4.18±1.07 
fold (p < 0.05) with senescence.

DISCUSSION

This study demonstrates senescence plays a 
prominent role in HTM mechanobiology. Utilizing serial 
passage of primary cells as an in vitro means of inducing 
senescence, this study demonstrates profound increases in 
cellular stiffness in senescent HTM cell populations. The 
increase occurred in the presence of serum but appeared 
more robust in serum free culture. This difference was 
an unexpected finding, and the role of serum signaling in 
senescence associated stiffening requires further study. 
The increase is correlated with, and likely related to, 
increases in vimentin, F-actin, and SFRP1 expression. 

Figure 1: HTM cells exhibit hallmarks of senescence at advanced passage. (A) HTM cells under routine culture are relatively 
small and elongated, and have minimal SAβGal activity. (B) After serial passaging, HTM cells assume a senescent phenotype included an 
enlarged, flattened morphology, and pronounced SAβGal activity. Images are of HTM728 (passages 5 and 7) and are representative of cells 
from other donors. Scale bars are 50 μm.
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Figure 2: Intrinsic stiffness of HTM cells is increased in senescent populations. (A) HTM cells from donor 517 underwent 
serial passaging and stiffness (Ecell) was measured each passage for both full and serum free media conditions. At terminal passage, stiffness 
is substantially upregulated. (B-G) HTM cells from 6 other donors (627, 621, 728, 667, 553, and 554) similarly were serially passaged to 
senescence, and similarly exhibited stiffening at terminal passage. Data are mean±SEM. † p < 0.05 with respect to earliest passage. (H) For 
all 7 donors, the average elastic modulus at terminal passage (‘Senesce.’) was normalized to average elastic modulus at the earliest passage 
(‘Prolif.’). For each donor and each condition, 5-7 cells were each indented 5-7 times and averaged. Data are mean±SEM. * p < 0.05; ** 
p < 0.01.
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Figure 3: HTM cells exhibit more pronounced cytoskeleton at senescence. (A) HTM cells under routine culture stain positively 
for both F-actin (red) and vimentin (green). DAPI used as nuclear counterstain (blue). (B) After serial passaging, HTM cells exhibit more 
pronounced stress fibers and brighter vimentin staining. Images are of HTM728 (passages 5 and 7) and are representative of cells from 
other donors. Scale bars are 50 μm. (C) Quantification of the average vimentin staining intensity reveals a significantly increased signal in 
senescent cultures when compared earlier passages (n=4). (D) Similar results are observed with average F-actin staining intensity, however, 
only serum free cultures demonstrate statistical significance (n=4). Data are mean±SEM. * p < 0.05.

Figure 4: Elevated SFRP1 expression is a phenotype of HTM senescence. (A) HTM cells under routine culture (HTM667; 
passage 6) stain positive for SFRP1 (green). DAPI is used as a nuclear counterstain. Scale bar is 50 μm. (B) After serial passaging, senescent 
HTM cells (HTM667; passage 10) exhibit a substantial increase in SFRP1 staining intensity. Images are of HTM667 (passages 6 and 10) 
and are representative of cells from other donors. Scale bars are 50 μm. (C) Quantification of the average SFRP1 staining intensity reveals 
a significantly increased signal in senescent cultures when compared earlier passages for full media cultures (n=3). While elevated, serum 
free cultures are not significant. (D) SFRP1 is elevated at the message level in serum free senescent cultures relative to earlier passages 
(n=3). Data are mean±SEM. * p < 0.05.
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Importantly, these data fill in crucial knowledge gaps in 
our understanding of HTM mechanobiology and build on 
previous work.

Our lab has shown that the HTM in glaucoma 
is ~20 fold stiffer [12], and available data suggests this 
is due to changes in both cytoskeletal dynamics and 
extracellular matrix [13-19]. Further, it is likely that these 
changes are coupled, as we have previously shown that 
HTM cells grown on stiffer matrices will have increased 
intrinsic stiffness [25] and elevated SFRP1 expression 
[21]. Despite the correlation of glaucoma with HTM 
stiffness, there is a paucity of data directly linking 
biological phenotypes of glaucoma with stiffening of the 
cells or matrix. Recently, we have shown that transforming 
growth factor β signaling, implicated in glaucoma, causes 
HTM cells to deposit a physically stiffer matrix with 
elevated SFRP1 secretion [92]. In a separate study, we 
demonstrated SFRP1, also associated with glaucoma, 
induces intrinsic stiffening of HTM cells [81]. Adding 
to these recent studies, we have now identified a third 
potential contributor to the overall stiffness of the HTM in 
glaucoma: cellular senescence.

It is instructive to consider the magnitude of the 
baseline HTM cell stiffness and the stiffening associated 
with senescence. As mentioned in the results, the baseline 
cellular stiffness is consistent with previous data on HTM 
cells [25, 81, 91] and is within the range previously 
reported for various cell types [93]. Further, the 2-3 fold 
change in HTM cellular stiffness with senescence is 
comparable to differences observed between metastatic 
and non-metastatic cancer cells [94-99], suggesting 
this difference could be coupled to dramatic functional 
changes. However, it is important to note that a 2-3 fold 
change is substantially smaller than the ~20 fold stiffening 
observed with glaucoma [12], suggesting senescence is 
but one of the factors contributing to HTM stiffening in 
vivo. The consequence that stiffening of cells has on ECM 
deposition and remodeling, particularly as it senesces, is 
poorly understood and warrants further investigations.

While the mechanisms underlying senescence-
associated stiffening remain incompletely defined, it 
is likely cytoskeletal reorganization plays a key role. 
In numerous other studies, senescent cells or those 
from aged organisms exhibited marked changes to 
their cytoskeleton [66-70]. In this study, we stained for 
vimentin and F-actin, as both are known to be expressed 
in HTM [75-77] and relevant to cell stiffness [71-74]. 
Microtubules, while expressed in the HTM and altered in 
senescence [100-103], have been shown to have minimal 
impact on cellular mechanics [104, 105]. Another likely 
contributor, not explored in this study, is changes to the 
nuclear lamins, which contribute to nuclear stiffness [106, 
107]. There is a well understood connectivity between 
the cytoskeleton and the lamina [108-110] and we feel it 
likely that the cytoskeletal alterations we have described 
are coupled with changes in lamin morphology. Indeed, 

the premature aging disease Hutchinson-Gilford progeria 
syndrome is linked to a splice variant of Lamin A, 
progerin [111, 112]. Progerin accumulation in cells leads 
to severe functional impairments [113-120], is associated 
with in vitro senescence [121], and has been identified 
in normal aging [122, 123]. As our studies utilize the 
nucleus as a consistent landmark for AFM indentation, 
the role of lamins is especially relevant. Future studies 
will investigate the role of lamin isoform expression in 
senescence associated stiffness.

We determined that SFRP1 is upregulated in HTM 
senescence (Figure 4), consistent with a previous report 
in different cell types [82]. SFRP1 is a potent inhibitor of 
Wnt signaling [124, 125], a key pathway that regulates 
numerous processes, including proliferation [126-129]. 
The findings of the current study serve to link findings 
from numerous previous reports by our lab and others. 
First, SFRP1 itself has been implicated in increased 
resistance to aqueous humor outflow in the HTM [32, 33], 
suggesting that senescence associated SFRP1 expression 
could directly hinder HTM function. Second, we have 
recently shown that SFRP1 induces HTM cell stiffening 
[81], providing a mechanism for a subpopulation of 
SFRP1 secreting cells to spread stiffening throughout the 
tissue. Third, HTM cells grown on hydrogels that mimic 
the stiffness of the glaucomatous HTM have increased 
stiffness as well as increased expression of SFRP1 [21, 
25], suggesting that SFRP1 will be upregulated in the 
presence of tissue stiffening. Finally, high expression 
of SFRP1 has been shown to be sufficient to induce 
senescence in otherwise normal cells [82]. In aggregate, 
these data point to a feedback loop, where exposure to 
SFRP1 induces stiffening and senescence, which in turn 
induces further stiffening and SFRP1 expression/secretion 
to the extracellular milieu capable of affecting adjacent 
cells, compromising HTM function, and ultimately leading 
to glaucoma progression.

It is important to note that the above studies were 
performed on cells isolated from a range of donor ages 
(51-72 y.o.). It is possible that some of the observed donor 
variability is due to age, however, limited availability of 
tissue from a wide range of ages hinders the ability to 
properly explore these effects. As such, the above findings 
were not analyzed with respect to donor age due to the 
limited diversity of tissues.

Finally, while this study was performed specifically 
on HTM cells in the context of glaucoma, it potentially 
has broad applicability. Glaucoma exhibits many of the 
hallmarks of AADs, including fibrosis [15, 27, 130-133], 
oxidative stress [134-139], and loss of cellularity [55, 140-
142]. It is quite possible the finding of increased stiffness 
with senescence is an aspect of many AADs. If so, further 
research into the causes and effects of this stiffening may 
identify novel therapeutic targets for treatment of a broad 
number of aging-associated diseases.

This study demonstrates a direct link between 
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cellular senescence, intrinsic cell stiffening, and SFRP1 (a 
potent inhibitor of canonical Wnt signaling) expression in 
the HTM, all phenotypes associated with glaucoma. Taken 
with previous findings that SFRP1 can induce senescence 
and stiffening, these results suggest cellular senescence 
and resulting SFRP1 expression would induce further 
senescence and stiffening in neighboring cells, reinforcing 
and spreading the senescent phenotype and potentially 
leading to ocular hypertension and glaucoma. The 
identification of this feedback loop could have important 
ramifications for the design of effective therapeutics. 
Further, as glaucoma has many of the hallmarks of AADs, 
there is substantial potential that these findings may 
provide insight into other AADs.

MATERIALS AND METHODS

Culture of HTM cells and serial passaging

All experiments were performed in compliance with 
the Declaration of Helsinki. Primary HTM cells were 
isolated from eight donor corneoscleral rims (Saving Sight 
Eye Bank, St. Louis, MO) as described previously [143]. 
Cells derived from each donor are given a unique 3 digit 
identifier. For this study, HTM cells HTM517, HTM553, 
HTM554, HTM621, HTM627, HTM631, HTM667, 
and HTM728 were isolated from donors of age 51, 55, 
55, 62, 62, 63, 66, and 72. HTM cells were cultured in 
DMEM/F12 (Hyclone, Logan, UT) with 10% fetal bovine 
serum (Atlanta Biologicals, Lawrenceville, GA) and 
2 mM penicillin, streptomycin, amphotericin-B (Life 
Technologies, Carlsbad, CA). HTM cells were plated on 
glass coverslips at a 25,000 cells/cm2 and allowed to attach 
overnight. In order to isolate the influence of serum, cells 
were washed the following day and incubated in either 
serum-containing media (full media) or serum free media 
for three days before analysis.

Cells were routinely passaged at approximately 
90% confluence. Cultures were continued at 1x106 cells 
per 75 cm2 tissue culture flask. Cells were determined to 
be senescent when they failed to proliferate and exhibited 
a flattened, enlarged morphology. Failure of proliferation 
was determined by cell count (Cellometer Vision; 
Nexcelom, Lawrence, MA) as having equal to or fewer 
viable cells one week after plating of a given passage. 
A similar methodology has previously been successful 
at inducing a senescent phenotype in porcine trabecular 
meshwork cells [144]. This methodology was confirmed 
by the prominent expression of senescence associated 
β-galactosidase, assayed with a commercial kit (5 donors; 
Cell Signaling Technology, Danvers, MA). Cultures 
typically become predominantly senescent at passages 10 
to 15, although 2 sets of donor cells senesced as early as 
passage 7.

Atomic force microscopy analysis

Cell mechanics were determined as described 
previously using the Asylum MFP-3D-Bio AFM [25, 
91]. Cells were rinsed in Hanks’ Balanced Salt Solution 
(Hyclone, Logan, Utah), equilibrated on the AFM stage 
to minimize thermal drift, and indented in contact mode 
with silicon nitride cantilevers with square pyramidal tips 
(PNP-TR-50, Nano World, Switzerland). Prior to each 
experiment, the spring constant and deflection sensitivity 
of the cantilever were determined using thermal tuning 
and constant compliance methods. The elastic modulus (E) 
of each sample was obtained by fitting indentation force 
versus indentation depth to the Hertz model as shown in 
Eq. 1, where F is the force applied by indenter, α is the tip 
half angle (35o), ν is Poisson’s ratio, and δ is indentation 
depth.

 (1)
The Hertz model assumes that the samples were 

linearly elastic, homogenous, and infinitely thick. 
However, in the limit of small deformations, the Hertz 
model can be used for materials (such as cells) which are 
viscoelastic, heterogeneous, and finite [145]. Additionally, 
we assume the cells are incompressible (ν = 0.5), a good 
approximation for biological materials with high water 
content [146-149]. For each sample, approximately 5-7 
cells were indented 5-7 times at 2 µm/s. All indentations 
were centered above the cell nucleus to minimize 
variability.

Immunocytochemical analysis

Cells were washed in HBSS and fixed for 20 
minutes in 4% formaldehyde and 0.25% Triton-X 100 
(Fisher Scientific, Waltham, MA) in phosphate buffered 
saline (PBS) and blocked with 2% bovine serum albumin 
(Fisher), 0.2% gelatin (cold-fish; Sigma-Aldrich), 0.1% 
Tween-20 (Fisher) in PBS for 1 hr. Following blocking, 
cells were stained overnight using rabbit anti-SFRP1 
(Abcam, Cambridge, UK) or rabbit anti-vimentin (Cell 
Signaling Technology, Danvers, MA) with a secondary of 
DyLight 488 conjugated goat anti-rabbit (Fisher). Nuclei 
and filamentous actin were counterstained with DAPI and 
phalloidin conjugated to Alexafluor 594, respectively. 
Cells were rinsed in PBS, mounted, and imaged on a 
Zeiss Axiovert 200 inverted microscope. All acquisition 
settings were kept constant for documentation of the 
same stain type (e.g. all phalloidin imaging utilized the 
same acquisition parameters). A minimum of 8 random 
fields were acquired for each case (approximately 100 
cells). Cell borders were traced using semi-automated 
thresholding algorithm and mean gray scale intensity was 
averaged across the cell covered area across all images. 
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For accurate quantification of the SFRP1 intensity, rolling 
ball background subtraction was employed. All analysis 
was conducted using custom image analysis scripts in 
MATLAB 2008b (Mathworks, Natick, MA). Thresholding 
and background subtraction parameters were manually 
checked for fidelity and applied uniformly across all 
images of a stain.

Quantitative real-time polymerase chain reaction 
(qPCR)

Cells were cultured in 60 mm dishes under SF 
conditions as described above. After 3 days, the cells 
were lysed and mRNA was isolated using an RNeasy kit 
(Qiagen, Venlo, Netherlands) and the relative expression 
of SFRP1 was quantified from the mRNA by qPCR 
using SensiFAST Hi-ROX One-Step mastermix (Bioline, 
Taunton, MA) and Taqman primers (Hs00610060_m1; 
Life Technologies, Carlsbad, CA) using 60 ng of mRNA 
per reaction. Gene expression was normalized to that of 
the endogenous control, 18S rRNA (Hs99999901_s1; Life 
Technologies). Expression of the senescent cultures was 
determined relative to proliferative controls.

Statistics

All experiments were with HTM cells isolated 
from multiple donors. The number of replicates is noted 
for each experimental set. For comparison AFM results 
within an individual donor cells, significance was assessed 
for full and serum free conditions separately using one-
way ANOVA followed by Bonferroni’s post-hoc test. 
Significant differences (p<0.05) from the earliest passage 
are indicated with †. For all other data, fold change 
of senescent cultures was determined in reference to 
control cells (proliferative cells of earlier passage) and 
significance was assessed using Student’s t-test and 
significance denoted by ** = p<0.01, and * = p<0.05. All 
quantification is displayed as mean ± SEM and the number 
of biological replicates is noted.

ACKNOWLEDGEMENTS

The authors would like to thank Lola Davis for 
immunofluorescent image collection. This work was 
funded by grants from the National Institutes of Health 
R01EY019475, R01EY019970 and P30EY12576, and an 
unrestricted grant from Research to Prevent Blindness. 
The authors have no conflicts of interest related to this 
publication.

CONFLICTS OF INTEREST

There is no conflict of interest to declare.

REFERENCES

1. Quigley HA and Broman AT. The number of people with 
glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 
2006; 90:262-267.

2. Quigley HA. Open-angle glaucoma. N Engl J Med. 1993; 
328:1097-1106.

3. Johnson M. ‘What controls aqueous humour outflow 
resistance?’. Exp Eye Res. 2006; 82:545-557.

4. Johnstone MA and Grant WG. Pressure-dependent changes 
in structures of the aqueous outflow system of human and 
monkey eyes. Am J Ophthalmol. 1973; 75:365-383.

5. Maepea O and Bill A. Pressures in the juxtacanalicular 
tissue and Schlemm’s canal in monkeys. Exp Eye Res. 
1992; 54:879-883.

6. Acott TS and Kelley MJ. Extracellular matrix in the 
trabecular meshwork. Exp Eye Res. 2008; 86(4):543-561.

7. Keller KE and Acott TS. The Juxtacanalicular Region of 
Ocular Trabecular Meshwork: A Tissue with a Unique 
Extracellular Matrix and Specialized Function. Journal of 
ocular biology. 2013; 1(1):3.

8. Bhatt K, Gong H and Freddo TF. Freeze-fracture studies 
of interendothelial junctions in the angle of the human eye. 
Invest Ophthalmol Vis Sci. 1995; 36:1379-1389.

9. Gong H, Ruberti J, Overby D, Johnson M and Freddo TF. A 
new view of the human trabecular meshwork using quick-
freeze, deep-etch electron microscopy. Exp Eye Res. 2002; 
75:347-358.

10. Grierson I, Lee WR, Abraham S and Howes RC. 
Associations between the cells of the walls of Schlemm’s 
canal. Albrecht von Graefes Archiv fur klinische und 
experimentelle Ophthalmologie Albrecht von Graefe’s 
archive for clinical and experimental ophthalmology. 1978; 
208:33-47.

11. Inomata H, Bill A and Smelser GK. Aqueous humor 
pathways through the trabecular meshwork and into 
Schlemm‘s canal in the cynomolgus monkey (Macaca irus). 
An electron microscopic study. Am J Ophthalmol. 1972; 
73:760-789.

12. Last JA, Pan T, Ding Y, Reilly CM, Keller K, Acott TS, 
Fautsch MP, Murphy CJ and Russell P. Elastic modulus 
determination of normal and glaucomatous human 
trabecular meshwork. Invest Ophthalmol Vis Sci. 2011; 
52:2147-2152.

13. Hoare MJ, Grierson I, Brotchie D, Pollock N, Cracknell 
K and Clark AF. Cross-linked actin networks (CLANs) in 
the trabecular meshwork of the normal and glaucomatous 
human eye in situ. Invest Ophthalmol Vis Sci. 2009; 
50:1255-1263.

14. Clark AF, Miggans ST, Wilson K, Browder S and 
McCartney MD. Cytoskeletal changes in cultured human 
glaucoma trabecular meshwork cells. Journal of glaucoma. 
1995; 4:183-188.

15. Fuchshofer R and Tamm ER. The role of TGF-beta in the 



Oncotarget15370www.impactjournals.com/oncotarget

pathogenesis of primary open-angle glaucoma. Cell Tissue 
Res. 2012; 347:279-290.

16. Saika S. TGFbeta pathobiology in the eye. Lab Invest. 
2006; 86:106-115.

17. Gottanka J, Johnson DH, Martus P and Lutjen-Drecoll 
E. Severity of optic nerve damage in eyes with POAG is 
correlated with changes in the trabecular meshwork. Journal 
of glaucoma. 1997; 6:123-132.

18. Lutjen-Drecoll E. Morphological changes in glaucomatous 
eyes and the role of TGFbeta2 for the pathogenesis of the 
disease. Exp Eye Res. 2005; 81:1-4.

19. Rohen JW, Lutjen-Drecoll E, Flugel C, Meyer M and 
Grierson I. Ultrastructure of the trabecular meshwork in 
untreated cases of primary open-angle glaucoma (POAG). 
Exp Eye Res. 1993; 56:683-692.

20. Schlunck G, Han H, Wecker T, Kampik D, Meyer-ter-Vehn 
T and Grehn F. Substrate rigidity modulates cell matrix 
interactions and protein expression in human trabecular 
meshwork cells. Invest Ophthalmol Vis Sci. 2008; 49:262-
269.

21. Raghunathan VK, Morgan JT, Dreier B, Reilly CM, 
Thomasy SM, Wood JA, Ly I, Tuyen BC, Hughbanks M, 
Murphy CJ and Russell P. Role of substratum stiffness in 
modulating genes associated with extracellular matrix and 
mechanotransducers YAP and TAZ. Invest Ophthalmol Vis 
Sci. 2013; 54:378-386.

22. Thomasy SM, Morgan JT, Wood JA, Murphy CJ and 
Russell P. Substratum stiffness and latrunculin B modulate 
the gene expression of the mechanotransducers YAP and 
TAZ in human trabecular meshwork cells. Exp Eye Res. 
2013; 113:66-73.

23. Thomasy SM, Wood JA, Kass PH, Murphy CJ and Russell 
P. Substratum stiffness and latrunculin B regulate matrix 
gene and protein expression in human trabecular meshwork 
cells. Invest Ophthalmol Vis Sci. 2012; 53:952-958.

24. Wood JA, McKee CT, Thomasy SM, Fischer ME, Shah 
NM, Murphy CJ and Russell P. Substratum compliance 
regulates human trabecular meshwork cell behaviors and 
response to latrunculin B. Invest Ophthalmol Vis Sci. 2011; 
52:9298-9303.

25. McKee CT, Wood JA, Shah NM, Fischer ME, Reilly 
CM, Murphy CJ and Russell P. The effect of biophysical 
attributes of the ocular trabecular meshwork associated 
with glaucoma on the cell response to therapeutic agents. 
Biomaterials. 2011; 32:2417-2423.

26. Haddadin RI, Oh DJ, Kang MH, Filippopoulos T, Gupta M, 
Hart L, Sage EH and Rhee DJ. SPARC-null mice exhibit 
lower intraocular pressures. Invest Ophthalmol Vis Sci. 
2009; 50:3771-3777.

27. Oh DJ, Kang MH, Ooi YH, Choi KR, Sage EH and 
Rhee DJ. Overexpression of SPARC in human trabecular 
meshwork increases intraocular pressure and alters 
extracellular matrix. Invest Ophthalmol Vis Sci. 2013; 
54:3309-3319.

28. Swaminathan SS, Oh D, Kang M, Shepard AR, Pang IH 
and Rhee DJ. (2014). In vivo study of the role of SPARC in 
TGFb2-mediated ocular hypertension.  The Association for 
Research in Vision and Ophthalmology Annual Meeting. 
(Orlando, Florida.

29. Swaminathan SS, Oh DJ, Kang MH, Ren R, Jin R, Gong H 
and Rhee DJ. Secreted protein acidic and rich in cysteine 
(SPARC)-null mice exhibit more uniform outflow. Invest 
Ophthalmol Vis Sci. 2013; 54:2035-2047.

30. Tamm ER. Myocilin and glaucoma: facts and ideas. Prog 
Retin Eye Res. 2002; 21:395-428.

31. Polansky JR, Fauss DJ, Chen P, Chen H, Lutjen-Drecoll 
E, Johnson D, Kurtz RM, Ma ZD, Bloom E and Nguyen 
TD. Cellular pharmacology and molecular biology of the 
trabecular meshwork inducible glucocorticoid response 
gene product. Ophthalmologica. 1997; 211:126-139.

32. Wang WH, McNatt LG, Pang IH, Millar JC, Hellberg PE, 
Hellberg MH, Steely HT, Rubin JS, Fingert JH, Sheffield 
VC, Stone EM and Clark AF. Increased expression of the 
WNT antagonist sFRP-1 in glaucoma elevates intraocular 
pressure. J Clin Invest. 2008; 118:1056-1064.

33. Mao W, Millar JC, Wang WH, Silverman SM, Liu Y, 
Wordinger RJ, Rubin JS, Pang IH and Clark AF. Existence 
of the canonical Wnt signaling pathway in the human 
trabecular meshwork. Invest Ophthalmol Vis Sci. 2012.

34. Fingert JH, Stone EM, Sheffield VC and Alward WL. 
Myocilin glaucoma. Surv Ophthalmol. 2002; 47:547-561.

35. Campisi J. Aging, cellular senescence, and cancer. Annu 
Rev Physiol. 2013; 75:685-705.

36. Ohtani N and Hara E. Roles and mechanisms of cellular 
senescence in regulation of tissue homeostasis. Cancer Sci. 
2013; 104:525-530.

37. Hayflick L. The Limited in Vitro Lifetime of Human 
Diploid Cell Strains. Exp Cell Res. 1965; 37:614-636.

38. Takahashi A, Ohtani N and Hara E. Irreversibility of 
cellular senescence: dual roles of p16INK4a/Rb-pathway 
in cell cycle control. Cell division. 2007; 2:10.

39. Campisi J and d’Adda di Fagagna F. Cellular senescence: 
when bad things happen to good cells. Nat Rev Mol Cell 
Biol. 2007; 8:729-740.

40. Hayflick L and Moorhead PS. The serial cultivation of 
human diploid cell strains. Exp Cell Res. 1961; 25:585-621.

41. Ben-Porath I and Weinberg RA. When cells get stressed: an 
integrative view of cellular senescence. J Clin Invest. 2004; 
113:8-13.

42. von Zglinicki T, Petrie J and Kirkwood TB. Telomere-
driven replicative senescence is a stress response. Nat 
Biotechnol. 2003; 21:229-230.

43. von Zglinicki T, Serra V, Lorenz M, Saretzki G, Lenzen-
Grossimlighaus R, Gessner R, Risch A and Steinhagen-
Thiessen E. Short telomeres in patients with vascular 
dementia: an indicator of low antioxidative capacity and a 
possible risk factor? Lab Invest. 2000; 80(11):1739-1747.

44. Henle ES, Han Z, Tang N, Rai P, Luo Y and Linn S. 



Oncotarget15371www.impactjournals.com/oncotarget

Sequence-specific DNA cleavage by Fe2+-mediated fenton 
reactions has possible biological implications. J Biol Chem. 
1999; 274:962-971.

45. Serra V, von Zglinicki T, Lorenz M and Saretzki G. 
Extracellular superoxide dismutase is a major antioxidant 
in human fibroblasts and slows telomere shortening. J Biol 
Chem. 2003; 278:6824-6830.

46. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov 
S and Campisi J. Oxygen sensitivity severely limits the 
replicative lifespan of murine fibroblasts. Nat Cell Biol. 
2003; 5:741-747.

47. Chen Q, Fischer A, Reagan JD, Yan LJ and Ames BN. 
Oxidative DNA damage and senescence of human diploid 
fibroblast cells. Proc Natl Acad Sci U S A. 1995; 92:4337-
4341.

48. Jeyapalan JC, Ferreira M, Sedivy JM and Herbig U. 
Accumulation of senescent cells in mitotic tissue of aging 
primates. Mech Ageing Dev. 2007; 128:36-44.

49. Takubo K, Aida J, Izumiyama-Shimomura N, Ishikawa 
N, Sawabe M, Kurabayashi R, Shiraishi H, Arai T and 
Nakamura K. Changes of telomere length with aging. 
Geriatrics & gerontology international. 2010; 10 Suppl 
1:S197-206.

50. Herbig U, Ferreira M, Condel L, Carey D and Sedivy JM. 
Cellular senescence in aging primates. Science. 2006; 
311:1257.

51. Waaijer ME, Parish WE, Strongitharm BH, van Heemst 
D, Slagboom PE, de Craen AJ, Sedivy JM, Westendorp 
RG, Gunn DA and Maier AB. The number of p16INK4a 
positive cells in human skin reflects biological age. Aging 
Cell. 2012; 11:722-725.

52. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley 
C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O and 
et al. A biomarker that identifies senescent human cells in 
culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 
1995; 92:9363-9367.

53. Campisi J and Sedivy J. How does proliferative homeostasis 
change with age? What causes it and how does it contribute 
to aging? J Gerontol A Biol Sci Med Sci. 2009; 64:164-166.

54. Tchkonia T, Zhu Y, van Deursen J, Campisi J and Kirkland 
JL. Cellular senescence and the senescent secretory 
phenotype: therapeutic opportunities. J Clin Invest. 2013; 
123:966-972.

55. Liton PB, Challa P, Stinnett S, Luna C, Epstein DL and 
Gonzalez P. Cellular senescence in the glaucomatous 
outflow pathway. Exp Gerontol. 2005; 40:745-748.

56. Gotschy A, Bauer E, Schrodt C, Lykowsky G, Ye YX, 
Rommel E, Jakob PM, Bauer WR and Herold V. Local 
arterial stiffening assessed by MRI precedes atherosclerotic 
plaque formation. Circ Cardiovasc Imaging. 2013; 6:916-
923.

57. Peloquin J, Huynh J, Williams RM and Reinhart-King CA. 
Indentation measurements of the subendothelial matrix in 
bovine carotid arteries. J Biomech. 2011; 44:815-821.

58. Tracqui P, Broisat A, Toczek J, Mesnier N, Ohayon J and 
Riou L. Mapping elasticity moduli of atherosclerotic plaque 
in situ via atomic force microscopy. J Struct Biol. 2011; 
174:115-123.

59. Fisher RF. The influence of age on some ocular basement 
membranes. Eye (Lond). 1987; 1:184-189.

60. Spraul CW, Lang GE, Grossniklaus HE and Lang GK. 
Histologic and morphometric analysis of the choroid, 
Bruch’s membrane, and retinal pigment epithelium in 
postmortem eyes with age-related macular degeneration 
and histologic examination of surgically excised choroidal 
neovascular membranes. Surv Ophthalmol. 1999; 44 Suppl 
1:S10-32.

61. Zarbin MA. Current concepts in the pathogenesis of age-
related macular degeneration. Arch Ophthalmol. 2004; 
122:598-614.

62. Castle WD and Gow BS. Changes in the microindentation 
properties of aortic intimal surface during cholesterol 
feeding of rabbits. Atherosclerosis. 1983; 47:251-261.

63. Schedin P and Keely PJ. Mammary gland ECM remodeling, 
stiffness, and mechanosignaling in normal development and 
tumor progression. Cold Spring Harb Perspect Biol. 2011; 
3:a003228.

64. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg 
GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo 
M, Boettiger D, Hammer DA and Weaver VM. Tensional 
homeostasis and the malignant phenotype. Cancer Cell. 
2005; 8:241-254.

65. Au FW, Ghai S, Moshonov H, Kahn H, Brennan C, Dua H 
and Crystal P. Diagnostic performance of quantitative shear 
wave elastography in the evaluation of solid breast masses: 
determination of the most discriminatory parameter. AJR 
Am J Roentgenol. 2014; 203:W328-336.

66. Nishio K and Inoue A. Senescence-associated alterations 
of cytoskeleton: extraordinary production of vimentin that 
anchors cytoplasmic p53 in senescent human fibroblasts. 
Histochem Cell Biol. 2005; 123:263-273.

67. Nishio K, Inoue A, Qiao S, Kondo H and Mimura A. 
Senescence and cytoskeleton: overproduction of vimentin 
induces senescent-like morphology in human fibroblasts. 
Histochem Cell Biol. 2001; 116:321-327.

68. Garcia GG and Miller RA. Age-related defects in the 
cytoskeleton signaling pathways of CD4 T cells. Ageing 
Res Rev. 2011; 10:26-34.

69. Sanchez-Perez Y, Chirino YI, Osornio-Vargas AR, 
Herrera LA, Morales-Barcenas R, Lopez-Saavedra A, 
Gonzalez-Ramirez I, Miranda J and Garcia-Cuellar CM. 
Cytoplasmic p21(CIP1/WAF1), ERK1/2 activation, and 
cytoskeletal remodeling are associated with the senescence-
like phenotype after airborne particulate matter (PM10) 
exposure in lung cells. Toxicol Lett. 2014; 225:12-19.

70. Chen QM, Tu VC, Catania J, Burton M, Toussaint O and 
Dilley T. Involvement of Rb family proteins, focal adhesion 
proteins and protein synthesis in senescent morphogenesis 



Oncotarget15372www.impactjournals.com/oncotarget

induced by hydrogen peroxide. J Cell Sci. 2000; 113:4087-
4097.

71. Plodinec M, Loparic M, Suetterlin R, Herrmann H, Aebi 
U and Schoenenberger CA. The nanomechanical properties 
of rat fibroblasts are modulated by interfering with the 
vimentin intermediate filament system. J Struct Biol. 2011; 
174:476-484.

72. Chahine NO, Blanchette C, Thomas CB, Lu J, Haudenschild 
D and Loots GG. Effect of age and cytoskeletal elements 
on the indentation-dependent mechanical properties of 
chondrocytes. PLoS One. 2013; 8:e61651.

73. Lee SM, Nguyen TH, Na K, Cho IJ, Woo DH, Oh JE, 
Lee CJ and Yoon ES. Nanomechanical measurement of 
astrocyte stiffness correlated with cytoskeletal maturation. 
J Biomed Mater Res A. 2015; 103:365-370.

74. Lulevich V, Yang HY, Isseroff RR and Liu GY. Single cell 
mechanics of keratinocyte cells. Ultramicroscopy. 2010; 
110:1435-1442.

75. Ryder MI, Weinreb RN, Alvarado J and Polansky J. 
The cytoskeleton of the cultured human trabecular cell. 
Characterization and drug responses. Invest Ophthalmol 
Vis Sci. 1988; 29:251-260.

76. Iwamoto Y and Tamura M. Immunocytochemical study of 
intermediate filaments in cultured human trabecular cells. 
Invest Ophthalmol Vis Sci. 1988; 29:244-250.

77. Weinreb RN and Ryder MI. In situ localization of 
cytoskeletal elements in the human trabecular meshwork 
and cornea. Invest Ophthalmol Vis Sci. 1990; 31:1839-
1847.

78. Tian B, Geiger B, Epstein DL and Kaufman PL. 
Cytoskeletal involvement in the regulation of aqueous 
humor outflow. Invest Ophthalmol Vis Sci. 2000; 41:619-
623.

79. Clark AF, Brotchie D, Read AT, Hellberg P, English-Wright 
S, Pang IH, Ethier CR and Grierson I. Dexamethasone 
alters F-actin architecture and promotes cross-linked actin 
network formation in human trabecular meshwork tissue. 
Cell Motil Cytoskeleton. 2005; 60:83-95.

80. Clark AF, Wilson K, McCartney MD, Miggans ST, Kunkle 
M and Howe W. Glucocorticoid-induced formation of 
cross-linked actin networks in cultured human trabecular 
meshwork cells. Invest Ophthalmol Vis Sci. 1994; 35:281-
294.

81. Morgan JT, Raghunathan VK, Chang YR, Murphy CJ and 
Russell P. Wnt inhibition induces persistent increases in 
intrinsic stiffness of human trabecular meshwork cells. Exp 
Eye Res. 2015; In Press.

82. Elzi DJ, Song M, Hakala K, Weintraub ST and Shiio Y. 
Wnt Antagonist SFRP1 Functions as a Secreted Mediator 
of Senescence. Mol Cell Biol. 2012; 32:4388-4399.

83. Cristofalo VJ and Sharf BB. Cellular senescence and 
DNA synthesis. Thymidine incorporation as a measure of 
population age in human diploid cells. Exp Cell Res. 1973; 
76:419-427.

84. Yanishevsky R, Mendelsohn ML, Mayall BH and Cristofalo 
VJ. Proliferative capacity and DNA content of aging 
human diploid cells in culture: a cytophotometric and 
autoradiographic analysis. J Cell Physiol. 1974; 84:165-
170.

85. Kumazaki T, Robetorye RS, Robetorye SC and Smith JR. 
Fibronectin expression increases during in vitro cellular 
senescence: correlation with increased cell area. Exp Cell 
Res. 1991; 195:13-19.

86. Angello JC, Pendergrass WR, Norwood TH and Prothero 
J. Proliferative potential of human fibroblasts: an inverse 
dependence on cell size. J Cell Physiol. 1987; 132:125-130.

87. Sherwood SW, Rush D, Ellsworth JL and Schimke RT. 
Defining cellular senescence in IMR-90 cells: a flow 
cytometric analysis. Proc Natl Acad Sci U S A. 1988; 
85:9086-9090.

88. Kulju KS and Lehman JM. Increased p53 protein associated 
with aging in human diploid fibroblasts. Exp Cell Res. 
1995; 217:336-345.

89. Itahana K, Campisi J and Dimri GP. Methods to detect 
biomarkers of cellular senescence: the senescence-
associated beta-galactosidase assay. Methods Mol Biol. 
2007; 371:21-31.

90. de Jesus BB and Blasco MA. Assessing cell and organ 
senescence biomarkers. Circ Res. 2012; 111:97-109.

91. Murphy KC, Morgan JT, Wood JA, Sadeli A, Murphy 
CJ and Russell P. The formation of cortical actin arrays 
in human trabecular meshwork cells in response to 
cytoskeletal disruption. Exp Cell Res. 2014.

92. Raghunathan VK, Morgan JT, Chang YR, Weber D, 
Phinney B, Murphy CJ and Russell P. Transforming 
growth factor beta 3 modifies mechanics and composition 
of extracellular matrix deposited by human trabecular 
meshwork cells. ACS Biomaterials Science & Engineering. 
2015; In Press.

93. Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, 
Chizhik SA and Zhdanov RI. Atomic force microscopy 
probing of cell elasticity. Micron. 2007; 38:824-833.

94. Cross SE, Jin YS, Tondre J, Wong R, Rao J and Gimzewski 
JK. AFM-based analysis of human metastatic cancer cells. 
Nanotechnology. 2008; 19:384003.

95. Li QS, Lee GY, Ong CN and Lim CT. AFM indentation 
study of breast cancer cells. Biochem Biophys Res 
Commun. 2008; 374:609-613.

96. Lekka M, Laidler P, Gil D, Lekki J, Stachura Z and 
Hrynkiewicz AZ. Elasticity of normal and cancerous human 
bladder cells studied by scanning force microscopy. Eur 
Biophys J. 1999; 28:312-316.

97. Cross SE, Jin YS, Rao J and Gimzewski JK. 
Nanomechanical analysis of cells from cancer patients. Nat 
Nanotechnol. 2007; 2:780-783.

98. Xu W, Mezencev R, Kim B, Wang L, McDonald J and 
Sulchek T. Cell stiffness is a biomarker of the metastatic 
potential of ovarian cancer cells. PLoS One. 2012; 



Oncotarget15373www.impactjournals.com/oncotarget

7:e46609.
99. Watanabe T, Kuramochi H, Takahashi A, Imai K, Katsuta 

N, Nakayama T, Fujiki H and Suganuma M. Higher cell 
stiffness indicating lower metastatic potential in B16 
melanoma cell variants and in (-)-epigallocatechin gallate-
treated cells. J Cancer Res Clin Oncol. 2012.

100. Raes M, Geuens G, de Brabander M and Remacle J. 
Microtubules and microfilaments in ageing hamster embryo 
fibroblasts in vitro. Exp Gerontol. 1983; 18:241-254.

101. Wang E and Gundersen D. Increased organization of 
cytoskeleton accompanying the aging of human fibroblasts 
in vitro. Exp Cell Res. 1984; 154:191-202.

102. Van Gansen P, Siebertz B, Capone B and Malherbe L. 
Relationships between cytoplasmic microtubular complex, 
DNA synthesis and cell morphology in mouse embryonic 
fibroblasts (effects of age, serum deprivation, aphidicolin, 
cytochalasin B and colchicine). Biol Cell. 1984; 52:161-
174.

103. Raes M. Involvement of microtubules in modifications 
associated with cellular aging. Mutat Res. 1991; 256:149-
168.

104. Pesen D and Hoh JH. Micromechanical architecture of the 
endothelial cell cortex. Biophys J. 2005; 88:670-679.

105. Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T and 
Sambongi T. Elasticity mapping of living fibroblasts 
by AFM and immunofluorescence observation of the 
cytoskeleton. Ultramicroscopy. 2000; 82:253-258.

106. Lammerding J, Schulze PC, Takahashi T, Kozlov S, 
Sullivan T, Kamm RD, Stewart CL and Lee RT. Lamin 
A/C deficiency causes defective nuclear mechanics and 
mechanotransduction. J Clin Invest. 2004; 113:370-378.

107. Lammerding J, Fong LG, Ji JY, Reue K, Stewart CL, 
Young SG and Lee RT. Lamins A and C but not lamin B1 
regulate nuclear mechanics. J Biol Chem. 2006; 281:25768-
25780.

108. Lee JS, Hale CM, Panorchan P, Khatau SB, George JP, 
Tseng Y, Stewart CL, Hodzic D and Wirtz D. Nuclear 
lamin A/C deficiency induces defects in cell mechanics, 
polarization, and migration. Biophys J. 2007; 93:2542-
2552.

109. Stewart-Hutchinson PJ, Hale CM, Wirtz D and Hodzic 
D. Structural requirements for the assembly of LINC 
complexes and their function in cellular mechanical 
stiffness. Exp Cell Res. 2008; 314:1892-1905.

110. Maniotis AJ, Chen CS and Ingber DE. Demonstration of 
mechanical connections between integrins, cytoskeletal 
filaments, and nucleoplasm that stabilize nuclear structure. 
Proc Natl Acad Sci U S A. 1997; 94:849-854.

111. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer 
J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund 
P, Dutra A, Pak E, Durkin S, et al. Recurrent de novo point 
mutations in lamin A cause Hutchinson-Gilford progeria 
syndrome. Nature. 2003; 423:293-298.

112. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, 

Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich 
A, Le Merrer M and Levy N. Lamin a truncation in 
Hutchinson-Gilford progeria. Science. 2003; 300:2055.

113. Verstraeten VL, Ji JY, Cummings KS, Lee RT and 
Lammerding J. Increased mechanosensitivity and nuclear 
stiffness in Hutchinson-Gilford progeria cells: effects of 
farnesyltransferase inhibitors. Aging Cell. 2008; 7:383-393.

114. Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL and 
Misteli T. Distinct structural and mechanical properties 
of the nuclear lamina in Hutchinson-Gilford progeria 
syndrome. Proc Natl Acad Sci U S A. 2006; 103:10271-
10276.

115. Snow CJ, Dar A, Dutta A, Kehlenbach RH and Paschal 
BM. Defective nuclear import of Tpr in Progeria reflects the 
Ran sensitivity of large cargo transport. J Cell Biol. 2013; 
201:541-557.

116. Kelley JB, Datta S, Snow CJ, Chatterjee M, Ni L, Spencer 
A, Yang CS, Cubenas-Potts C, Matunis MJ and Paschal 
BM. The defective nuclear lamina in Hutchinson-Gilford 
progeria syndrome disrupts the nucleocytoplasmic Ran 
gradient and inhibits nuclear localization of Ubc9. Mol Cell 
Biol. 2011; 31:3378-3395.

117. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, 
Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, 
Mendez M, Varga R and Collins FS. Accumulation of 
mutant lamin A causes progressive changes in nuclear 
architecture in Hutchinson-Gilford progeria syndrome. Proc 
Natl Acad Sci U S A. 2004; 101:8963-8968.

118. Cao K, Capell BC, Erdos MR, Djabali K and Collins FS. 
A lamin A protein isoform overexpressed in Hutchinson-
Gilford progeria syndrome interferes with mitosis in 
progeria and normal cells. Proc Natl Acad Sci U S A. 2007; 
104:4949-4954.

119. Capell BC, Erdos MR, Madigan JP, Fiordalisi JJ, Varga 
R, Conneely KN, Gordon LB, Der CJ, Cox AD and 
Collins FS. Inhibiting farnesylation of progerin prevents 
the characteristic nuclear blebbing of Hutchinson-Gilford 
progeria syndrome. Proc Natl Acad Sci U S A. 2005; 
102:12879-12884.

120. Glynn MW and Glover TW. Incomplete processing 
of mutant lamin A in Hutchinson-Gilford progeria 
leads to nuclear abnormalities, which are reversed by 
farnesyltransferase inhibition. Hum Mol Genet. 2005; 
14:2959-2969.

121. Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, 
Erdos MR, Nabel EG and Collins FS. Progerin and telomere 
dysfunction collaborate to trigger cellular senescence in 
normal human fibroblasts. J Clin Invest. 2011; 121:2833-
2844.

122. Scaffidi P and Misteli T. Lamin A-dependent nuclear 
defects in human aging. Science. 2006; 312:1059-1063.

123. Rodriguez S, Coppede F, Sagelius H and Eriksson M. 
Increased expression of the Hutchinson-Gilford progeria 
syndrome truncated lamin A transcript during cell aging. 



Oncotarget15374www.impactjournals.com/oncotarget

Eur J Hum Genet. 2009; 17:928-937.
124. Satoh W, Matsuyama M, Takemura H, Aizawa S and 

Shimono A. Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/beta-
catenin and the planar cell polarity pathways during early 
trunk formation in mouse. Genesis. 2008; 46:92-103.

125. Kawano Y and Kypta R. Secreted antagonists of the Wnt 
signalling pathway. J Cell Sci. 2003; 116:2627-2634.

126. Yu J and Virshup DM. Updating the Wnt pathways. Biosci 
Rep. 2014.

127. Clevers H. Wnt/beta-catenin signaling in development and 
disease. Cell. 2006; 127:469-480.

128. Freese JL, Pino D and Pleasure SJ. Wnt signaling in 
development and disease. Neurobiol Dis. 2010; 38:148-153.

129. Macdonald BT and He X. Frizzled and LRP5/6 Receptors 
for Wnt/beta-Catenin Signaling. Cold Spring Harb Perspect 
Biol. 2012; 4.

130. Wordinger RJ, Sharma T and Clark AF. The Role of TGF-
beta2 and Bone Morphogenetic Proteins in the Trabecular 
Meshwork and Glaucoma. J Ocul Pharmacol Ther. 2014; 
30:154-162.

131. Rhee DJ, Haddadin RI, Kang MH and Oh DJ. Matricellular 
proteins in the trabecular meshwork. Exp Eye Res. 2009; 
88:694-703.

132. Tamm ER and Fuchshofer R. What increases outflow 
resistance in primary open-angle glaucoma? Surv 
Ophthalmol. 2007; 52 Suppl 2:S101-104.

133. Fuchshofer R and Tamm ER. Modulation of extracellular 
matrix turnover in the trabecular meshwork. Exp Eye Res. 
2009; 88:683-688.

134. Sacca SC and Izzotti A. Focus on molecular events in the 
anterior chamber leading to glaucoma. Cell Mol Life Sci. 
2013.

135. Ghanem AA, Arafa LF and El-Baz A. Oxidative stress 
markers in patients with primary open-angle glaucoma. 
Curr Eye Res. 2010; 35:295-301.

136. Izzotti A, Sacca SC, Longobardi M and Cartiglia C. 
Mitochondrial damage in the trabecular meshwork of 
patients with glaucoma. Arch Ophthalmol. 2010; 128:724-
730.

137. Sacca SC and Izzotti A. Oxidative stress and glaucoma: 
injury in the anterior segment of the eye. Prog Brain Res. 
2008; 173:385-407.

138. Sacca SC, Izzotti A, Rossi P and Traverso C. Glaucomatous 
outflow pathway and oxidative stress. Exp Eye Res. 2007; 
84:389-399.

139. Sacca SC, Pascotto A, Camicione P, Capris P and Izzotti A. 
Oxidative DNA damage in the human trabecular meshwork: 
clinical correlation in patients with primary open-angle 
glaucoma. Arch Ophthalmol. 2005; 123:458-463.

140. Alvarado J, Murphy C and Juster R. Trabecular 
meshwork cellularity in primary open-angle glaucoma and 
nonglaucomatous normals. Ophthalmology. 1984; 91:564-
579.

141. Alvarado J, Murphy C, Polansky J and Juster R. Age-
related changes in trabecular meshwork cellularity. Invest 
Ophthalmol Vis Sci. 1981; 21:714-727.

142. Grierson I and Howes RC. Age-related depletion of the cell 
population in the human trabecular meshwork. Eye. 1987; 
1:204-210.

143. Morgan JT, Wood JA, Walker NJ, Raghunathan VK, 
Borjesson DL, Murphy CJ and Russell P. Human 
Trabecular Meshwork Cells Exhibit Several Characteristics 
of, but Are Distinct from, Adipose-Derived Mesenchymal 
Stem Cells. J Ocul Pharmacol Ther. 2014; 30:254-266.

144. Yamazaki Y, Matsunaga H, Nishikawa M, Ando A, Kaneko 
S, Okuda K, Wada M, Ito S and Matsumura M. Senescence 
in cultured trabecular meshwork cells. Br J Ophthalmol. 
2007; 91:808-811.

145. Mahaffy RE, Shih CK, MacKintosh FC and Kas J. Scanning 
probe-based frequency-dependent microrheology of 
polymer gels and biological cells. Phys Rev Lett. 2000; 
85:880-883.

146. Dimitriadis EK, Horkay F, Maresca J, Kachar B and 
Chadwick RS. Determination of elastic moduli of thin 
layers of soft material using the atomic force microscope. 
Biophys J. 2002; 82:2798-2810.

147. Ahearne M, Yang Y, El Haj AJ, Then KY and Liu KK. 
Characterizing the viscoelastic properties of thin hydrogel-
based constructs for tissue engineering applications. Journal 
of the Royal Society, Interface / the Royal Society. 2005; 
2:455-463.

148. Vinckier A and Semenza G. Measuring elasticity of 
biological materials by atomic force microscopy. FEBS 
Lett. 1998; 430:12-16.

149. Anseth KS, Bowman CN and Brannon-Peppas L. 
Mechanical properties of hydrogels and their experimental 
determination. Biomaterials. 1996; 17:1647-1657.


