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AbstrAct
Polycomb repressive complex 2 (PRC2), which is responsible for the 

trimethylation of H3K27 (H3K27me3), plays a part in tumorigenesis, development 
and/or maintenance of adult tissue specificity. The pivotal role of PRC2 in cancer 
makes it a therapeutic target for epigenetic cancer therapy. However, natural 
compounds targeting the enhancer of zeste homolog 2 (EZH2) - embryonic ectoderm 
development (EED) interaction to disable PRC2 complex are scarcely reported. Here, 
we reported the screening and identification of natural compounds which could disrupt 
the EZH2-EED interaction. One of these compounds, wedelolactone, binds to EED with 
a high affinity (KD = 2.82 μM), blocks the EZH2-EED interaction in vitro, induces the 
degradation of PRC2 core components and modulates the expression of detected PRC2 
downstream targets and cancer-related genes. Furthermore, some PRC2-dependent 
cancer cells undergone growth arrest upon treatment with wedelolactone. Thus, 
wedelolactone and its derivatives which target the EZH2-EED interaction could be 
candidates for the treatment of PRC2-dependent cancer.

IntroductIon

Cancer is a major public health problem in the 
world. In the United States, estimated new cancer cases 
and cancer deaths in 2014 are 1,665,540 and 585,720, 
respectively [1]. Recurrent somatic mutations in 
numerous epigenetic regulators in various cancers draw 
much attention and highlight the fact that we have now 
entered an era of epigenetic cancer therapies [2, 3]. The 
epigenomic landscape features different machinery in 
transcriptionally active versus silent regions [4]. Polycomb 
group (PcG) proteins, conserved chromatin proteins, are 
widely deployed in higher eukaryotes to implement gene 
silencing [5].

Polycomb group (PcG) proteins found in 

Drosophila melanogaster are responsible for homeotic 
gene (Hox) silencing [6]. Further study discovered 
a variety of their functions such as participating in 
mammalian X-chromosome inactivation and imprinting 
[7, 8], maintenance of pluripotency and self-renewal in 
embryonic stem cells (ESCs) [9], epigenetic cell cycle 
control [10], cell fate decisions and developmental 
controls. PcG proteins mainly function by forming two 
evolutionarily conserved multimeric protein complexes, 
Polycomb repressive complexes 1 (PRC1) and Polycomb 
repressive complexes 2 (PRC2). They are involved 
in monoubiquitylation of lysine 119 of histone H2A 
(H2AK119ub) and di- and tri-methylation of lysine 27 
of histone H3 (H3K27me3), respectively [11]. PRC2 
contains three essential subunits: a catalytic subunit with 
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methyltransferase activity, enhancer of zeste homolog 
2 (EZH2) and two noncatalytic subunits, suppressor of 
zeste 12 (SUZ12) and embryonic ectoderm development 
(EED). Much attention is paid to their association with 
sorts of cancers like colon cancer, breast cancer, leukemia, 
hepatocellular carcinoma and tongue cancer [12-15]. 

Some groups target PRC2 through inhibiting its core 
component EZH2. Lots of EZH2 inhibitors are developed 
including 3-deazaneplanocin A (DZNep), EPZ005687 and 
GSK126 [16-18]. Others target PRC2 by disrupting the 
interaction between EED and EZH2. Interaction between 
EED and EZH2, which is essential to PRC2’s HMTase 
activity as well as its function [19], serves as an interesting 
target for drug development. The N-terminal sequence of 
EZH2 (residues 39–68) mediates its association with EED, 
among which F42, N45, L56 and V68 are indispensable 
[20]. An stabilized a-helix of EZH2 (SAH-EZH2) peptide 
derived from this region (contains residues 40–68) was 
reported to selectively inhibit H3 Lys27 trimethylation 
by disrupting the EZH2–EED complex [21]. However, 
natural compounds targeting the EZH2-EED interaction 
are scarcely reported.

In this study, we used the Biacore 3000 and 
competitive co-immunoprecipitation (co-IP) assay to 
screen for small-molecule inhibitors which could disturb 
the binding of EZH2 to EED from the natural products 
library. Two compounds, epigallocatechingallate (EGCG) 
and wedelolactone, were identified and further studied. 
Interestingly, EGCG has been reported by Subhasree Roy 
Choudhury’s group with a function to negatively regulate 
PRC2 [22]. In addition to disrupt PRC2, we found that 
wedelolactone also induce the degradation of PRC2 
core components and modulate the expression of PRC2 
targets and cancer-related genes. Moreover, we observed 
that wedelolactone could inhibit the proliferation and 
migration, induce cell cycle arrest and apoptosis of PRC2 
dependent cancer cells. Our results provide evidences 
that EZH2-EED interaction is a target for the treatment of 
PRC2-dependent cancer and wedelolactone is a candidate 
for modifications in the future. 

results

screen for natural compounds disrupting the 
eed-eZH2 interaction

EED was reported to bind the N-terminal sequence 
of EZH2 (residues 39-68) [20], so natural compounds 
which could bind to EED might disrupts the EZH2-EED 
interaction. Then we used the SPR platform Biacore 3000 
to screen for natural compounds that bind to EED. Fresh 
recombinant EED was covalently immobilized on a CM5 
sensor chip as ligand before detection. Natural compounds 
were diluted in PBS buffer and injected as analyte. The 

response unit (RU) of each compound was collected and 
was showed in Figure 1A. 

Then, we performed competitive co-
immunoprecipitation (co-IP) experiments to identify 
EED-EZH2 disruptors among natural compounds with 
RU higher than 50. In these disruptors, we found that 1E7 
(EGCG) and 2D7 (wedelolactone) with the concentration 
of 5 µM could disrupt the interaction between EZH2 and 
EED significantly (Figure 1B). In order to exclude the 
potential influence of other proteins in the process, we 
translated Myc-EZH2 and Myc-His-EED in vitro using 
the reticulocyte lysate system and performed competitive 
co-IP assays to investigate the effects of 2D7 on the 
interaction between EZH2 and EED. The results showed 
that 2D7 blocked the binding of EZH2 to EED efficiently 
(Figure 1C), suggesting a direct inhibition of 2D7 on the 
association of these two proteins.

As dismantling the PRC2 complex could result in 
the decrease of protein stability and further depletion of 
PcG members [21], we examined whether wedelolactone 
treatment altered the levels of EZH2 and EED. As shown 
in Figure 1D, wedelolactone treatment reduced the 
protein levels of these two core PRC2 components in 
human hepatocellular carcinoma cell lines HepG2, human 
monocytic leukemia cells THP1 and human myeloid 
leukemia cell lines K562.

sPr detection of eGcG and wedelolactone 
binding to eed

Drug candidate is usually expected to bind its target 
with a high affinity [23]. Here SPR platform Biacore 
3000 was used to monitor the direct interaction between 
wedelolactone/EGCG and EED. Fresh recombinant 
EED proteins were covalently immobilized on a dextran 
sensor chip as ligand before detection. Wedelolactone/
EGCG was serially diluted in a vehicle of 1% DMSO in 
PBS buffer and injected as analyte to flow liquid phase. 
The sensorgrams had shown direct binding between 
wedelolactone (Figure 2A)/EGCG (Figure 2B) and EED 
molecule in a dose-dependent manner. Evaluated by BIA 
evaluation software, the equilibrium dissociation constant 
(KD) value of wedelolactone (2D7)/EGCG (1E7) to EED 
is 2.82 μM and 15.1 μM, respectively (Table 2).

Wedelolactone modulates Prc2 targets and 
tumor-related genes expression in Prc2-
dependent cancer cells

PRC2 has been reported to participate in silencing 
a myriad of target genes which are important in 
tumorigenesis and cancer progression. Several PRC2 
target genes harbor tumor suppression function. For 
example, the DOC-2/DAB2 interactive protein(DAB2IP), 
a growth inhibitor, is involved in the tumor necrosis factor-
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mediated JNK signaling pathway leading to cell apoptosis 
[24]; Beta-2 adrenergic receptor(ADRB2) activation in 
xenograft mouse models inhibits prostate cancer tumor 
growth in vivo [25]; Loss of CDKN2A contributes to 
the loss of control over cell cycle, the bypass of critical 
senescent signals and is associated with progression to 
malignant disease [26] and GADD45A (growth arrest and 
DNA-damage-inducible, alpha) involves in cell cycle and 
apoptosis [27]. 

Dysregulation of EZH2 alters the expression of 
many cancer related genes [28, 29]. For instance, targeting 
EZH2 could deplete HOXA9 and Meis1 levels in THP1 
cells and disrupt the biological synergy between the two 
genes in inducing myeloid leukemia [30]. Moreover, 
sensitivity of cancer cells to the EZH2 inhibitors is partly 

dependent on PTEN and p53 [31, 32].
To explore the regulation of wedelolactone treatment 

on the expression of these PRC2 target genes and cancer 
related genes, HepG2, THP1 and K562 cells were treated 
with 50 μM wedelolactone for 24 h. Total RNA were 
extracted and the mRNA levels of the above genes were 
analyzed by quantitative real-time PCR. As shown in 
Figure 3A, wedelolactone treatment significantly induces 
the expression of GADD45A, DAB2IP, ADRB2, CDKN2A 
and p53 while represses Meis1 expression in HepG2 
cells. As shown in Figure 3B, wedelolactone significantly 
repressed HOXA9 and Meis1 expression while enhances 
the expression of GADD45A and p53 in THP1 cells. At 
the meantime, the expression of GADD45A, PTEN and 
p53 were activated after treatment with wedelolactone in 

Figure 1: screen for natural compounds disrupting the eed-eZH2 interaction. (A) Representative sensorgrams were obtained 
from injections of natural compounds over the CM5-EED surface. 1E7 and 2D7 refers to epigallocatechingallate and wedelolactone, 
respectively. (b) Competitive co-immunoprecipitation assay was performed with the indicated natural compounds with the concentration 
of 5µM or DMSO. 2C7 refers to tetrandrine as a negative control. The protein levels of Myc-EZH2 and Myc-His-EED were evaluated by 
WB with anti-Myc antibody. (c) Myc-EZH2 and Myc-His-EED were translated with the reticulocyte lysate system in vitro followed by 
incubation with wedelolactone or DMSO to perform competitive co-IP analysis. (d) Wedelolactone depletes PcG proteins. HepG2, THP1 
and K562 cells were incubated with the indicated concentrations of wedelolacone for 24 h. The levels of EZH2, EED and H3K27me3 were 
then analyzed with specific antibodies as indicated.



Oncotarget13052www.impactjournals.com/oncotarget

Figure 3: Wedelolactone modulates Prc2 target and tumor-related genes expression in Prc2-dependent cancer cells. 
HepG2 cells (A), THP1 cells (b) and K562 cells (c) were treated with 50 μM wedelolactone for 24 h. Total RNA was isolated and qRT-PCR 
was performed with specific primers for the indicated target genes. Quantification results were shown as folds of control and expressed as 
the mean ± SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001.

Figure 2: Kinetics analysis of wedelolactone and eGcG binding to eed based on sPr platform biacore 3000. 
Representative Sensorgrams were obtained from injections of wedelolactone (A) or EGCG (b) at indicated concentrations.
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leukemia cell lines K562 (Figure 3C). Together, our results 
indicated that PRC2 targets and tumor-related genes which 
were involved in apoptosis and cell cycle arrest were 
modulated by wedelolactone.

Wedelolactone inhibits Prc2-dependent cancer 
cells

Since human leukemia K562 cells, THP1 monocytes 
and hepatocellular carcinoma HepG2 cells are partially 
PRC2-dependent [21, 33, 34], we studied the anti-cancer 
effect of wedelolactone on these cells. 

We first examined the effects of wedelolactone 
on cell proliferation. As shown in Figure 4A, 50 μM of 
wedelolactone treatment repressed the proliferation of 
HepG2, THP1 and K562 cells. Since many drugs have 
been shown to inhibit cancer cells through induction of 
apoptosis, we then detected the apoptotic ratio in cells 
with or without wedelolactone treatment by Annexin 
V-FITC/PI double staining assay. As shown in Figure 
4B, the presence of wedelolactone significantly increased 
apoptosis in HepG2, THP1 and K562 cells.

It is well-known that most anticancer agents, such 
as vinblastine and paclitaxel, have been documented 
to arrest cell cycle [35]. So we examined the effect of 
wedelolatctone on cell cycle distribution of HepG2, 
THP1 and K562 cells. Compared with control, there 
was an accumulation of cell population in S and G2/M 
phase after wedelolactone exposure in HepG2 cells and 
the proportion of K562 cells in S phase were increased 
after wedelolactone exposure (Figure 4C). However, it 
exhibited no significant effect on THP1 cells. 

Recently, several studies about EZH2 regulating cell 
invasion in various types of cancer showed that one of the 
major EZH2 PRC2-dependent function is promoting cell 

invasion [36-38]. Additionally, the migration of K562 and 
THP1 cells are scarcely reported. So we interrogated the 
effect of wedelolactone on the migration of HepG2 cells. 

To determine whether wedelolactone inhibits 
cell migration in HepG2 cells, we performed Transwell 
migration assays. As shown in Figure 4D, the presence 
of wedelolactone significantly suppressed cell migration 
in HepG2 cells. Together, our data suggested that 
wedelolactone inhibited proliferation, induced apoptosis 
and cell cycle arrest and suppressed cell migration of 
PRC2-depedent cancer cells.

dIscussIon

Wedelolactone is an essential active compound 
of Eclipta prostrate. It has been reported to possess 
various biological functions, including the inhibition 
of IKK kinase, K+-ATPase activity, hepatitis virus C 
RNA-polymerase, phospholipase A2 , 5-lipoxygenase 
and DNA topoisomerase IIα [39]. Also, it exhibits anti-
cancer function in some cancers, such as prostate cancer, 
breast cancer and so on [39]. The growth inhibition effects 
of wedelolactone on tumor cells were believed to be 
accomplished through its inhibition of IKK, the androgen 
receptor [40], or topoisomerase II. But its function on the 
EED-EZH2 interaction and the PRC2 activity is unknown.

In the present study, we present a new method to 
identify inhibitors targeting PRC2. Firstly, Biacore 3000 
was used to screen for natural compouds which could 
bind to EED. Then the competitive co-IP experiment was 
performed to further identify PRC2 disruptors. By this 
way, we identified that EGCG and wedelolactone could 
bind to EED and target the EZH2-EED interaction. 

Tumor suppressors refer to a large group of 
molecules that can prevent cancer through controlling cell 
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Figure 4: Wedelolactone inhibits Prc2-dependent cancer cells. K562 cells, HepG2 cells and THP1 cells were treated for 48 h 
with the indicated concentrations of wedelolactone. The cells were then harvested. The viability was assayed by MTT assay (A) and the 
apoptosis was assayed by AnnexinV-FITC/PI double staining assay (b). (c) Cells were treated with 50 μM wedelolactone for 24 h, and the 
cell cycle distribution was subsequently determined via flow cytometric analysis. (d) wedelolactone regulates migration of HepG2 cells. 
Wedelolactone decreased the number of migration cells compared with control cells (original magnification ×200). Quantification results 
were shown as folds of control and expressed as the mean ± SD (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001.
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division, promoting apoptosis, helping DNA damage repair 
and suppressing metastasis [41]. So reactivating tumor 
suppressors which are silenced by PRC2 will contribute 
to the inhibition of carcinoma cells proliferation. Indeed, 
wedelolactone could activate PRC2 downstream tumor 
suppression genes such as DAB2IP, ADRB2, CDKN2A 
and GADD45A (Figure 3A), thus it serves as a mechanism 
for its inhibition on PRC2-dependent cancer cells. In fact, 
not all the target genes can be influenced by wedelolactone 
(data not shown). 

In conclusion, we identified that wedelolactone 
could bind to EED and target PRC2, thereby modulate 
its targets and cancer-related genes. As a consequence, 
wedelolactone exhibits anti-cancer effects by inducing 
proliferation and migration inhibition, apoptosis and 
cell cycle arrest of PRC2-dependent cancer cells. So it 
could serve as a candidate for the treatment of PRC2-
dependent cancer. Also, our work verified the possibility 
to the development of anti-cancer agents by disrupting the 
association of core PRC2 components EZH2 and EED. 

 MAterIAls And MetHods

Plasmids

The EZH2 gene was amplified by PCR and 
subcloned into pcDNA3.0-Myc (Invitrogen). The 
EED gene was amplified by PCR and subcloned into 
pcDNA4.0-Myc/His (Invitrogen) and pGEX-4T-1 plasmid 
(GE Healthcare) respectively.

Abs and reagents

The primary antibodies used in this study were 
as follows: anti-Myc (sc-40), anti-EED (sc-28701) and 
anti-β-actin (sc-47778) were purchased from Santa 
Cruz Biotechnology. Anti-EZH2 (#3147S) was from 
Cell Signaling Technology, anti-His (#TA-02) was 
from ZSGB-BIO and anti-trimethyl histone H3 (Lys27) 
antibody (ABE44-S) was from Millipore. Wedelolactone 
was purchased from National Institutes for Food and Drug 
Control (NIFDC, China). Dimethylsulfoxide (DMSO) 
was obtained from Sigma-aldrich (USA). Protein G 
beads and GST beads were purchased from Santa Cruz 
Biotechnology and GE Healthcare, respectively. 

cell culture

HepG2, K562 and 293T cells were cultured 
in DMEM (Invitrogen) supplemented with 10% 
FBS (Hyclone), 100 U/ml penicillin and 100 μg/ml 
streptomycin. THP1 cells were cultured in RPMI-1640 
supplemented with 10% FBS, 100 U/ml penicillin, 100 

μg/ml streptomycin and 2 mM L-Glutamine. All cell lines 
were maintained at 37°C under a 5% CO2 atmosphere. 
Transfection of cells was performed by using Entranster-H 
(Engreen, China) according to the manufacturer’s 
instructions. 

binding detection based on sPr platform

The interaction between compound and protein was 
detected by surface plasmon resonance platform Biacore 
3000 (GE Healthcare). Fresh EED protein was diluted to 
100 μg/ml in 10 mM acetate buffer (pH 5.0), and then 
immobilized as ligand in the NHS/EDC pre-activated 
CM5 sensor chip, following blocking by ethanolamine. 
Final amount of protein immobilization reached 10000 
RU. The compound stock was diluted in a vehicle of 
1% DMSO (v/v) in phosphate buffered saline (PBS). 
The dilutions were injected as analyte flow liquid phase 
with PBS containing 1% DMSO (v/v) as running buffer 
at a constant flow rate of 30 μl/min. Ninety seconds’ 
association time was set, followed by 180 s dissociation 
time. All buffers in the experiment were subjected to be 
filtered by 0.22 μm filters and degassed by ultrasonic. The 
data were collected by Biacore Control Software (version 
4.1.1). Kinetics and affinity parameters were evaluated in 
Langmuir model (1:1) by using BIA evaluation software 
(version 4.1).

competitive co-immunoprecipitation assay

Cell lysates from 293T cells transfected with Myc-
EZH2 and Myc-His-EED were incubated with anti-His 
antibody, protein G beads and natural compound with 
corresponding concentration or DMSO overnight at 4ºC. 
The beads were then washed three times and boiled to be 
used for WB.

In vitro translation assays

Myc-EZH2 and Myc-His-EED were translated in 
vitro with TNT T7 coupled reticulocyte lysate system 
(Promega, #L4611) according to the manufacturer’s 
instructions. The in vitro translated products were used to 
perform competitive co-immunoprecipitation assay.

Western blotting

Cells were lysed and prepared with 1 X SDS 
Reducing sample buffer (CST, #7722) according to the 
manufacturer’s instructions. Appropriate volume of 
sample was loaded onto the SDS-polyacrylamide gels 
and transferred to a PVDF membrane. After blocking, 
the membrane was incubated with the primary antibody 
overnight at 4ºC followed by incubation with a horseradish 
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peroxidase-conjugated secondary antibody for 2 h at 
room temperature. Bands were detected using enhanced 
chemiluminescence (Applygen, China).

rnA extraction and quantitative reverse 
transcriptase polymerase chain reaction (qrt-
Pcr)

Total RNA was isolated from the cells using TRNzol 
(TIANGEN, China). cDNA was synthesized using the 
RevertAid First Strand cDNA Synthesis kit (Thermo 
Scientific, #K1622). Quantitative real-time PCR (qRT-
PCR) was conducted using SYBR premix Ex Taq II 
(Takara, China). Thermal cycling was performed using an 
ABI 7300 real-time PCR machine (Applied Biosystems) 
as follows: 95°C for 30 s followed by 40 cycles of 
amplification for 5 s at 95°C, 31 s at 60°C. The primer 
sequences used for PCR are listed in Table 1.

Measurement of cell viability

Cell viability was determined by MTT Cell 
Proliferation and Cytotoxicity Detection Kit (KGA312, 
KeyGEN BioTECH, China). A total of 5×103 cells were 
seeded in 96 well plates. At 48 h post-treatment with 
different concentrations of wedelolactone, 1×MTT was 
added to the wells and incubated for additional 4 h at 
37 °C. The optical density of the dissolved material was 
measured at 490 nm.

cell cycle analysis

The effect of wedelolactone on cell cycle 
distribution was determined by flow cytometric analysis. 
The cells were treated with 50 μM wedelolactone for 24 
h. Appropriate controls were also set up. After treatment, 
1×105 floating and adherent cells were collected, washed 
with PBS and fixed with 70% ethanol. Staining for DNA 
content was performed using Cell Cycle Detection Kit 
(KGA512, KeyGEN BioTECH, China). Populations 
in G0/G1, S and G2/M phases were measured by BD 
FACSCalibur Flow Cytometry System with CellQuest Pro 
software (BD Bioscience). Data were analyzed using the 
ModFit 3.0 Software. 

Detection of apoptotic cells by flow cytometry

Cells were plated in six-well plates at a density of 
1x105 cells/ml and incubated overnight. Wedelolactone or 
DMSO was then added into each well and incubated for 
48 h. Cells were collected and washed with PBS, followed 
by resuspension in 300 μl binding buffer at a concentration 
of 5x105 cells/ml. Mixed with Annexin V-FITC and 
propidium iodide (PI) according to the manufacturer’s 

instructions. The mixed solution was incubated in the dark 
at room temperature for 15 min. Cell apoptosis analysis 
was performed using the BD FACSAriaII Flow Cytometry 
System (BD, USA) within 1 h. Data were analyzed using 
the FACSDiva Version 6.1 Software. 

cell migration assay

HepG2 cells were treated with 25 µm wedelolactone 
or DMSO for 12h then the cells were trypsinized and 
replated onto the upper chamber of a Transwell filter 
with 8 µm pores (Costar) at 2x105 cells/well in serum-
free medium. Medium supplemented with 10% FBS 
was placed in the bottom well, and the cells were then 
incubated for 24 h at 37°C in a humidified 5% CO2 
atmosphere. After the incubation, the chambers were 
removed, and migration cells on the bottom side of the 
membrane were fixed with methanol for 15 min and 
stained with gentian violet for 10 min. Each experiment 
was performed in triplicate, and the number of cells in five 
random fields on the underside of the filter was counted 
and averaged. The results were expressed as the migrated 
cell number.

statistical analysis

The data are presented as mean ± stand deviation 
(S.D.). Parametrical data were compared using Student’s t 
test. One-way ANOVA analysis was used to determine the 
difference between independent groups. The differences 
between the variants were considered to be statistically 
significant if P < 0.05.
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