
Oncotarget19405www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 23

Rejuvenating immunity: “anti-aging drug today” eight years 
later

Mikhail V. Blagosklonny1

1 Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA

Correspondence to: Mikhail V. Blagosklonny, email: mikhail.blagosklonny@roswellpark.org
Keywords: mTOR, TOR, gerosuppression, rapalogs, lifespan, longevity, diseases
Received: February 16, 2015 Accepted: March 28, 2015 Published: March 31, 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 

ABSTRACT
The 2014 year ended with celebration: Everolimus, a rapamycin analog, was 

shown to improve immunity in old humans, heralding ‘a turning point’ in research 
and new era in human quest for immortality. Yet, this turning point was predicted a 
decade ago. But what will cause human death, when aging will be abolished? 

“Defining ageing as a disease and then trying to cure 
it is unscientific and misguided.” [1]

INTRODUCTION

Until recently, aging was believed to be a functional 
decline caused by accumulation of random molecular 
damage, which cannot be prevented. 

Breaking this dogma, hyperfunction theory 
described aging as a continuation of growth, driven by 
signaling pathways such as TOR (Target of Rapamycin). 
TOR-centric model predicts that rapamycin (and other 
rapalogs) can be used in humans to treat aging and prevent 
diseases [2]. In proper doses and schedules, rapamycin and 
other rapalogs not only can but also must extend healthy 
life-span in humans [2, 3]. 

This theory was ridiculed by opponents and 
anonymous peer-reviewers. Yet, it was predicted in 2008 
that “five years from now, current opponents will take the 
TOR-centric model for granted” [4]. And this prediction 
has been fulfilled. 

RAPAMYCIN TODAY

The study that Evirolimus (RAD001), a rapamycin 
analog, improves immunity in aging humans [5] made 
sensational headlines:

“Novartis Working on ‘Fountain of Youth’ Drug”. 
“Researchers could be closing in on a “fountain of youth” 
drug that can delay the effects of aging and improve the 
health of older adults”. 

As summarized by Nir Barzilai, “it sets the stage 
for using this drug to target aging, to improve everything 

about aging. That’s really going to be, for us, a turning 
point in research, and we are very excited.” http://www.
medicaldaily.com/anti-aging-drug-works-first-steps-
toward-boosting-immune-system-delaying-aging-315592

RAPAMYCIN YESTERDAY

In 2006, it was concluded that “ Sirolimus or 
Rapamune, which is known in the basic science as 
rapamycin, is already approved for clinical use, available 
and can be used immediately. In addition to cancer, 
cardiovascular diseases, autoimmunity, and metabolic 
disorders, all diseases of aging from osteoporosis to 
Alzheimer’s may be treated with rapamycin. Finally, 
rapamycin will be most useful as an anti-aging drug to 
slow down senescence and to prevent diseases.” [2] 

And further, “Rapamycin is safe enough to be 
administrated daily to transplant patients for several years. 
Actually, rapamycin is so safe that its pharmacokinetics 
have been studied in healthy volunteers”. “Figuratively, 
it [rapamycin] transforms immunity from aged-type to 
infant-type”. In simple words, rapamycin rejuvenates the 
immunity. Thus, “rapamycin eliminates hyper-immunity 
rather than suppresses immunity” [2].

 “Anti-aging drug today” [3] was actually published 
yesterday: “Rapamycin is a non-toxic, well-tolerated 
drug that is suitable for everyday oral administration. 
Preclinical and clinical data indicate that rapamycin is 
a promising drug for age-related diseases and seems to 
have anti-tumor, bone-sparing and calorie-restriction-
mimicking ‘side-effects’.” [3]. As recently reviewed, 
in proper doses, lifespan-extending agents including 
rapamycin posses certain immunostimulatory activities 
[6].
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By 2010, many predictions of the TOR-centric 
model have been tested and confirmed [7]. In 2010, 
one prediction remained: “rapamycin will become the 
cornerstone of anti-aging therapy in our life time.” [7]. 
Until December 2014, all gerontological papers on 
rapamycin stated that current rapalogs are just proof of 
principle and will not be used due to side effects. Even 
further, use of anti-aging drugs in our lifetime was called 
science fiction. For unclear reasons, scientists emphasized 
that rapamacin and other current rapalogs will not be used 
in aging humans due to imaginary side effects. 

TRIUMPH OF MTOR-CENTRIC MODEL

The hyperfunctional theory predicts calorie-
restriction-mimicking ‘side-effects’ of rapalogs. For 
example, rapamycin increases lipolysis, thus imitating 
fasting [3]. And in some conditions, rapamycin may cause 
“starvation diabetes”, a benevolent insulin-resistance and 
glucose intolerance. “Starvation or Hunger Diabetes” 
was well known during famine and prolonged fasting 
[8]. Rapamycin, as calorie-restriction-mimetic, can 
cause starvation-like symptoms in certain conditions. 
This benevolent rapamycin-induced state prevents 
complications of true type II diabetes [9, 10]. In certain 
strains of mice, rapamycin causes some symptoms of 
starvation-like insulin-resistance, erroneously viewed 
as real diabetes [11]. These metabolic alterations are 
reversible [12, 13]. MTOR-centric model predicts that 
this reversible insulin resistance is benevolent and is 
associated with increased longevity because longevity is 
promoted not via increased insulin sensitivity, but instead 
via decreased mTOR pathway signaling [9]. 

Initially, mTOR-centic model was ignored. As 
announced by Lamming et al, “A growing list of side 
effects make it doubtful that rapamycin would ultimately 
be beneficial in humans.” [14] Now however the same 
opponent re-invented mTOR-centric model (without 
appropriate reference), suggesting that “longevity is 
promoted not via increased insulin sensitivity, but instead 
via decreased PI3K/Akt/mTOR pathway signaling” [15]. 
As it was predicted in 2008 [4], opponents indeed take 
mTOR-centric model for granted. This is the ultimate 
triumph of the TOR-centric (hyperfunction) theory of 
aging.

TOR-CENTRIC MODEL

Evolutionary theory predicts that growth-promoting 
pathways are antagonistically pleiotropic [16]. In 
other words, growth-promoting signaling is essential 
during development and may be harmful later in life. In 
particular, the nutrient-sensing mTOR pathway is essential 
for growth and development. In adults, its excessive 
activity leads to pathology (aging) [17-20]. Aging is 
an unintended, harmful continuation of developmental 

growth. It is a quasi -program (not a program), a shadow 
of development. More on that was discussed previously 
[16, 21-27].

THREE SOURCES FOR THE TOR-
CENTRIC MODEL

1. Genetics of longevity

The work in model organisms revealed numerous 
genes whose inactivation extends life span [3, 28-57]. 
Some gerogenes encode the TOR pathway. Yet, is the TOR 
pathway central or just one of the numerous pathways? 
Independent work on cellular senescence answers this 
question.
2. Cellular senescence

In 2003 it was proposed that activation of growth-
promoting pathways should cause senescence, when 
the cell cycle is blocked [58]. In fact, mTOR converts 
reversible cell cycle arrest to cellular senescence 
(geroconversion) [59-61]. Rapamycin partially suppresses 
geroconversion [62-76]. All gerogenic pathways converge 
on the mTOR pathway: upstream and downstream [77-
83]. Typically, oncogenes are gerogenes, whereas tumor 
suppressors are gerosuppressors [59, 84-87]. Gerogenes 
and gerosuppressors constitute the mTOR network. This 
network is identical to gerogenic pathways identified in 
model organisms [3].
3. Diseases

Completely independently, mTOR pathway was 
revealed in the studies of human diseases: Parkinson and 
Alzheimer, cancer and benign tumors, cardiac fibrosis 
and atherosclerosis, renal hypertrophy and diabetic 
complications [19, 88-97]. And while gerontologists 
thought that rapamycin causes cancer, numerous studies 
by nephrologists and transplantologists showed that 
rapamycin prevents cancer in humans [86, 98-103]. Most 
studies were performed by scientists, working in narrow 
clinical fields [104-106]. Only taken together, these studies 
illuminate the role of mTOR in all age-related diseases. 
These age-related diseases are direct causes of death in 
aging. No one dies from aging per se.

Michael Hall, who discovered TOR and named it 
after rapamycin [107], remarkably envisioned in 2005 
that “inhibitors of mammalian TOR may be useful in the 
treatment of cancer, cardiovascular disease, autoimmunity, 
and metabolic disorders” [93]. This generalization, 
combined with discoveries in model organisms and 
cellular senescence, was taken a step further [2]. mTOR-
driven hyperfubnction leads to alterations of homeostasis, 
diseases and death. Examples of systemic hyperfuctions 
include hypertension, hyper-insulinemia and organ 
hypertrophy. 
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HOW WILL PEOPLE DIE, WHEN AGING 
WILL BE ABOLISHED: POST-AGING 
SYNDROME

Currently, humans and animals (in protected 
environment) die from age-related diseases, which are 
manifestation of aging. By slowing aging, rapamycin and 
calorie restriction can delay age-related diseases including 
cancer [108-125]. They extend life span. Yet, the causes of 
death seem to be the same. Or not? Why is this important? 

Consider an analogy. 300 years ago in London, 75% 
of people died from external causes (infections, trauma, 
starvation) before they reached the age of 26. [22]. So 
only a few died from mTOR-driven aging. Only when 
most external causes have been eliminated, people now 
die from mTOR-driven age-related diseases. Similarly, 
if TOR-driven aging would be eliminated by a rational 
combination of anti-aging drugs, even then we still would 
not be immortal. There will be new, currently unknown 
causes of death. I call this post-aging syndrome. We do 
not know what it is. But we know that accumulation of 
molecular damage or telomere shortening (as examples) 
eventually would cause post-aging syndrome [2].

WHY DO WE NOT RECOGNIZE 
SYMPTOMS OF POST-AGING 
SYNDROME?

Even in the ancient world, when most people died 
from “external causes”, symptoms of mTOR-driven aging 
were well known. In contrast, we do not know symptoms 
of post-aging syndrome. Aging is quasi-programmed 
and is not accidental. Although its rate varies among 
individuals, the chances to outlive aging and to die from 
post-aging syndrome are very low. Still, we may identify 
these symptoms in humans over 110 years old and 
especially in animals treated with rapamycin (and other 
anti-aging modalities). Inhibition of mTOR may extend 
life span, thus revealing post-aging syndrome. 

How will we know that we observe post-aging 
syndrome? There are potential criteria: Animals and 
humans die from either unknown diseases, unusual 
variants of known-disease and rare diseases. Or at least, 
the range of age-related diseases is dramatically changed.

As discussed in 2006, causes of post-aging 
syndrome may include accumulation of random molecular 
damage, telomere shortening, selfish mitochondria and so 
on. As also discussed, when people die from post-aging 
syndrome, then anti-oxidants may help, in theory of course 
[2].

CONCLUSION

Criticizing the TOR-centric hyperfunction 
theory of aging, an opponent wrote: “The advent of the 

hyperfunction theory of aging has been compared to 
the replacement of the geocentric with the heliocentric 
worldview. Within this rather grand conceptual 
framework, I may be seen as an old-timer who desperately 
tries to salvage a doomed theory by piling up epicycles. 
Perhaps so – time will tell.” [126].

Time told unexpectedly fast. While gerontologists 
were studying free radicals and anti-oxidants, the TOR-
centric (hyperfunction) theory revealed anti-aging drugs 
such as rapamycin and metformin. There are several 
potential anti-aging drugs in clinical use [127, 128]. 
Combining drugs and modalities, selecting doses and 
schedules in clinical trial will ensure the maximal lifespan 
extension [27, 129]. 

Simultaneously, medical progress improves aging-
tolerance [129, 130]. Aging tolerance is the ability to 
survive despite aging [130]. For example, bypass surgery 
allows patients with coronary disease to live, despite 
aging-associated atherosclerosis. 

Gerontologists do not need to catch the train that 
has already departed. No need to study rapamycin, which 
already entered the clinic. This is now a merely medical 
task. Gerontologists may continue to study free radicals 
and accumulation of random molecular damage as a 
potential cause of post-aging syndrome (not aging). It is 
important to study post-aging syndrome, to be ready to 
fight it, when medical progress with rapamycin will allow 
us to reach post-aging age: perhaps 50 years from now.
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