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AbstrAct
Breast cancer metastasizes to bone, visceral organs, and/or brain depending on 

the subtype, which may involve activation of a host organ-specific signaling network 
in metastatic cells. To test this possibility, we determined gene expression patterns 
in MDA-MB-231 cells and its mammary fat pad tumor (TMD-231), lung-metastasis 
(LMD-231), bone-metastasis (BMD-231), adrenal-metastasis (ADMD-231) and brain-
metastasis (231-BR) variants. When gene expression between metastases was 
compared, 231-BR cells showed the highest gene expression difference followed 
by ADMD-231, LMD-231, and BMD-231 cells. Neuronal transmembrane proteins 
SLITRK2, TMEM47, and LYPD1 were specifically overexpressed in 231-BR cells. 
Pathway-analyses revealed activation of signaling networks that would enable 
cancer cells to adapt to organs of metastasis such as drug detoxification/oxidative 
stress response/semaphorin neuronal pathway in 231-BR, Notch/orphan nuclear 
receptor signals involved in steroidogenesis in ADMD-231, acute phase response in 
LMD-231, and cytokine/hematopoietic stem cell signaling in BMD-231 cells. Only 
NF-κB signaling pathway activation was common to all except BMD-231 cells. We 
confirmed NF-κB activation in 231-BR and in a brain metastatic variant of 4T1 cells 
(4T1-BR). Dimethylaminoparthenolide inhibited NF-κB activity, LYPD1 expression, 
and proliferation of 231-BR and 4T1-BR cells. Thus, transcriptome change enabling 
adaptation to host organs is likely one of the mechanisms associated with organ-
specific metastasis and could potentially be targeted therapeutically.

IntroductIon

Breast cancer brain metastasis is a growing public 
health concern as advances in systemic therapy have 
helped to contain metastatic growth in most organs 
except the brain [1]. Brain metastasis occurs in 10-15% 
of patients with metastatic breast cancer [2-4], and is 
associated with an extremely poor prognosis with a 

median survival of only 3-6 months [5, 6]. Patients with 
HER2+ or triple negative breast cancer (TNBC) have a 
greater propensity to develop brain metastasis [7-13]. 

Three processes may control brain metastasis. 
The first may involve a minority of primary tumor cells 
with unique mutations that impart proclivity for brain 
metastasis. Recent massively parallel sequencing of 
primary tumor and a brain metastasis from the same 
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patient suggested this possibility [14]. The second is that 
mutations and/or epigenetic changes in cancer cells bestow 
blood-brain-barrier (BBB) permeability and consequently 
brain metastasis. The third is that every cancer cell has 
the ability to reach the brain but only a few cells that can 
acquire neuronal cell function through either additional 
mutations in cancer cells or brain microenvironment-
induced epigenetic changes in cancer cells that are 
essential for metastatic growth proliferate in the brain. For 
example, circulating tumor cells that metastasize to the 
brain overexpress proteins such as heparanase (HPSE) that 
allow cancer cells to interact with brain vasculature [15]. 
Brain metastatic cancer cells express SERPINE1, which 
helps in vascular co-adaptation in the brain [16]. The 
Biology of Brain Metastasis Workshop organized by the 
National Cancer Institute (NCI) has set several research 
priorities with respect to biology of brain metastasis 
[17]. These include investigations into the pathogenic 
mechanisms of metastasis to brain, identification of 
commonalities and uniqueness of brain metastasis versus 
other sites of metastasis, differentiation of indolent and 
aggressive lesions by understanding heterogeneity among 
different brain metastatic lesions, investigation of the 
relationship between “stem cell” features and brain 
metastasis, and understanding the mechanisms responsible 
for tumor cell homing to the brain. 

Progress in addressing the above issues is limited 
largely due to the lack of suitable model system. Most 
of our current knowledge on brain metastasis is derived 
from studies using brain-seeking variants developed 
from HER2 -amplified BT474 cells and triple negative 
breast cancer/mesenchymal stem cell-like cell line 
MDA-MB-231 [18, 19]. Analyses of MDA-MB-231 
derivatives enabled development of a brain metastasis 
signature and identification of a set of genes that may 
be involved in BBB extravasation. Genes identified in 
these studies include the brain-specific sialyltransferase 
ST6GALNAC5, COX2, ANGPTL4 and EGFR ligands 
epiregulin and HBEGF [20]. NF-κB inducible genes 
MMP-1 and FSCIN-1 are also associated with brain 
metastasis [21]. In experimental models, brain-seeking 
metastatic variants but not the variants that metastasize to 
other organs have the ability to establish a unique pattern 
of vascularization required for growth [22]. However, 
gene expression changes in brain metastatic cells as an 
adaptive response in the brain microenvironment are just 
beginning to get attention.

To begin to address these complexities, we 
compared gene expression patterns in cancer cells isolated 
from a brain metastasis with parental cells in culture, 
mammary fat pad tumor-derived cells, and cancer cells that 
have metastasized to lungs, bone, and the adrenal gland. 
We identified a set of genes that are upregulated only in 
brain metastatic cells compared with all other cell types. 
Several of these genes have neuronal function suggesting 
that these genes are “reactivated” in the metastatic cell to 

enable them to adapt to growth conditions in the brain and 
utilize neuronal signaling networks for their advantage. 
Comparison among cells isolated from different metastatic 
sites revealed significantly higher transcriptome changes 
in brain metastatic cancer cells and unique pathway 
alterations involved in drug detoxification. In general, 
metastasis, irrespective of organs of metastasis, was 
associated with gain of gene expression suggesting that 
hyper-activation of general transcriptional machinery is a 
contributing factor of metastasis. 

results

brain metastatic variants of MdA-Mb-231 
(231-br) cells expressed a unique set of genes 
compared with parental cells, mammary fat pad 
tumor, or variants from other organs of metastasis

We recently reported an organ-specific metastasis 
model of MDA-MB-231 cells that included establishing 
cell lines from metastases in the lung, the bone, and the 
adrenal gland [23]. The same cell line model has been 
used to develop brain metastasis variants [24]. Using these 
cell lines, we had demonstrated upregulation of 20 and 
downregulation of seven microRNAs in metastatic cancer 
cells compared with mammary fat pad tumor cells [23]. 
We subjected parental MDA-MB-231 cells from two labs 
(one from us used for developing tumor and metastatic 
variants except brain metastasis and the other used for 
developing brain metastatic cells- these cells are labeled 
MD-231P), mammary fat pad tumor derived cell line 
(TMD-231), lung metastasis (LMD-231), bone metastasis 
(BMD-231), adrenal metastasis (ADMD-231), and brain 
metastasis (231-BR) to microarray mRNA expression 
analysis. For the different sets of cell lines, we used PAM 
[25] to identify signature genes for a specific metastasis 
site compared with all other sites. PAM classifier is based 
on the nearest shrunken centroid algorithm and identifies 
signature genes based on the variability of genes in a 
group. Using this method, we compared each metastatic 
site’s gene expression profile to all other metastatic 
expression profiles, tumor-derived cells, and parental 
cells to compile a set of genes constituting a signature for 
that metastatic site only. This stringent analysis generated 
signatures that were unique to brain and adrenal metastasis 
(Table S1). However, lung and bone metastasis signatures 
were not as statistically robust as brain and adrenal 
signatures and demonstrated a higher error rate (Table S1). 

231-BR cells showed upregulation of 396 genes and 
downregulation of 77 genes compared with all other cell 
types (p < 0.01) (Table S2). In general, metastatic cells 
showed a higher number of upregulated genes compared 
with MDA-MB-231 or TMD-231 cells suggesting that 
acquiring new gene expression rather than loss of gene 
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Figure 1: Validation of genes differentially expressed in brain metastatic cells. A) qRT-PCR analysis of select genes in 
parental, tumor-derived, and organ-specific metastatic cells. β-actin was used as a normalization control. b) Protein-protein interaction 
network of two genes expressed preferentially in 231-BR cells. Data were generated using STRING network [31]. Arrow indicates proteins 
involved in neuronal signaling. c) TMEM47 expression is elevated in another brain-metastasis variant of MDA-MB-231 cells. This variant 
was derived from BMD-231 cells. d) TMEM47 expression in MCF-7HER2 and its brain metastatic variant. 
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expression is associated with metastasis (Table S2, see 
rows 1 and 2). The top 25-upregulated genes in 231-BR 
cells are shown in Table 1. Several genes in this table 
(indicated in bold) are linked to neuronal activity. For 
example, translation elongation factor eEF1A2 variant 
is expressed in a restricted pattern compared with 
ubiquitously expressed eEF1A1, and the expression is 
dominant in adult brain [26]. TMEM47 and SLITRK2 are 
linked to neuronal development and/or brain tumors [27, 
28]. TMEM47 is also called brain cell membrane protein 
1 and is related to claudins [29]. Thus, upregulation of 
genes linked to neuronal function in 231-BR cells support 
the hypothesis that cancer cells acquire their expression 
to adapt to the brain microenvironment. We confirmed 
specific upregulation of LYPD1, TMEM47, and SLITRK2 
in 231-BR cells compared with other cell types, as these 
genes are not part of any previously described brain 
metastatic signatures (Figure 1A). ESM1, which is 
upregulated in all metastatic cell types compared with 
parental or TMD-231 cells in the microarray assay, also 
showed higher expression levels in LMD, BMD, ADMD-
231 cells and 231-BR cells compared with parental or 
TMD-231 cells by qRT-PCR (Figure 1A). Results of 
technical replicates are shown because of wide variation 
in fold induction between experiments. For example, the 

level of TMEM47 was higher in 231-BR by 193-, 92-, 
153-, 891- and 631-fold compared with MD-231P cells 
in five experiments. Similarly, LYPD1 levels were higher 
by 19-, 49-, 6-, 49- and 44-fold in 231-BR cells compared 
with MD-231P cells in five experiments (see also Figure 5 
below for statistical analysis).

LYPD1, TMEM47, and SLITRK2 are 
transmembrane proteins likely involved in ligand-
dependent signal transduction. SLITRK2 family genes, 
including SLITRK2, are expressed predominantly in 
brain [28]. These genes likely play critical roles in 
cancer progression because cBioPortal analysis revealed 
amplification and /or mutations of TMEM47, LYPD1 
and SLITRK2 in a variety of cancers including breast 
cancer [30]. Four percent of patient-derived breast 
cancer xenografts in the cBioPortal show amplification 
of LYPD1 and mutation in SLITRK2. However, there 
are limited reports on the function of these proteins. To 
gain insight into their function, we analyzed the STRING 
database to identify potential interacting partners [31]. 
While no proteins interacting with TMEM47 were found, 
LYPD1 and SLITRK2 appear to be involved in various 
signaling including cell adhesion and neurotransmitter 
signaling (Figure 1B). For example, GPR39, a G-protein-
coupled receptor expressed mostly in brain, is at the top 

table 1: Genes overexpressed (>2 fold, p<0.0002) in 231-br compared with cells metastasized to other 
organs. Genes shown in bold have neuronal functions.

Genes p value Fold change 231-br vs. other metastasis
tMeM47 6.83E-11 8.92

lYPd1 9.89E-12 6.18
CD96 8.2E-06 5.89

tFAP2c 3.65E-06 5.61
slItrK2 4.37E-08 5.58

LOC10013407 2.58E-10 3.56
eeF1A2 4.40E-05 3.49
SHISA2 9.84E-06 3.48
AKR1C3 9.67E-05 3.23
MYH10 2.36E-05 2.99
HoXb5 3.06E-06 2.98
nInJ2 3.70E-05 2.95

Hs.580229 1.52E-08 2.82
serPInF1 3.07E-07 2.80

cPe 8.68E-05 2.76
MAGee1 4.11E-06 2.72

GZMA 0.000157 2.53
rPPH1 8.27E-06 2.51

C17ORF70 5.68E-06 2.50
C8ORF13 0.00013 2.31
ZNF204 0.000183 2.28
SPIN4 2.28E-05 2.27
CLGN 9.05E-07 2.16

NCKAP1L 1.86E-09 2.14
TIE1 8.02E-06 2.08
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of the list of LYPD1 interacting partners [32]. Neuronal 
pentraxin-1 is the major interacting partner of SLITRK2, 
which mediates synaptic remodeling [33]. Future studies 
will determine the critical role played by these proteins 
in adaptation of brain metastatic cells to the brain 
microenvironment.

We created another brain metastatic variant from 
BMD-231 cells. A nude mice injected with BMD-231 
cells via intra-cardiac route developed brain metastasis 
and metastatic cells were established in culture. These 
cells, called 231-BR-2, overexpressed TMEM47 but not 
other genes tested compared with BMD-231 cells (Figure 
1C). We also observed elevated TMEM47 expression in 
brain metastatic variant of MCF-7 cells overexpressing 
HER2 (MCF-7HER2-BR) compared with parental MCF-
7 cells overexpressing HER2 oncogene (Figure 1D) [34]. 
Thus, TMEM47 is a new brain metastasis-associated gene. 
Please note that CT values of SLITRK2 expression in 231-
BR-2 and MCF-7HER2-BR cells were above 30 and thus 
are not reliable.

Analysis of a public database [35], which 
contains gene expression data in on primary tumors but 
not metastases, for the prognostic value of combined 
expression of the top 17 genes overexpressed (> 2 fold, 
p<0.0001, TMEM47, LYPD1, CD96, TFAP2C, EEF1A2, 
DDX, MYH10, HOXB5, NINJ2, SERPINF1, CPE, 
MAGEC2, CTLA3, C17orf70, ZNF704, NCKAP1L and 
TIE1) in 231-BR cells for which data were available 
showed elevated expression correlating with poor 
recurrence-free survival of patients with basal or luminal 
B breast cancer (Figure 2A and 2B). With respect to brain 
metastasis-free survival, overexpression of TMEM47 
was associated with poor brain metastasis-free survival 
[20] (Figure 2C). TMEM47 displayed prognostic value 
in estrogen receptor and progesterone negative but not 
in estrogen receptor and progesterone receptor positive 
breast cancer (data not shown). LYPD1 and SLITRK2 did 
not show any significance. 

We next determined whether the expression of 
LYPD1, TMEM47 and/or SLITRK2 is enriched in a 
specific intrinsic subtype of breast cancer. Three public 
datasets were analyzed (GSE2607, GSE10886, and 
GSE19783) [36-38]. LYPD1 but not SLITRK2 showed 
a trend of elevated expression in basal subtype but 
differences reached statistical significance only in the 
GSE19783 dataset (Figure S1 and Figure S2). In this 
dataset, TMEM47 also showed elevated expression in 
Basal and HER2+ breast cancers compared with luminal 
A and B breast cancers. Thus, overexpression of these 
genes may not be unique to a subtype of breast cancer.  
Alternatively, the brain microenvironment influences the 
expression of these genes in metastatic cells irrespective 
of the subtype. 

Since no adrenal metastasis signature has been 
defined so far, we examined 10 genes overexpressed in 
ADMD-231 (>1.5 fold, p < 0.01) compared with other 

metastases for prognostic relevance. Genes were selected 
based on the availability of data in the public database 
and included CYB5R2, TAGLN, HAND1, RAB3IL1, 
TRMT12, TSPAN8, MMP3, STXBP6, AP1S2, and 
HSPB8 [35]. Overexpression of these genes was 
associated with poor recurrence-free survival and distant 
metastasis-free in basal breast cancer (Figure 2D and 
2E). Please note that these genes did not show prognostic 
relevance in other intrinsic subtypes of breast cancer.

Genes differentially expressed in organ-specific 
metastatic cells were linked to unique and shared 
signaling networks

To determine the signaling pathways active in cells 
isolated from different sites of metastasis, we subjected 
differentially expressed genes to Ingenuity pathway 
analysis. Glutathione-mediated detoxification, NRF2-
mediated oxidative stress response, and Semaphorin 
signaling in neurons are a few of the signaling pathways 
in 231-BR cells (Figure 3A). The top two networks in 231-
BR cells included SRC-ERK-growth hormone and NF-
κB (Figure 3B and 3C). SRC pathway activation has also 
been noted previously in the BT474 HER2-positive cell 
brain metastasis model [18]. Notch, LXR/RXR and FXR/
RXR pathways are the three major pathways activated in 
ADMD-231 cells (Figure 4A). Networks in these cells 
included Notch-ERK-AKT and NF-κB (Figure 4B and 
4C).

LMD-231 cells showed activation of acute phase 
response signaling, primary immunodeficiency signaling, 
and glutamate receptor signaling (Figure S3A). Networks 
included TNF-CEBPA-p53 and NF-κB (Figure S3B 
and S3C). Involvement of CEBPA in the network is 
interesting because of its critical role in lung maturation 
[39]. BMD-231 cells displayed activation of cytokine 
signaling, hematopoiesis from pluripotent stem cells and 
JAK1/JAK3 cytokine signaling (Figure S4A). Signaling 
networks in these cells included ERK-growth hormone 
and TNF-p53 (Figure S4B and S4C). Activation of 
neuronal, orphan nuclear receptor, acute phase response, 
and cytokine signaling in brain, adrenal, lung, and bone 
metastatic cells, respectively, further suggests organ-
specific adaptive response in metastatic cells.

231-BR cells displayed elevated NF-κB DNA 
binding activity, which was sensitive to dMAPt 

To extend the above observation from Ingenuity 
pathway analysis, we examined NF-κB DNA binding 
activity in MD-231P and 231-BR cells by electrophoretic 
mobility shift assays (EMSAs). As we reported previously 
[40], MD-231P cells displayed constitutive NF-κB DNA 
binding activity, which was further elevated in 231-
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Figure 2: Prognostic value of genes overexpressed in 231-br and AdMd-231 cells. A) Elevated expression of 231-BR 
overexpressed genes (TMEM47, LYPD1, CD96, TFAP2C, EEF1A2, DDX, MYH10, HOXB5, NINJ2, SERPINF1, CPE, MAGEC2, 
CTLA3, C17orf70, ZNF704, NCKAP1L, and TIE1) in primary breast tumor is associated with poor recurrence-free survival among patients 
with basal breast cancer. Patients were split by median to classify into high or low expressers. b) Elevated expression of 231-BR specific 
genes in luminal B breast cancer is also associated with poor recurrence-free survival. c) TMEM47 overexpression is associated with 
poor brain metastasis-free survival. d) Elevated expression of ADMD-231 overexpressed genes (CYB5R2, TAGLN, HAND1, RAB3IL1, 
TRMT12, TSPAN8, MMP3, STXBP6, AP1S2, and HSPB8) in primary tumor is associated poor recurrence-free survival among patients 
with basal breast cancer. e) ADMD-231 overexpressed genes are also associated with poor distant metastasis-free survival among patients 
with basal breast cancer.
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Figure 3: Ingenuity pathway analysis of genes differentially expressed in 231-br cells. A) Major signaling pathways in 
231-BR cells. b) 231-BR cells show activation of SRC-ERK-growth hormone network. c) NF-κB signaling network is active in 231-BR 
cells. Genes labeled in red are overexpressed, whereas genes in green are expressed at lower levels in 231-BR cells compared with other 
metastatic cells.
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Figure 4: Ingenuity pathway analysis of genes differentially expressed in AdMd-231 cells. A) Notch, FXR/RXR and LXR/
RXR networks involved in steroidogenesis similar to adrenal gland are the major pathways in ADMD-231 cells. b) ADMD-231 cells show 
activation of Notch-ERK-AKT network. c) NF-κB signaling network is active in ADMD-231 cells.
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BR cells (Figure 5A). NF-κB:DNA complex contained 
p65 and p50 subunits as per super-shift assay. We next 
examined the effects of netropsin, which inhibits NF-κB 
when DNA binding is dependent on HMGA2 [41], and 
DMAPT, a direct NF-κB inhibitor. DMAPT is a water-
soluble parthenolide derivative and has been characterized 
for anti-tumor activity in vitro and in vivo [42-45]. While 
netropsin had minimum effect, DMAPT significantly 
reduced NF-κB DNA binding activity (Figure 5A). 231-
BR cells expressed ~65-fold higher levels of CXCL1, an 
NF-κB inducible chemokine involved in metastasis [46], 
compared with MD-231P cells, which was reduced by 
DMAPT (Figure 5B). DMAPT reduced the expression 
levels of LYPD1 (from 50 –fold to 10 fold) but not 
TMEM47 suggesting that NF-κB controls the expression 
of select genes of the brain metastasis signature (Figure 
5B). In cell proliferation assays, while both MD-231P and 
231-BR cells were sensitive to DMAPT, the concentration 
of drug required to inhibit 231-BR cells was lower than 
that for MD-231P cells (p = 0.0001) suggesting that 231-
BR cells are dependent on NF-κB for survival (Figure 
5C). 

4t1-br cells showed elevated nF-κb compared 
with 4t1 cells and were sensitive to dMAPt

To determine whether elevated NF-κB activity 
is observed in additional brain metastasis models, we 
compared NF-κB in parental 4T1 and a brain-seeking 
variant of this cell line [45]. 4T1 cells are derived from a 
spontaneous mammary tumor in BALB/c mice and form 
highly metastatic tumors upon mammary fat pad injection 
in syngeneic mice [47]. NF-κB DNA binding activity was 
elevated in 4T1-BR cells compared with parental 4T1 cells 
and DMAPT reduced this binding activity (Figure 6A). 
Note that AP-1 DNA binding activity was lower in 4T1-
BR cells compared with 4T1 cells suggesting transcription 
factor switch with specific upregulation of NF-κB in brain 
metastatic cells. Unlike 231-BR cells, 4T1-BR cells and 
parental 4T1 cells were similarly sensitive to DMAPT 
(Figure 6B). Thus, brain metastatic cells in both model 
systems show elevated NF-κB activity and can potentially 
be targeted by NF-κB inhibitors. 

dIscussIon

There have been several attempts to identify genes 
associated with brain metastasis and to functionally 
validate these genes for imparting blood brain barrier 
extravasation, vascular co-adaptation, interaction with 
brain microenvironment, and cell survival function. Using 
brain metastatic cell lines derived from four different 
models, Valiente et al. showed upregulation of seven 
genes in three out of four models [16]. The authors then 

focused on SERPIN1 and SERPINB2 and demonstrated 
their role in establishing vascular adaptation in brain 
[16]. Although SERPIN1 was not one of the upregulated 
genes in 231-BR cells (1.22-fold increase but p=0.18), 
significant upregulation of SERPINB2 and SERPINIF1, 
a serpine family member without protease inhibitory 
activity but with neurotropic activity [48], was observed in 
213-BR cells compared with other metastatic cells (Table 
S2). Among the other six genes (CTCF, DUSP1, GALC, 
HIST1HIC, LEF1, and PCDH7), we found upregulation of 
DUSP1 and GALC in all metastatic cells compared with 
parental cells, irrespective of sites of metastasis. Among 
the recently described DNA repair genes upregulated 
in brain metastatic cells [49], we noted upregulation of 
RAD51 (1.1-fold, p = 0.03) and RAD51C (1.4 fold, p = 
0.016) but not BARD1 in 231-BR cells compared with 
other metastatic cells (Table S2). However, 231-BR cells 
did not show specific changes in the expression levels 
of the recently described BRCA1 deficient-like gene 
signature enriched in the brain metastasis of HER2+ 
breast cancer patients [50, 51]. Nonetheless, four among 
13 genes of this signature (NDRG1, CCND1, BOP1, and 
Myc) were upregulated in metastatic cells irrespective of 
sites of metastasis compared with parental or TMD-231 
cells (Table S2). Similarly, we did not find any overlap 
between the brain metastasis signatures described in our 
study and the signature described by Salhia et al. [52]. 
However, the CRYAB gene, which was downregulated in 
the brain metastasis in the study described by Salhia et 
al was also downregulated in all metastatic cells in our 
analysis. Differences in the types of comparison adapted 
in different studies may partly be responsible for minimum 
overlap in genes between signatures. For example, our 
evaluation involved comparison between parental and 
metastasis as well as between organ-specific metastatic 
cells whereas other studies compared brain metastasis with 
only primary tumor.

Glutathione-mediated detoxification, NRF2-
mediated oxidative response, and Semaphorin signaling 
pathways activated in brain metastatic cells suggest 
a unique biology of these metastatic cancer cells and 
potentially explain their relative resistance to standard 
chemotherapy and possibly challenges the widely held 
belief that poor BBB permeability of chemotherapeutic 
drugs is the main reason for treatment failure. Inherent 
ability to detoxify these drugs may be one of the main 
reasons for treatment failure. In this respect, a recent 
study has shown that physical interaction between cancer 
cells and astrocytes leads to upregulation of glutathione 
transferase 5A, which contributes to drug resistance [53]. 
DMAPT, the NF-κB inhibitor tested in this study, has 
previously been shown to deplete glutathione and cause 
the death of leukemic cells [54]. Thus, sensitivity of 231-
BR cells to DMAPT could be related to their dependency 
on glutathione and the NF-κB signaling network and the 
ability of DMAPT to inhibit both pathways. We also noted 
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Figure 5: Elevated NF-κB activity in 231-BR cells compared with parental cells. A) DMAPT but not netropsin (netro) 
inhibited NF-κB DNA binding activity in 231-BR cells. Supershift assays showed p50:p65 NF-κB complex in 231-BR cells. b) DMAPT  
(10 µM) reduced CXCL1 and LYPD1 but not TMEM47 expression. qRT-PCR was performed to measure mRNA levels. * P values MD-
231P versus 231-BR; ** P values untreated 231-BR versus DMAPT-treated 231-BR cells. c) DMAPT inhibited proliferation of 231-BR 
cells.
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activation of a signaling network involving SRC kinases 
in 231-BR cells (Figure 3B), which has recently been 
suggested to be a therapeutic target for brain metastasis 
[18]. 

Although there have been large efforts in defining 
gene expression signatures for bone and lung metastases 
[55-57], an adrenal gland metastasis signature is yet to be 
described. Minn et al. described MDA-MB-231 variants 
that metastasize to both lungs and adrenal or bone and 
adrenal but did not define an adrenal-specific gene 
expression signature [58]. This study, to our knowledge, 
describes the first adrenal metastatic signature for 
breast cancer. Ten genes, which are expressed 1.5-fold 
(p<0.01) higher in ADMD-231 compared with other 
metastatic cells, displayed prognostic significance in 
basal breast cancer but not in other subtypes (Figure 2). 
There is limited literature on the consequences of adrenal 
metastasis, although a rare case of adrenal failure due to 
adrenal metastasis in breast cancer has been reported [59]. 
Transcriptome changes associated with adrenal metastasis 
were significantly higher compared with bone or lung 
metastasis (p = 0.0001, Chi-square with Yates correction) 
suggesting the need for substantial genomic changes 
to achieve this metastasis. Notch and orphan nuclear 
receptor signaling were dominant in adrenal metastatic 
cells. The Notch pathway plays a major role in adrenal 
gland development, whereas LXR signaling controls 
steroidogenic pathways in the adrenal gland [60]. Thus, 
it is likely that cancer cells that have metastasized to the 
adrenal gland undergo genomic changes that help them 
to adapt to the adrenal gland or primary tumor cells with 

these pathways activation metastasize preferentially to the 
adrenal gland. 

The majority of studies on breast cancer metastasis 
utilized MDA-MB-231 cells. This cell line represents the 
claudin-low/mesenchymal subtype, which overexpresses 
stem cell-enriched genes [61] and has a natural tendency to 
metastasize to brain and lungs. Brain and lung metastatic 
signatures developed using this cell line have shown 
clinical utility [62]. Several of the genes that were part of 
the original bone metastatic signature developed using this 
cell line, including CXCR4, CTGF, and MMP1, were part 
of the general metastatic signature irrespective of organ-
specificity (Table S1) [55]. Because prior knowledge 
exists on a lung metastatic signature, we did not perform 
an extensive analysis. However, identification of acute 
phase response and glutamate signaling networks in lung 
metastatic cells suggests an adaptive response of these 
cells to lung. 

In summation, our results indicate that organ-
specific metastatic cells acquire the ability to adapt 
to sites of metastasis, which may involve genomic or 
epigenomic changes. We observed general upregulation 
of transcription in metastatic cells compared with parental 
cells suggesting that genomic aberrations leading to 
enhanced RNA polymerase II activity are sufficient for 
metastasis. Alternatively, genomic/epigenomic changes 
in a few primary tumor cells may activate organ-specific 
adaptive gene networks prior to their exit from the primary 
site. In this respect, patients with primary tumors that 
overexpressed brain or adrenal metastasis signature genes 
had poor outcome (Figure 2). While inhibitors of NF-κB 

Figure 6: 4t1-br cells displayed elevated nF-κb activity compared with 4t1 cells. A) DMAPT inhibited NF-κB activity 
in 4T1-BR cells. Note lower AP-1 DNA binding activity in 4T1-BR cells compared with 4T1 cells. b) DMAPT inhibited 4T1-BR cell 
proliferation.
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signaling can be potential chemosensitizers of the majority 
of metastases as we have demonstrated previously with 
lung metastasis [44], organ-specific signaling networks 
identified in this study can be used to develop drugs 
targeting specific sites of metastasis to limit toxicity. In 
addition, our study identified TMEM47, a transmembrane 
protein with little known biology, as a brain metastasis 
associated gene. TMEM47 could potentially be developed 
as a biomarker and targeted therapeutically based on its 
cellular localization at the membrane. 

MAterIAls And MetHods

cell lines

MDA-MB-231 and its mammary fat pad tumor and 
metastatic derivatives have been described [23]. 231-BR 
and its parental counter part MD-231P, 4T1 and 4T1-BR 
cells have been described [49, 63]. We also generated 
a new brain metastatic variant (231-BR-2) from a nude 
mouse that developed brain metastasis after intra-cardiac 
injection of bone metastatic variant (BMD-231). Despite 
the potential for genomic drift during growth within 
animals and/or during culturing after isolation from sites 
of metastasis, cell line identification using short tandem 
repeat profiling (DNA Diagnosis Center, Fairfield, 
Ohio, USA and Genetica DNA Laboratories, Cincinnati, 
Ohio, USA) confirmed that all variants are genomically 
similar to parental MDA-MB-231 cells. MDA-MB-231 
and its derivatives were maintained in MEM plus 10% 
FBS, whereas 4T1 and 4T1-BR cells were maintained in 
DMEM plus 10% FBS.

rnA preparation, microarray and quantitative 
reverse transcription polymerase chain reaction 
(qrt-Pcr)

RNA was prepared using RNeasy kit (Qiagen, 
Valencia, CA, USA) and cDNA from four µgs of RNA 
was synthesized using the cDNA Synthesis kit (Bio-Rad, 
Hercules, CA, USA). qRT-PCR was performed using 
SyberGreen on a TaqMan 7900HT instrument (Applied 
Biosystems, Carlsbad, CA, USA). Sequences of primers 
used for qRT-PCR are listed in the supplementary Table 
S3. Illumina HumanHT-12 V4 expression beadchip was 
used for microarray analysis of biological triplicates. 
Genes that showed insignificant signals in a majority of 
samples were removed and only those probes that showed 
statistically significant signal in at least half of samples 
of at least one group were retained. The probe level 
data were then collapsed to gene level data by retaining 
only the probes, which showed a maximal coefficient 
of variation across all samples. The data were imported 
into Partek genomics suite for differential expression 

analysis. ANOVA analysis was performed to identify 
genes differentially expressed between different cell lines. 
Genes differentially expressed at p value of <0.01 were 
considered further for pathway analysis using Ingenuity 
pathway analysis software (© Ingenuity systems, CA, 
USA). Prognostic relevance of overexpressed genes 
was determined using a public database as well as a new 
database created by us [35, 64]. Microarray dataset is 
available in the Gene Expression Omnibus (GSE66495).

Generation of metastasis signatures

Predictive analysis of Microarray (PAM) [25] was 
used to identify signature genes capable of discriminating 
phenotypes with minimal classification error. PAM 
analysis was performed on a 1 X Rest basis comparing one 
phenotype with all other phenotypes to identify a group 
of genes that could differentiate that phenotype from the 
rest of phenotypes arriving at gene signatures specific for 
each phenotypic group. Thresholds for PAM analysis were 
adjusted to identify the smallest possible gene signature 
with minimal misclassification error rate. 

electrophoretic Mobility shift Assays (eMsA) 
and cell proliferation studies

EMSA with whole cell lysates was performed 
as described previously [65]. Probes for the assay were 
purchased from Promega (Madison, WI, USA), whereas 
antibodies for supershift were from EMD Millipore 
(Billerica, MA, USA). For cell proliferation studies, 1000 
cells/well were plated on a 96-well plate and cells were 
treated with DMAPT (eight wells per drug and highest 
and lowest numbers were discarded during analysis). Cell 
proliferation was measured 48 hours after drug treatment 
using Bromodeoxyuridine-ELISA (Calbiochem/ EMD 
Millipore). Results are from two or more independent 
experiments. 

statistical analysis

Graphpad Prism (Graphpad.com) was used for 
statistical analysis of qRT-PCR and cell proliferation 
assay. Analysis of variance was used to determine the 
P-values between mean measurements. A P-value of <0.05 
was deemed significant.
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