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ABSTRACT
AMP-activated protein kinase (AMPK) is an important mediator in maintaining 

cellular energy homeostasis. AMPK is activated in response to a shortage of energy. 
Once activated, AMPK can promote ATP production and regulate metabolic energy. 
AMPK is a known target for treating metabolic syndrome and type-2 diabetes; 
however, recently AMPK is emerging as a possible metabolic tumor suppressor and 
target for cancer prevention and treatment. Recent epidemiological studies indicate 
that treatment with metformin, an AMPK activator reduces the incidence of cancer. 
In this article we review the role of AMPK in regulating inflammation, metabolism, 
and other regulatory processes with an emphasis on cancer, as well as, discuss the 
potential for targeting AMPK to treat various types of cancer. Activation of AMPK 
has been found to oppose tumor progression in several cancer types and offers a 
promising cancer therapy. This review evaluates the evidence linking AMPK with tumor 
suppressor function and analyzes the molecular mechanisms involved. AMPK activity 
opposes tumor development and progression in part by regulating inflammation and 
metabolism.

INTRODUCTION

AMP-activated protein kinase (AMPK) is a highly 
conserved serine/threonine protein kinase consisting of 
a catalytic subunit (α) and two regulatory subunits (β 
and γ) and is expressed in a number of tissues, including 
liver and skeletal muscle [1]. The α-subunit of AMPK 
contains a conserved threonine residue (Thr172) by which 
phosphorylation by upstream protein kinases results 
in AMPK activation. Kinases that can activate AMPK 
include liver kinase B1 (LKB1), calcium/calmodulin-
dependent protein kinase (CaMKK) [2] and transforming 
growth factor β (TGF-β)-activated kinase (TAK1) [3]. 
Individuals with Peutz-Jeghers syndrome that have 
germline mutations in LKB1 have a higher prevalence of 

cancer [2]. AMPK can also be activated by extracellular 
changes, such as, depletion of ATP, low glucose, and 
changes of NADPH levels [4]. Administration of drugs 
and certain naturally occurring compounds can also 
activate AMPK. Metformin and some non-steroidal anti-
inflammatory drugs (NSAIDs) can activate AMPK [5, 6]. 
Polyphenols (resveratrol) [7-9], Flavonoids (quercetin)  
[10], and Chinese herbal compounds (berberine) [11-
13] have also been shown to activate AMPK. AMPK 
activation by NSAID’s and other anti-inflammatory 
agents has implicated a potential role of AMPK during 
inflammation. Once activated AMPK can influence many 
effectors proteins involved in various regulatory processes 
that contribute to the pathogenesis of cancer. In relation 
to cancer metabolism mammalian target of Rapamycin 
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(mTOR) is an important AMPK target with many efforts 
being made to target it in the clinic [14]. AMPK can also 
regulate p53 [15] and modulate the activity of transcription 
factors and co-regulators that control the cell cycle [16-
18]. The current evidence suggests that AMPK can act as 
a tumor suppressor by modulating inflammation, opposing 
metabolic changes that occur during tumorigenesis and 
directly inducing cell-cycle arrest [19]. This review will 
provide an overview of AMPK role as a tumor suppressor 
and its therapeutic potential for the prevention and 
treatment of cancer. 

AMPK: state of the art

AMPK was first described because of its role in 
lipid metabolism and regulating cholesterol and fatty acid 
levels [20, 21]. Since then the role of AMPK in regulating 
cellular energy homeostasis places this enzyme as a major 
regulator of energy metabolism. Generally speaking 
AMPK is activated when cellular energy is altered. A 
number of stresses can activate AMPK, including glucose 
deprivation, ischemia, hypoxia and oxidative stress 
[22].Once activated AMPK phosphorylates numerous 
metabolic enzymes acutely inhibiting pathways that 
consume ATP and activating pathways that generate 
ATP, such as, glucose uptake and fatty acid oxidation 
[23, 24]. AMPK’s role in regulating metabolism is well 
understood; predominately studied in the context of 
type-2 diabetes and metabolic syndrome. Li et al. 2013 
describes a series of experiments elucidating the role of 
AMPK activation in treating diabetes. Treating primary 
hepatocytes with an AMPK activator known as C24 
resulted in an inhibition of glucose production by down 
regulation of phosphoenol pyruvate carboxykinase 
(PEPCK) and glucose-6-phosphatase (G6Pase), known 
genes involved in gluconeogenesis that correlated 
with a decrease in triglyceride and cholesterol levels. 
When C24 was administered to diabetic mice (db/db) it 
alleviated symptoms associated with diabetes, lowering 
blood glucose, cholesterol and circulating free fatty 
acids [25]. AMPK activation can prevent atherosclerosis 
and reperfusion injury of the heart in experimental 
animals [26, 27]. Conversely, dysregulation of AMPK 
activation has been found to be associated with the risk 
of developing insulin resistance (IR) and metabolic 
syndrome–associated diseases in both experimental 
animal models and in clinical studies [28]. AMPK inhibits 
essentially all anabolic pathways that promote cell growth 
including fatty acids, phospholipids, protein and ribosomal 
RNA synthesis [1, 24]; thus, in cancer where the energy 
demands of the cell are elevated due to rapid growth and 
division AMPK activators may be a suitable therapeutic 
intervention for treating cancer.

Relevance of AMPK to cancer 

Deregulating cellular energetics is a core hallmark of 
cancer [29-31]. AMPK activation may act as a metabolic 
tumor suppressor by regulating energy levels, enforcing 
metabolic checkpoints and inhibiting cell growth. There 
is a vast literature demonstrating the tumor suppressor 
function of AMPK in lung, colorectal, and liver cancer 
with a growing literature in other cancers, such as, prostate 
and melanoma. 
AMPK and lung cancer

Non-small-cell lung cancer (NSCLC) is the most 
common lung cancer type, accounting for 75-80 percent 
of all lung cancer cases [32]. It is estimated that 30-50 
percent of NSCLC have mutations in the gene coding 
for LKB1 [33, 34]. It is hypothesized that mutations in 
LKB1 result in unsuppressed cell proliferation due to 
the inability to activate AMPK in response to the tumor 
[35]. William et al. isolated tumors from patients with 
NSCLC and found that AMPK activation correlated 
with a better prognosis and a significant increase in 
overall survival [32]. Furthermore, AMPK activity was 
significantly higher in lung tumors obtained from never 
smokers than in smokers. Similar results were seen in a 
study investigating the correlation of LKB1 mutations 
with several clinicopathological characteristics of 155 
patients with lung adenocarcinoma that found LKB1 
mutations associated with smokers and not nonsmokers 
[36]. Specific AMPK activators may be useful in treating 
NSCLC patients with LKB1 mutations and history of 
smoking. 
AMPK and colorectal cancer

Colorectal cancer (CRC) is the third leading 
cause of cancer- related mortality in the U.S. with no 
effective therapy for advanced colorectal carcinoma [37]. 
Colorectal cancer has a strong inflammatory and metabolic 
component suggesting AMPK activation may be useful in 
colorectal cancer management. The direct relationship 
between AMPK activation and colon cancer survival has 
yet to be established. A recent study with several hundred 
colorectal cancer samples was unable to find a correlation 
between overall survival and AMPK activation. However, 
the study was able to demonstrate that AMP activation 
correlated with mitogen activated protein kinase (MAPK) 
activation and within that particular subset, AMPK 
activation was associated with a significant decrease 
in cancer-specific mortality [38]. Several reports have 
demonstrated that activating AMPK by 5-aminoimidazole-
4-carboxamide-ribonucleoside (AICAR) or phenformin 
in human cancer cells results in apoptosis by several 
mechanisms, including modulating the MAPK pathway 
[39, 40]. Taken together, these findings suggest AMPK 
activation may be beneficial in regulating cell survival in 
colorectal cancer tumor types. 
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AMPK and liver cancer 

The most common type of liver cancer is 
hepatocellular carcinoma (HCC), which is the fourth 
most commonly diagnosed cancer in the U.S. [41]. The 
link between AMPK and normal liver function is very 
evident due to the important role of the liver in regulating 
fatty acid oxidation and lipid metabolism. Diseases of the 
liver including HCC are often associated with metabolic 
disorder [42]. Loss of LKB1 and AMPK expression 
correlates with a poor prognosis. In patient samples 
collected prior to hepatectomy, low LKB1 expression 
correlated with a greater degree of tumor severity and 
significantly shorter disease-free survival [43]. Similarly, 
decreased AMPK activity in patient tumors correlated 
with an aggressive clinical phenotype and poor prognosis 
[44]. It appears that the LKB1-AMPK pathway directly 
influences proliferation of HCC cells [45]. In vitro 
knockdown of AMPK in HCC cells resulted in greater 
tumorigenicity when implanted into nude mice [11]. While 
the mechanisms are still under investigation, AMPK 
activation appears to attenuate HCC by inducing cell 
senescence [46] and autophagy [47].

Role of AMPK in other cancers

More recently, pre-clinical studies have shown 
AMPK having some involvement in others cancers, 
including melanoma [11, 48-52], breast cancer [53-56], 
prostate cancer [57, 58], ovarian cancer [59, 60] and 
leukemia’s [61]. In melanoma, AMPK was found to be 
an important regulator for the maintenance of MITF 
(Microphthalmia-associated transcription factor), a 
protein important for normal melanocyte development 
and differentiation that is associated with melanoma 
progression [50]. AMPK activation has also been shown 
to inhibit the metastatic potential of melanoma cells 
through a reduction in the activity of the ERK signaling 
pathway and COX-2 protein levels [11] and by inducing 
autophagic cell death and apoptosis through AMPK/JNK 
signaling [51]. In primary breast cancer, AMPK activity 
is diminished in an estimated 90% of cases [62]. Fox et 
al. demonstrated that reintroducing AMPKα2 suppressed 
the growth of MCF-7 breast cancer cells [55]; whereas, 
in a different study overexpressing a constitutively active 
form of AMPK reduced cell death induced by low glucose 
[56]. In Chronic Myeloid Leukemia (CML), BCL-ABL 
transformed cells exhibit overly expressed mTOR activity 
by which activating AMPK may provide therapeutic 
advantages [61]. Based on the evidence, AMPK does 

Table 1: Natural products extracted from herbal medicines that can activate AMPK to inhibit the growth of multiple 
cancer types.
Natural products Effect of AMPK activation Cancer type References

Berberine Inhibition metastasis by AMPK/ERK Melanoma [11]
Ginsenoside 20-O-b-D-
Glucopyranosyl-20(S)-

Protopanaxadiol
Induces autophagic cell death by AMPK/JNK Melanoma [48]

Wogonin Inhibition translation by AMPK/mTOR/4EBP1 Glioblastoma [119]

Tanshinone IIA Induces autophagic cell death by AMPK/
mTOR/p70S6kinase Leukemia [120]

Quercetin Growth inhibition through AMPK/COX-2 Breast and colon cancer [121, 122]
Cryptotanshinone Induce autophagic cell death by AMPK/mTOR Hepatoma and colon cancer [123]

Resveratrol Triggered autophagic cell death via  AMPK/
mTORC2/p62 Leukemia [124]

Magnolol Induce apoptosis of colon cancer by AMPK/p53 Colon cancer [125]

Epigallocatechin-3-gallate Suppress colon cancer proliferation by ROS/
AMPK/COX-2 Colon cancer [126]

Widdrol Induction of apoptosis via AMPK Colon cancer [127]

Nordihydroguaiaretic acid Inhibition breast cancer growth by AMPK/
mTORC1 Breast cancer [128]

Demethoxycurcumin Inhibition breast cell growth by AMPK/
mTORC1 Breast cancer [129]

Curcumin Suppress proliferation by AMPK/p53 Ovarian cancer [130, 131]

Antroquinonol Anticancer by AMPK/mTOR/p70s6kinase and 
4EBP1 Hepatocellular carcinoma [133]

Honokiol Inhibition invasion and migration of breast 
cancer by LKB1/AMPK/mTOR Breast cancer [134]

Berberine Inhibition growth by AMPK/mTOR and 
AMPK/COX-2 Colon cancer [135]
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exhibit tumor suppressor-like activation in certain primary 
cancers; however, there are some tumors and cellular 
contexts in which the proposed role may not be applicable 
and more investigation is warranted. 

Cancer Related Targets of AMPK 

mTOR

Mammalian target of Rapamycin (mTOR) is 
a serine/threonine protein kinase that regulates cell 
growth, cell proliferation, cell motility, cell survival, 
protein synthesis, and transcription [63]. mTOR forms 
two functionally distinct complexes, mTORC1 (mTOR 
complex 1) and mTORC2 (mTOR complex 2). AMPK 
inhibits mTOR through the phosphorylation of tuberous 
sclerosis complex protein-2 (TSC2), which converts 
the small G protein Rheb to its inactive GDP form and 
the phosphorylation of Regulatory associated protein of 
mTOR(Raptor) proteins that ultimately leads to inhibition 

of downstream targets p70s6kinase and activation of 
4EBP, which are directly involved in translation and 
protein synthesis [64]. The activated TSC1/TSC2 
complex regulates the activity of mTORC1 and raptor, 
which controls cell growth mainly through the regulation 
of protein translation. The AMPK-mTOR axis can also 
regulate autophagy, a catabolic degradation process 
within the cell. Activation of autophagy can lead to tumor 
growth by maintaining energy production and offers 
another therapeutic advantage of AMPK activation [65]. 
Inhibition of mTORC1 is sufficient to induce autophagy 
in the presence of nutrients in yeast or mammalian cells, 
establishing mTORC1 as a conserved and critical repressor 
of autophagy [66]. AMPK regulates several metabolic 
processes and activates the TSC to repress mTORC1 under 
conditions of energy stress. AMPK also directly regulates 
autophagy by phosphorylating and activating UNC-51-like 
kinase1 (ULK1) at Ser317, a key initiator of autophagy 
that is negatively regulated by the mTOR kinase [67-69]. 
Concomitant with suppression of mTORC1 autophagy is 
induced accompanied by loss of cell viability [70]. 

Figure 1: AMPK is a tumor suppressor for cancer prevention and treatment. NSAIDs, Natural products, TCM and 
metformin can all activate AMPK. AMPK negatively regulates the mTOR signal pathway, resulting in inhibition of cancer proliferation 
and growth. Activated AMPK negatively regulates COX-2, a pro-inflammatory enzyme associated with tumorigenesis. AMPK can induce 
phosphorylation of tumor suppressor p53, resulting in cell cycle arrest. Activation of AMPK can also induce phosphorylation of ACC 
influencing lipid metabolism. Interactions leading to activation of molecular targets are indicated by arrows; those inhibited are indicated 
by a bar. Activation of AMPK can modulate multiple pathways leading to anticancer activities. TCM=Traditional Chinese Medicine; 
NSAIDs=Non-steroidal anti-inflammatory drugs.
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COX-2

Cyclooxygenase-2 (COX-2) is a known pro-
inflammatory enzyme that has been shown to be up 
regulated in a number of cancers and correlates with 
tumorigenesis [71, 72]. COX-2 is responsible for the 
formation of important pro-inflammatory mediators, 
including prostanoids, which have been shown to promote 
tumor growth in a variety of cancers [73, 74].While there 
is limited evidence demonstrating a direct link, several 
studies were able to show a correlation between AMPK 
activation by numerous agents and COX-2 inhibition in 
colorectal cancer cell lines and xenografts [75, 76] ,as 
well as, leukemic [77] and melanoma cell lines [11]. 
While there are several COX-2 inhibitors available in 
the clinic the use of these selective COX-2 inhibitors are 
limited by their side effects [78, 79]. Thus, activating 
AMPK may provide a novel approach to inhibiting COX-
2 at sites of inflammation, such as, within the tumor 
microenvironment. 
p53

p53 is a tumor suppressor that plays an important 
role in preventing tumor development by responding to 
a number of cellular stresses, including DNA damage, 
oncogene activation and hypoxia and inducing cell cycle 
arrest or senescence [80, 81]. It is estimated that p53 is 
inactivated in approximately 50 percent of human cancers 
[82]. Many kinases stabilize p53 by phosphorylation 
under conditions of metabolic stress. AMPK can 
directly phosphorylate p53 leading to its stabilization 
and transcriptional activity [15] and promote p53 gene 
expression [83]. In fact, in a study utilizing murine 
embryonic fibroblast the absence of AMPKα2 tumors 
exhibited decreased p53 expression and enhanced cell 
growth and transformation [84].Under low-energy status 
AMPK activation maintains energy homeostasis for 
normal cellular events and also induces p53 to restrict 
cell growth rates to save more energy to limit induction 
of potential damage in energy-rich environments. A 
recent study revealed a prosurvival role for p53 in cells 
metabolically impaired by glucose limitation [15]. 
Activation of p53 allows cells to respond to glucose 
deprivation by arresting their proliferation until glucose 
is restored. The ability of glucose deprivation to induce 
p53 was found to be AMPK dependent. Although loss of 
p53 confers a selective growth advantage to cancer cells, 
loss of p53 impairs the ability of cancer cells to respond to 
metabolic changes induced by metformin or AICAR and 
to survive under conditions of nutrient deprivation [85]. 
Metformin can also inhibit cancer cell proliferation in p53 
deficient cells [86].
Acetyl-CoA carboxylase (ACC)

Acetyl-CoA carboxylase (ACC) is a well-established 
downstream target of AMPK involved in lipid metabolism 
[87]. ACC catalyzes acetyl-CoA carboxylation to produce 

malonyl-CoA a substrate for fatty acid biosynthesis and 
inhibitor of fatty acid uptake [88-90]. In several cancers, 
tumor progression is accompanied by marked changes 
in the expression of enzymes involved in fatty acid 
homeostasis, including ACC. In several cases, cancer cell 
proliferation and survival are dependent on ACC activity 
and inhibiting ACC results in apoptosis [91, 92].
Akt 

The signaling relationship between Akt and AMPK 
is quite complex. On one hand, Akt has been shown to 
be a negative regulator of AMPK and upstream positive 
regulator of mTOR. Both pathways involve direct 
phosphorylation of TSC2, a negative regulator of mTOR. 
AMPK activates TSC2 and Akt inhibits TSC2 both leading 
to mTOR activation and subsequent increase in protein 
synthesis and other cellular processes. The negative 
regulation of AMPK by Akt involves the regulation of 
cellular ATP levels. In cells with activated Akt there is 
depleted ATP and decline in AMPK activity [93]. On the 
other hand other studies have shown that activated AMPK 
can also induce Akt phosphorylation and activation [94, 
95]. To further complicate matters in some circumstances 
activating AMPK can inhibit Akt signaling. When cancer 
cells are treated with AICAR, a widely used AMP-Kinase 
activator, it resulted in S-phase growth arrest in an LKB1-
independent fashion by inducing p53 and inhibiting Akt 
phosphorylation [96]. Thus, the cross talk between AMPK 
and Akt is bidirectional, yet the functional consequence 
in terms of tumor progression is unclear. Choudhury et 
al. using various prostate cancer cell lines was able to 
illustrate this bidirectional feedback mechanism. Treating 
androgen-independent PC3 and PC3M cells with AICAR, 
an AMPK activator depending on dose or time either 
activated or inhibited Akt; however, in both cases mTOR 
activity and tumor progression was inhibited, which was 
found to be independent of PI3K-Akt signaling [97]. 
Taken together, depending on the circumstances activating 
AMPK may inhibit or promote Akt signaling; however, the 
phenotypic consequences that follow may be dependent on 
the tumor and cellular context. Further investigation and 
careful consideration of the feedback mechanism between 
AMPK and PI3K will be needed when [94, 95] targeting 
AMPK for cancer treatment.

How AMPK modulates inflammation 

The link between inflammation and cancer has 
been well established; however, the mechanism by which 
AMPK control on metabolism can directly influence 
inflammation and tumorigenesis is still unclear. The most 
intuitive relationship is that immune cells like most cells 
have energy demands, especially during inflammatory 
pathologies, including diabetes and cancer. It is now 
becoming evident that unstimulated or naive immune 
cells, including dendritic cells, neutrophils, macrophages 
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and T-cells utilize mainly oxidative metabolism, including 
fatty acid oxidation to generate ATP. However, when 
activated by pro-inflammatory cytokines, binding 
of ligands to TLRs (Toll-like receptors), or antigen 
presentation the immune cells switch to the use of 
aerobic glycolysis instead [98]. Since AMPK is important 
regulator of these metabolic processes it is possible that 
AMP-activating drugs can modulate inflammation. Indeed, 
Carroll, et al. found that AMPKα1-deficient macrophages 
and DCs exhibit heightened inflammatory function and 
an enhanced capacity for antigen presentation favoring 
the promotion of Th1 and Th17 responses. Th1 and 
Th17 responses play a complex and controversial role in 
tumor immunity either promoting or suppressing tumor 
growth. A second study, revealed that Macrophages and 
DCs generated from AMPKα1-deficient mice produced 
higher levels of pro-inflammatory cytokines and decreased 
production of the anti-inflammatory cytokine IL-10 when 
activated compared with WT cells [99]. Pro-inflammatory 
cytokines have been correlated with tumor progression 
in various cancers. Lung cancer is highly inflammatory 
and managing the inflammation has been shown to inhibit 
tumorigenesis. Hoogendijk, et al. found that activation of 
AMPK in vitro reduced cytokine production in the alveolar 
macrophage cell line MH-S. In vivo, AMPK activation 
inhibited lung inflammation by reducing Lipoteichoic 
acid-induced neutrophil influx and by altering cytokine/
chemokine levels in the bronchoalveolar space [100]. 
Inflammation is a one of the classic hallmarks of cancer 
and targeting AMPK is this context may beneficial for 
cancer treatment. 

Targeting AMPK for Cancer Prevention and 
Treatment 

Metformin 

Metformin is a drug used to decrease hyperglycemia 
in patients with type-2 diabetes, in part by activating 
AMPK and is currently under investigation as a 
potential treatment for several types of cancer [101, 
102]. Epidemiological and clinical data suggest a benefit 
of metformin treatment in preventing certain cancers 
[103-106]; however, the molecular mechanisms are 
incompletely understood. Recent preclinical studies 
were able to demonstrate metformin efficacy in various 
cancer types. In NSCLC cell lines metformin inhibited 
proliferation and made the cells more sensitive to growth 
ionizing radiation [107] and in vivo metformin was found 
to prevent tobacco carcinogen-induced lung tumorigenesis 
[108]. Similarly, metformin significantly increased the 
radiosensitivity of luminal-type MCF-7 breast cancer 
cells [101]. Metformin abolished the self-renewal 
capabilities and induced apoptosis in HCC cell lines [109] 
and low dose metformin inhibited adipocyte-dependent 
proliferation in ID8 mouse ovarian cancer cell lines [102]. 

Metformin was also shown to significantly reduce aberrant 
crypt foci, the precursors to colon polyps with a modest 
reduction in polyp formation in animals treated with 
chemical carcinogen Azoxymethane [110]. In melanoma, 
metformin inhibits invasion and metastasis development 
through AMPK/p53 axis activation [49]. While there 
remains uncertainty regarding whether or not AMPK 
activation is required for metformin benefits [111] it still 
remains clear that metformin can activate AMPK and may 
be useful in the prevention and treatment of cancer. 
Non-steroidal anti-inflammatory drugs (NSAIDs) 

Inflammation has been shown to play a critical 
role in tumor initiation, progression, and metastasis 
[112]. Aspirin, a non-steroidal anti-inflammatory drug 
(NSAID) has been shown to correlate with a decreased 
risk of developing cancer, particularly preventing 
colorectal cancer (CRC) [113, 114]. The majority of the 
studies are observational in nature and the mechanisms 
are currently being investigated; however, it is believed 
that aspirin may prevent CRC by inhibiting COX-2 [115]. 
This ultimately led to the development of a new class of 
NSAIDs that are more selective for COX-2 inhibition for 
use as chemopreventive agents. Interestingly, aspirin and 
other NSAIDs have also been shown to activate AMPK. 
When colorectal cancer cells were treated with aspirin, 
there was a significant increase in AMPK activation and 
inhibition of downstream mTOR signaling [116]. Aspirin 
use has also been shown to correlate with the prevention 
of several other cancers including lung, liver and ovarian; 
however, the molecular mechanisms involving its 
prevention remains enigmatic. It is likely that once aspirin 
or other NSAIDs activate AMPK there is regulation of 
other inflammatory regulatory pathways. For example 
in the lung, AMPK activation can alleviate inflammation 
that results from injury or infection by directly modulating 
the activity of macrophages, neutrophils and T cells [99, 
100, 117]. Leukocytes and their cytokines play important 
regulatory roles in all aspects of tumor development; 
therefore the anti-inflammation drugs targeting AMPK 
activation may play a more meaningful role for the 
treatment of cancer-associated inflammation.
Natural products

The use of natural products as chemopreventive 
agents has increased worldwide because of their potential 
low toxicity and effectiveness [118]. Observational studies 
have suggested the efficacy of some natural products in 
preventing the development of cancer; however, clinical 
trials have yet to be conducted in most cases to support 
this notion. In preclinical studies, several classes of natural 
products have been shown to target many mediators that 
play important roles in cancer, including AMPK (Figure 1 
and Table 1). Flavones, such as wogonin [119], tanshinone 
IIA [120], quercetin [121, 122] and cryptotanshinone 
[123] induce AMPK activation inhibiting proliferation 
and inducing apoptosis in various types of cancer cells. 
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Polyphenols are also an abundant source of AMPK 
activators. Resveratrol induces autophagy in chronic 
myelogenous leukemia cells by regulating the AMPK/
mTOR pathway [124]. In colorectal cancer cells, 
magnolol [125], epigallocatechin-3-gallate (EGCG) 
[126], and widdrol [127] could induce apoptosis, inhibit 
migration, and prevent invasion by AMPK-dependent 
mechanisms. In breast cancer cells, nordihydroguaiaretic 
acid inhibits mTORC1 activity through disruption of 
mTOR-Raptor complex and AMPK activation [128], 
while demethoxycurcumin, a potent AMPK activator has 
broad spectrum anticancer activity in triple-negative breast 
cancer cells [129] with the parent compound curcumin 
exerting similar effects in ovarian cancer cells [130] and 
in colorectal cancer cells by AMPK-p53 activation [131, 
132]. Antroquinonol, extracted from antrodiacamphorate 
displays anti-cancer activity against HCC cells through 
an AMPK-dependent manner [133] and honokiol, has 
been shown to inhibit proliferation in several cancer 
cell types, also through AMPK dependent mechanisms 
[134]. Berberine has been shown to inhibit colon tumor 
formation in AOM/DSS mouse model through activation 
of AMPK [135]. Berberine [11]or Ginsenoside 20-O-b-
D-Glucopyranosyl-20(S)-Protopanaxadiol [48] inhibit 
melanoma cell growth and invasion through the activation 
of AMPK in vitro [11, 48-52].Thus, these agents may 
serve as AMPK activators and provide a crucial link 
between natural products and the prevention and treatment 
of cancer. 
AICAR 

5-aminoimidazole-4-carboxamide ribonucleotide 
(AICAR) is the pharmacologic activator of AMPK. 
AICAR is transported in the cell by the adenosine 
transporter and is metabolized to an AMP analog, 
ZMP, which in turn binds to the γ-subunit of AMPK, 
thus enabling the activating phosphorylation of AMPK 
by LKB1 on Thr172 [136]. AICAR mediated AMPK 
activation has been reported to inhibit cell proliferation 
and cell cycle progression via inhibition of the PI3K/
Akt pathway and the cell cycle regulatory proteins p21, 
p27 and p53 [96]. AICAR-mediated AMPK activation 
was found to be a proficient cytotoxic agent in Acute 
lymphoblastic leukemia (ALL) cells and the mechanism 
of its anti-proliferative and apoptotic effect appear to be 
mediated via activation of p38-MAPK pathway, increased 
expression of cell cycle inhibitory proteins p27 and p53, 
and downstream effects on the mTOR pathway, hence 
exhibiting therapeutic potential as a molecular target for 
the treatment of childhood ALL [137]. In human colorectal 
cancer cells AICAR through AMPK signaling pathway 
sensitizes death receptor-mediated cytotoxicity [138]. 
These findings suggest that AICAR can be used alone or 
combined with chemotherapies for cancer treatment. 

Traditional Chinese Medicine 

The use of traditional Chinese medicine (TCM) 
for cancer prevention and treatment has stimulated much 
interest in recent years [139]. TCM integrates a wide 
range of herbal medicines often used in combinations of 
more than four single herbal medicines. The use of TCM 
in treating metabolic disorders has been well established. 
There are at least twenty medicinal herbs in TCM used 
for the treatment of metabolic disorders that involve 
some regulation of mitochondrial function, stimulation 
of glycolysis and AMPK activation [140]. Jiaotaiwan 
(JTW), composed of Coptischinensis (CC) is one of the 
most widely used agents for treating diabetes and the 
mechanism of action involves AMPK activation in the 
liver and increased glucose uptake [141]. Hugan Qingzhi 
tablet (HQT), a lipid- lowering traditional Chinese 
medicine formula has been shown to exert a preventive 
effect against hepatic steatosis and its mechanism of 
action may involve activation of AMPK and PPARα 
pathways [142]. Activation of AMPK by TCM agents 
has produced similar results seen with metformin. Thus, 
many herbal medications used in traditional Chinese 
medicine to treat chronic inflammation and diabetes, are 
potential candidates for targeting AMPK for prevention 
and treatment of cancer. 

The potential drawbacks of activation of AMPK 

While targeting AMPK has become an attractive 
target for cancer therapy there are cases in which AMPK 
activation may promote cancer. In the case of mTOR, 
isoform specificity is particularly important. Most cancers 
have activation in mTOR complex 1 (mTORC1), which 
regulates growth through effectors, such as 4EBP1 and 
S6K1, as discussed above. Thus, inhibiting mTORC1 will 
prevent cell protein synthesis and proliferation; however, 
inhibiting mTORC1 without inhibiting mTOR complex 
2 (mTORC2) can activate PI3K-Akt signaling pathway 
and promote tumor survival as previously mentioned. 
Activation of AMPK in most cases results in mTORC1 
inhibition; however, the effects on mTORC2 and Akt 
activation are incompletely understood. If a particular 
AMPK activator is to be used solely to regulate mTOR 
its success would depend on its capacity to inhibit both 
complexes. AMPK agonist in recent studies has shown 
to possess both tumor suppressing and tumor promoting 
abilities, which may result from mechanisms relating to 
feedback regulation [143, 144]. In the case of prostate 
cancer AMPK activation may be associated with poor 
prognosis. Ca2+/CaM-dependent protein kinase kinase β 
(CaMKKβ) is elevated and correlated with prostate cancer 
cell migration and proliferation. Recall that CaMKKβ is 
an upstream activator of AMPK. Inhibition of CaMKII 
activity by synthetic agents has been shown to suppress 
prostate cancer cell growth [145]. CaMKKβ-induced 
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prostate cancer cell migration requires AMPK activation 
[58] and blocking CaMKK/ AMPK pathway results to the 
inhibition of prostate cancer cell growth. It is likely that in 
the case of cancer treatment AMPK activation may be cell 
type and context dependent and will be one of the most 
difficult conundrums to address in future studies.

Future perspectives 

A considerable amount of evidence supports the 
notion that AMPK activation may act as a metabolic 
tumor suppressor. AMPK activation, whether direct or 
indirect has been shown to alleviate symptoms associated 
with type-2 diabetes and metabolic syndrome and has 
been a well-established therapeutic for these particular 
disorders. Epidemiological studies suggest that patients 
prescribed metformin, a drug commonly used to treat 
type-2 diabetes have a lower risk of developing cancer; 
conversely, patients with diabetes have higher incidences 
of cancer. It is hypothesized that AMPK activation can 
oppose tumor development by reprogramming cellular 
metabolism targeting one of the fundamental requirements 
necessary for cancer to develop and progress. In several 
cancers loss of AMPK signaling is associated with a worse 
clinical outcome in lung, colon and liver cancer. Future 
studies would have to further delineate whether or not loss 
of AMPK activity increases the susceptibility to cancer, 
as in the case of loss of LKB1. It is plausible considering 
the well-established cancer-related targets that are known 
to be regulated by AMPK, including, p53, COX-2, ACC, 
and mTOR (Figure 1). 

In our opinion, the more exciting outcomes for 
activating AMPK for chemoprevention will come from 
the area least studied in relation to AMPK and that is 
inflammation. Considering that AMPK is activated by 
NSAIDs and agents that are traditionally seen as anti-
inflammatory raises an important question as to whether 
the chemopreventive activity of AMPK activation is 
related to its ability to modulate inflammation. Traditional 
Chinese medicine (TCM) has been used for hundreds 
of years to prevent and treat many maladies, including 
cancer. The use of TCM has been linked to low incidence 
of certain cancers. Interestingly, many of the herbal 
remedies historically used in TCM have been used to 
alleviate inflammation, and recent reports contribute this 
to the anticancer activities seen with these compounds. It 
is tempting to speculate that AMPK- mediated anticancer 
activities may be related to inflammation and contribute 
to the effectiveness of TCM and potentially other AMPK 
activators. Currently, most of the research involving 
AMPK involves metabolism and only recently has work 
begun to unravel the direct role of AMPK in inflammatory 
processes and how it may relate to the anti-cancer 
activities seen by metformin, NSAIDs, TCM and other 
AMPK activators. Furthermore, there are all the other 
indirect effects of AMPK activation that still have to be 

investigated. Therefore, additional studies are necessary 
before AMPK activators can be used for clinical use for 
cancer prevention and treatment. 
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