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AbstrAct
Ionizing and nonionizing radiation affect not only directly targeted cells but also 

surrounding “bystander” cells. The underlying mechanisms and therapeutic role of 
bystander responses remain incompletely defined. Here we show that photosentizer 
activation in a single cell triggers apoptosis in bystander cancer cells, which are 
electrically coupled by gap junction channels and support the propagation of a Ca2+ 
wave initiated in the irradiated cell. The latter also acts as source of nitric oxide 
(NO) that diffuses to bystander cells, in which NO levels are further increased by 
a mechanism compatible with Ca2+-dependent enzymatic production. We detected 
similar signals in tumors grown in dorsal skinfold chambers applied to live mice. 
Pharmacological blockade of connexin channels significantly reduced the extent of 
apoptosis in bystander cells, consistent with a critical role played by intercellular 
communication, Ca2+ and NO in the bystander effects triggered by photodynamic 
therapy.

INtrODUctION

The phrase “bystander effects” was initially 
adopted in a radiotherapy context to account for responses 
observed in cellular systems that have not been directly 
traversed by ionizing radiations but are in close proximity 
to irradiated cells [1, 2]. Bystander effects triggered by 
ionizing radiations in tumor and tumor-infiltrating cells 
include altered gene expression, DNA damage, mutation, 
malignant transformation and cell death [3-9]. Bystander 

responses have been observed also as a consequence 
of other insults including ultraviolet radiation, heat, 
chemotherapy agents and photodynamic therapy; however 
the underlying mechanism and role in clinically relevant 
scenarios remain incompletely defined [1, 2]. 

Photodynamic therapy is a photochemistry-based 
approach, adopted primarily in oncology, ophthalmology 
and dermatology, which uses a light-sensitive chemical, 
termed photosensitizer, and light of appropriate 
wavelengths to impart cytotoxicity by generation of 
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singlet oxygen [10] and other reactive molecular species 
[11]. Multiple signaling cascades and sub−cellular 
organelles are concomitantly affected in cells exposed to 
photodynamic stress, including adenylate cyclase, receptor 
tyrosine kinases, MAP kinases, phosphatidylinositol 
3-kinase, various protein kinases and phosphatases, 
transcription factors, ceramide, the plasma membrane, 
mitochondria and the endoplasmic reticulum (ER) [12-16]. 

Nitric oxide (NO) has long been implicated in the 
apoptotic processes triggered by photodynamic therapy 
[17-19]. Nanomolar concentrations of NO reversibly 
inhibit cytochrome c oxidation and mitochondrial 
respiration; higher concentrations can irreversibly inhibit 
the respiratory chain [20], leading to the opening of the 
permeability transition pore and cell death [21, 22]. Its 
large diffusion coefficient (DNO = 3300 µm2/s)[23] makes 
NO a prime candidate mediator of bystander responses. In 
addition, photodynamic stress has been causally associated 
with disruption of Ca2+ homeostasis and endoplasmic 

reticulum (ER) depletion [16, 24-26]. NO production by 
nitric oxide synthases (NOS) is controlled by enzyme 
binding to calmodulin (CaM)[27]; full activation of target 
proteins by CaM typically requires occupancy of its four 
Ca2+−binding sites [28]. 

Here we used C26GM mouse colon carcinoma cells 
[29] as a model system to explore bystander effects and 
the interplay between NO and Ca2+ signaling in the context 
of photodynamic therapy.

rEsULts

We cultured C26GM cells [29] under standard 
conditions and co-loaded them with the commercially 
available and well-characterized photosensitizer AlClPc 
[30-35], the ratiometric fluorescent Ca2+ reporter fura-
2 [36] and the selective turn-on fluorescent NO reporter 
CuFl [37, 38]. We photo−activated AlClPc for 60 s within 

Figure 1: Focal photodynamic injury, i.e. photo−activation of the photosensitizer AlClPc for 60 s in a single cell of a C26GM mouse 
colon carcinoma cell culture,  triggers NO and Ca2+ signals that depart from the irradiated cell and rapidly invade bystander cells; these 
events are followed by cytochrome c release and widespread cell death. (a) Representative false−color images of simultaneously recorded 
cytosolic NO (top) and Ca2+ (bottom) concentration changes (∆) during focal photodynamic injury; the irradiated cell is encased in a white 
region of interest (ROI); scale bar, 50 µm. (b) Single-cell fluorescence traces obtained as pixel averages from the corresponding (color-
matched) ROIs in (a); irradiated cell responses are shown as black traces; the vertical dashed line marks the onset of laser irradiation; ∆NO 
data were normalized to the corresponding maximal response in the irradiated cell (see Methods); (c) The distance at which bystander cell 
signals reach 50% of their first peak amplitude is shown as a function of time after the onset of focal photodynamic injury. Data are mean ± 
s.e.m. from n = 6 cultures; the dashed line is a least square linear fit with a slope of 5.6 µm/s. (d) Cultures were rapidly fixed at shown time 
points after focal photodynamic injury and immunostained with a cytochrome c antibody and the nuclear counter stain Hoechst; note that 
images in (d) are from different cultures, whereas those in (a) are all from the same culture; scale bar, 25 µm.
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a 5 µm diameter (∅) area of a single cell in the culture 
at an irradiance of 60 µW/µm2, using a 671 nm diode-
pumped solid-state laser connected to a fluorescence 
microscope. These stimulation conditions, which we refer 
to as focal photodynamic injury, were maintained for all 
experiments shown in this article. 

By capturing CuFl and fura-2 fluorescence images 
in rapid sequence, we determined that AlClPc photo−
activation reliably caused elevation (∆) of cytosolic NO 
and Ca2+ levels in the irradiated cell. Within seconds, 
∆NO and ∆Ca2+ signals were detected in all (bystander) 
cells in the ∼300 µm ∅ field of view (Figure 1a-c). We 
obtained similar results in C26GM tumors grown within 
a dorsal skinfold chamber [39] implanted on BALB/c 
mice (Supplementary Figure 1), suggesting that the 
underlying signaling mechanisms are relevant for in vivo 
photodynamic therapy. We also tested focal photodynamic 
injury protocol in a different tumor cell line ( fibrosarcoma, 
MCA-203) in vitro, and we obtained qualitatively similar 
results both for ∆NO and ∆Ca2+ signals (Supplementary 
Figure 2). Immunostaining at different time points after 
focal photodynamic injury revealed cytochrome c release 
and cell loss progressing radially from the irradiated cell. 
The process ensued in near-complete depopulation of the 
field of view within 24 h following focal photodynamic 
injury (Figure 1d). ∆Ca2+, ∆NO and cytochrome c signals 
were never detected during or after laser irradiation at 671 

nm if AlClPc was omitted from the loading solution (3 out 
of 3 cultures). 

Accurate temporal and spatial analysis of CuFl 
fluorescence emission (see Methods) highlighted 
strikingly different kinetics of ∆NO and Ca2+ signals. In 
the irradiated cell, ∆NO raised to 90% of its maximum 
value, ∆NOmax, in < 300 ms, whereas the maximum 
∆Ca2+ increment, ∆Ca2+

max, occurred only 9.8 ± 1.0 s 
after the onset of photostimulation (mean ± s.e.m., n = 
6 cultures). In bystander cells, (i) ∆NO peaked once or 
more depending on the distance from the site of irradiation 
and returned to baseline within 90 s in all cells; (ii) Ca2+ 
signals were progressively delayed at increasing distance 
from the irradiated cell, corresponding to the cell-to-
cell propagation of a radial wave proceeding from the 
irradiated cell and travelling through the bystander cell 
population with average speed of  5.6 ± 1.1 µm/s (mean 
± s.e.m., n = 6 cultures; Figure 1c). As shown in Figure 
2, ∆NOmax decreased rapidly within ~60 µm from the 
irradiated cell, but less rapidly outside this range. By 
contrast, ∆Ca2+

max showed a clear tendency to increase at 
increasing distance from the photo−activation site. At the 
periphery of the field of view, bystander ∆Ca2+

max exceed 
the ∆Ca2+

max of the irradiated cell by ~20%, on average. 
To get deeper insight into the intracellular and 

intercellular dynamics of ∆NO signals evoked by focal 
photodynamic injury, we created a mathematical model 

Figure 2: Maximal increments of NO (∆NOmax) and ca2+ (∆Ca2+
max) levels evoked by focal photodynamic injury in 

bystander cells as a function of distance from the irradiated cell. Data are mean ± s.e.m. from n = 3 cultures and were normalized 
to the corresponding maximal response in the irradiated cell.
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(see Methods, Equation 2, Supplementary Methods 
and Supplementary Figure 3) assuming that NO: (i) is 
generated within and released from the irradiated cell; (ii) 
diffuses freely across the extracellular space; (iii) passes 
freely through cell membranes of bystander cells, in which 
it is finally detected by pre−loaded CuFl. We used one of 
the ∆NO traces measured in an irradiated cell as input to 
this model and computed ∆NO bystander responses. The 
results of this analysis (Figure 3) show that ∆NO responses 
measured in bystander cells (Figure 3a) largely exceed 
those predicted based solely on NO diffusion (Figure 3b). 
The differences between measured and diffusive ∆NO 
signals provide estimates of the alternative generation of 
NO in bystander cells, likely by its enzymatic production 
by NOS (Figure 3c). Both the measured NO level 
increments and the purely diffusive component (estimated 
by the mathematical model) are monotonically decreasing 
functions of distance from the irradiated cell (Figure 3d), 
however the diffusive contribution exhibits a faster spatial 
rate of decrease. Consequently the ratio of measured minus 
diffusive (i.e. enzymatic) ∆NOmax over diffusive ∆NOmax 
shows a tendency to increase towards the periphery of the 

field of view, where it is >2 (Figure 3e). 
Altogether, the results presented in Figures 1−3 

suggest that (i) NO is generated almost immediately 
within the irradiated cell upon AlClPc photo−activation, 
(ii) diffuses rapidly to bystander cells where (iii) its levels 
are further increased by a Ca2+−dependent enzymatic 
production driven by the underlying Ca2+ wave. 

To test these hypotheses we performed a series of 
pharmacological interference experiments. We noted 
that the relatively low value of the Ca2+ wave speed is 
compatible with a propagation mechanism whereby 
diffusion of soluble messengers, such as IP3, through 
gap junction channels plays a significant role [40]. Gap 
junction communication has been repeatedly implicated 
in bystander responses to ionizing radiation [41-46]. 
Therefore, we assayed C26GM cultures for the presence 
of functional intercellular channels using a novel, highly 
sensitive approach [47], based on a combination of patch 
clamp and voltage imaging with the membrane potential 
reporter Vf.2.1.Cl [48]. Our results (Figure 4a) indicate 
that cultured C26GM cells form functional syncytia 
since (i) electrical signals delivered to the patch-clamped 

Figure 3: comparison of experimental and model responses highlights dual contribution to NO signaling in bystander 
cells. (a) Experimental ∆NO traces evoked by focal photodynamic injury at increasing distances from the irradiated cell (black solid line). 
(b) ∆NO signals in bystander cells predicted by a purely diffusive model using the irradiated cell signal in (a) as input and a diffusion 
coefficient DNO = 3300 µm2/s. (c) Differences between the traces shown in (a) and (b), which we interpret as enzymatic contributions to 
bystander responses. (d) Maximal measured and diffusive NO level increments (∆NOmax) in bystander cells vs. distance from the irradiated 
cell. (e) Ratio of enzymatic ∆NOmax over diffusive ∆NOmax vs. distance from the irradiated cell. Measured data in (d) and (e) are mean ± 
s.e.m. from n = 3 cultures; those in (d) were normalized to the corresponding maximal response in the irradiated cell.
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cell invaded a number of other cells in the culture and 
(ii) electrical coupling was reversibly abrogated by 
carbenoxolone (CBX), a widely used non-specific 
inhibitor of connexin-made channels [49]. qPCR analysis 
for five different connexins expressed in various tumors 
[50-52] singled out Cx43 as the predominant isoform 
expressed by C26GM cells, whereas Cx40 and Cx26 
provide minor contributions (Figure 4b). 

Figure 5 illustrates the effects of gap junction 
inhibitors and other drugs on the speed of the intercellular 
Ca2+ wave, the ∆Ca2+ and ∆NO signals evoked in 
bystander cells by focal photodynamic injury. Both CBX 
and flufenamic acid (FFA), another commonly used, 
non-specific inhibitor of connexin-made channels [49], 
caused a significant reductions of these three parameters. 

We also examined the consequences of perturbing Ca2+ 
homeostasis prior to focal photodynamic injury. The mild 
inhibition we observed in Ca2+−free extracellular medium 
(EGTA) implies negligible contribution of Ca2+ entry to 
bystander responses. Conversely, all three parameters were 
significantly reduced if ER Ca2+ levels were lowered by 
incubating C26GM cultures with cyclopiazonic acid [53] 
(CPA), a specific inhibitor of sarco/endoplasmic reticulum 
Ca2+−ATPase (SERCA pumps), in Ca2+ free medium. The 
most pronounced reductions of ∆NO and Ca2+ bystander 
signals were obtained with 2APB, a non-specific inhibitor 
of IP3 receptors (IP3R) [54] . ∆NO and ∆Ca2+ signals and 
the speed of the intercellular Ca2+ wave were significantly 
attenuated also by suramin [55], suggesting that paracrine 
signaling mediated by ATP may play a role. Finally, 

Figure 4: c26GM cells are coupled by gap junction 
channels. (a) Coupling assay based on voltage imaging with 
the Vf.2.1.Cl membrane potential sensor shows cells are coupled 
by gap-junction channels (Ctrl), which can be blocked by 
carbenoxolone (CBX, 100 µM); scale bar, 50 µm. (b) Relative 
abundance of connexin transcripts in C26GM cultured cells 
assayed by qPCR. 

Figure 5: summary of pharmacological interference 
experiments. Cells were incubated for 15−20 min with shown 
drugs prior to focal photodynamic injury; concentrations: EGTA, 
100 µM (in nominally Ca2+−free medium); CBX, 100μM; FFA, 
100 µM; 2-APB, 100 µM; CPA, 30 µM; suramin (Sur), 200 
µM; L-NIO, 10 µM. Data in (a−b) are mean ± s.e.m. of signals 
measured in 36 randomly selected bystander cells located in an 
annular region at the periphery of the field of view (between 75  
µm and 120 µm from the irradiated cell). (a) NO level change 
(∆NO) normalized to the average change measured in control 
conditions (Ctrl). (b) Cytosolic Ca2+ concentration change 
(∆Ca2+). (c) Speed of Ca2+ wave elicited by focal photodynamic 
injury. 
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the potent irreversible NOS inhibitor N-iminoethyl-L-
ornithine (L-NIO) [56] significantly reduced bystander 
NO responses (Figure 5a) without affecting bystander Ca2+ 
signaling (Figure 5b,c).

The results presented so far support the notion that 
coupling through gap junctions significantly contributes to 
the ∆Ca2+ and ∆NO signals evoked by focal photodynamic 
injury, by permitting cell-to-cell propagation of ER− 
and IP3R−related Ca2+ signals through the network of 
bystander cells. To evaluate the relevance of gap junction 
communication also for the apoptotic effects triggered 
by focal photodynamic injury, we performed additional 
experiments in C26GM cultures co-loaded with AlClPc 
and fura-2. At the end of laser irradiation, we switched 
from Ca2+ imaging to a time-lapse protocol based on 
staining with propidium iodide and pSIVA-IANBD 
(Figure 6), an annexin-based polarity sensitive probe for 

the spatiotemporal or kinetic analysis of apoptosis [57]. 
Under control conditions, the irradiated cell exhibited 
detectable pSIVA-IANBD signals as soon as 30 min 
after focal photodynamic injury. Both pSIVA-IANBD 
and propidium iodide signals became detectable in the 
irradiated cells and the nearest neighbours within 1 h, 
and reached the limits of the field of view within 3 h 
(Figure 6a). These processes were greatly attenuated and 
slowed down by the gap junction blocker FFA (Figure 
6b). No toxicity was observed in C26GM cultures loaded 
with AlClPc but not exposed to laser irradiation at 671 
nm (Figure 6c). The fraction of C26GM cells exhibiting 
apoptotic signals as a consequence of focal photodynamic 
injury increased almost linearly with time, exceeding 
15% of the population within 3h; this apoptotic rate was 
significantly reduced, by a factor >2.5, in the presence of 
FFA (Figure 7). 

Figure 6: Apoptosis assays. The leftmost panels in (a−c) are representative false−color images of cytosolic Ca2+ concentration changes 
(∆Ca2+) obtained as maximal projection rendering of all frames recorded while imaging C26GM cell cultures for 60 s. The same cultures 
were then immediately used for time-lapse microscopy, applying the polarity sensitive probe for the spatio-temporal analysis of apoptosis 
pSIVA-IANBD (pSiva, green) together with propidium iodide (PI, red) as instructed by the manufacturer. In (a) and (b), focal photodynamic 
injury was performed as usual. In (c), cells were loaded with AlClPc as in (a) and (b), but the laser was not activated. In (b), FFA was 
maintained throughout the recording. Scale bars, 50 µm.
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DIscUssION

The overall goal of this study was to investigate 
the interplay between bystander NO and Ca2+ signaling 
and the role played by gap junction communication in 
photodynamic therapy. A striking outcome of our work 
is that photoactivation in a single cell of a well known 
photosensitizer, AlClPc [30-35], a condition we refer to as 
focal photodynamic injury, results in cytochrome-c release 
and apoptosis, which progress radially from the irradiated 
cell and cause massive cell demise in the ∼300 µm Ø field 
of view within 24 h (Figures 1, 6 and 7). The similarity 
between the responses evoked by focal photodynamic 
injury in vitro (Figure 1) and in vivo (Supplementary 
Figure 1) suggests that these finding may be relevant for 
photodynamic therapy treatments.

By performing fluorescence imaging with CuFl, a 
probe that reacts rapidly and specifically with NO over 
other potentially interfering reactive molecules [37, 38], 
we showed here that the irradiated cell acts as a powerful 
source of NO, which is generated almost immediately 
upon photo−activation of the photosensitizer and rapidly 
diffuses to bystander cells. To account for the extremely 
rapid rise in NO levels during AlClPc photo−activation, 
we hypothesize that NO is buffered by this phthalocyanine 
photosensitizer and released from the cell exposed to laser 
irradiation. This mechanism is supported by quantum 
chemistry computations, showing that the metal center 
of AlClPc binds NO in a redox-dependent manner [58]. 

Indeed, there is ample evidence that phthalocyanines 
can be specifically modified to act as highly efficient NO 
reservoirs and photosensitive NO donors that also produce 
singlet oxygen [59, 60].  

Photoactivation of  AlClPc disrupts Ca2+ 
homeostasis in the irradiated cell and initiates a radial 
Ca2+ wave. Reactive oxygen and nitrogen species (ROS/
RNS) influence Ca2+ homeostasis via inhibition of PMCA 
and SERCA pumps and/or by increasing activity of ER 
release channels (both IP3Rs and ryanodine receptors) [61, 
62]. Current hypotheses propose an alteration of PMCA 
Tyr589, Met622 and Met831 residues whereas SERCA 
activity has been shown to be inhibited by ROS/RNS 
modification of cysteine (and tyrosine) residues [61]. 

The original analysis method we developed for CuFl 
signals (see Methods, Equation 1 and Supplementary 
Methods) has been instrumental to demonstrate that NO 
levels increase faster than Ca2+ levels at all locations. 
Comparison of measured ∆NO signals to those predicted 
by a simple diffusive model indicates that NO diffusion 
from the irradiated cell accounts only for a fraction of 
the responses detected by CuFl in bystander cells (Figure 
3). We have equated (Ca2+ dependent) enzymatic NO 
production in bystander cells (Figure 3c) to the difference 
between measured (Figure 3a) and diffusive ∆NO signals 
(Figure 3b). ∆NO responses predicted by the diffusive 
model were computed assuming that NO influx into 
bystander cells is not hindered by the plasma membrane. 
However, the exchange of NO between extracellular 

Figure 7: Percentage of apoptotic cells at three time points following focal photodynamic injury in control conditions 
and in the presence of FFA. Data are mean ± s.e.m. from n = 3 cultures in each condition.
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medium and cytoplasm was recently proposed to require 
connexin hemichannels [63]. If the plasma membrane 
indeed slows down NO influx, bystander responses in 
Figure 3b are over-estimated and, correspondingly, those 
in Figure 3c are under-estimated. Based on our data, the 
latter accounts for (at least) ∼50% to ∼70% of ∆NO signals 
in bystander cells. Furthermore, the relative importance 
of enzymatic production versus NO diffusion from the 
irradiated cell increases with increasing distance from 
enzymatic NO production (Figure 3d,e). This conclusion 
is supported by the >70% reduction imparted by the NOS 
inhibitor L-NIO [56] to the ∆NO responses of bystander 
cell at the periphery of the filed of view (Figure 5a). 

Altogether, the results of our modeling efforts and 
pharmacological interference experiments (Figures 3, 
5−7 and Supplementary Figure 3) are consistent with 
a scheme in which NO produced in the irradiated cell 
diffuses rapidly to bystander cells, where its levels are 
further increased by a slower mechanism compatible 
with Ca2+−dependent enzymatic production driven by the 
underlying Ca2+ wave, which initiates in the irradiated cell 
and propagates to bystander cells at constant speed (Figure 
1c). 

In accord with our proposed hypothesis, we have 
unequivocally showed that C26GM cells are coupled by 
gap junction channels mainly formed by Cx43 subunits 
(Figure 4). Furthermore, pharmacological perturbation 
of either gap junction communication or intracellular 
Ca2+ homeostasis reduced significantly the speed of 
the intercellular Ca2+ wave as well as ∆Ca2+ and ∆NO 
bystander responses, whereas NOS inhibition by L-NIO 
[56] significantly reduced ∆NO responses without 
affecting appreciably Ca2+ signaling. Of notice, ∆Ca2+

max 
in bystander cells shows a tendency to increase with 
distance from the irradiated cell (Figure 2), implying an 
active, self-regenerative mechanism [40]. In this regard, 
the sensitivity of Ca2+ wave speed, ∆Ca2+ and ∆NO signals 
to suramin suggests that a paracrine mechanism involving 
ATP release may also contribute to Ca2+ wave propagation 
(as previously reported for bystander radiation damage 
[45]) and thus also to Ca2+−dependent enzymatic NO 
production. By contrast, the mild inhibition we observed 
in Ca2+−free extracellular medium implies negligible 
contribution of Ca2+ entry to bystander responses [61].

Recent evidence points to a critical involvement 
of  IP3R-linked Ca2+ signals for the spreading of 
cytochrome−c induced apoptosis in cellular systems 
coupled by gap junction channels [64, 65]. Consistent with 
this tenet, we found that 2-APB, a well known blocker of 
IP3R-dependent calcium release [54] that also inhibits gap 
junction channels [66], reduced significantly Ca2+ wave 
speed and caused the most pronounced reduction in both 
∆Ca2+ and ∆NO bystander response amplitudes (Figure 5). 

The importance of connexins as defense from 
tumorigenesis and their beneficial role in primary tumors 
is well supported by several in vitro and in vivo models 

[67, 68]. Our results suggest that potentiating bystander 
effects upregulating connexins by either targeted drug 
treatments or viral transduction in primary tumors might 
enhance the therapeutic potential of photodynamic 
therapy. They also suggest that temporarily inhibiting 
gap junction communication might reduce unwanted side 
effects produced by photodynamic treatment of vascular 
disorders in the retina[11].

MAtErIALs AND MEtHODs

cell culture 

1.5–2.0x105 C26GM mouse colon carcinoma cells 
[29] were plated on 12 mm round glass coverslips and 
cultured at 37° C, 5% CO2 in  Dulbecco’s modified Eagle’s 
medium (DMEM, Life technologies), supplemented 
with 2 mM L–glutamine, 10 mM HEPES, 50 μM 2–
Mercaptoethanol, 150 U/mL streptomycin, 200 U/mL 
penicillin and 10% heat–inactivated fetal bovine serum 
(FBS, Gibco).

Focal photodynamic injury

AlClPc [30-32] was dissolved in dimethyl sulfoxide 
at 10 mM concentration and kept in the dark. C26GM 
cell cultures were incubated with AlClPc (10 μM) and 
co–loaded with fura–2 AM [36] (15 μM), for 60 min at 
37° in DMEM containing pluronic F–127 (0.1%, w/v), 
and sulphinpyrazone[69] (250 μM). After 60 min of 
AlClPc and fura–2 incubation, cells were additionally 
loaded at room temperature for 20 min with CuFl 37,38 
at the final concentration of 20 μM. C26GM cells were 
then transferred to the stage of an upright fluorescence 
microscope (Bx51, Olympus) and continually superfused 
with an extracellular medium containing (in Mm): NaCl 
150, KCl 5, MgCl2 1, sodium pyruvate 2, Hepes–NaOH 
10, D–glucose 5 (pH 7.2, 310 mOsm). When present, 
CaCl2 was added at the final concentration of 1 mM. For 
focal photodynamic injury, we photo-activated AlClPc for 
60 s using a CW 671 nm diode-pumped solid-state laser 
(Shanghai Dream Lasers) connected to a fluorescence 
microscope and activated electronically by a transistor-
transistor-logic (TTL) command under the control of the 
image acquisition software. To ensure confined photo-
activation within a 5 µm ∅ area of a single cell at an 
irradiance of 60 µW/µm2, we launched laser light into 
a multi-mode step-index fiber optics with 62.5 µm core 
∅ and projected a sharp demagnified image of the fiber 
terminal onto the object plane of the microscope using an 
achromatic collection lens (Thorlabs) and a 650 nm short 
pass dichroic mirror (Edmund Optics) tilted at 45° and 
placed right above the objective lens of the microscope. 
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ca2+ and NO imaging

The ratiometric Ca2+ sensor fura–2 [36] was 
alternatively excited at 365 nm and 385 nm by light 
from collimated LEDs (Thorlabs) whereas the turn-
on NO sensor CuFL 37,38 was excited by a 470 nm 
LED (Thorlabs). The three LEDs were activated in 
rapid sequence for 50 ms each and the activation cycle 
was repeated once every second. LEDs emissions were 
filtered through interference band–pass filters centered on 
the respective peak wavelength, attenuated with a neutral 
density filter (optical density, 2.12) and conveyed onto the 
sample by reflection off a DM480HQ dichromatic mirror 
(Olympus). For both dyes, fluorescence emission was 
collected through an interference filter (BA495–540HQ, 
Olympus) using a water immersion objective (40x, N.A. 
0.8, LumPlanFL, Olympus). Images were formed on a 
sCMOS camera (PCO.Edge, 50 ms exposure time/frame) 
controlled by software developed in the laboratory.

Images were analyzed with software developed in 
the laboratory using the Matlab platform (Release 14, 
MathWorks, Inc., Natick, MA, USA). Fura-2 and CuFl 
traces were generated by averaging pixel signals within 
regions of interest (ROIs) corresponding to individual 
cells located at different distance from the irradiated 
cell. Pseudocolor images were generated using the hue-
saturation-value (HSV) visualization algorithm [70]. 
Hue was used to represent fluorescence changes; value 
(brightness) carried pixel intensity from a reference image 
that was either updated on a frame-by-frame basis or 
obtained as an average over a specified number of frames; 
saturation was set to 1.0. Frames so constructed were 
converted to ordinary RGB images by a single call to the 
Matlab library function hsv2rgb, and displayed.

Analysis of NO signals

We converted CuFl fluorescence emission F at time 
t into NO concentration using the formula 

Equation 1

where  kON is the reaction rate of the CuFl-
NO complexation reaction, F0 is the (constant) pre-
stimulus fluorescence and square brackets denote molar 
concentration. Equation 1 is derived in the Supplementary 
Methods. To estimate numerically the temporal derivative 
of the recorded signals, F(t)/F0 data collected after the 
onset of AlClPc photo-activation were interpolated with a 
polynomial of order N comprised between 8 and 15 using 
the least square algorithm; the resulting polynomial was 
then differentiated analytically. Since kON is unknown[37, 

38], all data are presented as percent of the maximal signal 
computed in the irradiated cell using Equation 1.

Mathematical model of NO diffusion

The maximal diffusive contribution to NO bystander 
signals was estimated assuming that NO diffuses freely in 
the extracellular space as well as across cell membranes. 
Under these conditions NO concentration is determined by 
the diffusion equation [71]:

 Equation 2
[NO](t) measured in the irradiated cell using 

Equation 1 was used as input to the model and Equation 
2 was solved numerically in three dimensions using a 
finite difference approach with a time step Δt = 50 µs 
and DNO = 3300  µm2/s. The domain of Equation 2 and 
the corresponding boundary conditions are illustrated 
in Supplementary Figure 3. The domain volume was 
subdivided in voxels with 10 µm size in the z direction 
and 2 µm size in the x and y directions. Cells were 
modelled as having a polygonal base in the x-y plane (z 
= 0), reproducing their experimental distribution, and 
a height z = 10 µm. A reflecting boundary at z = 0 µM 
was introduced to describe the effect of the underlying 
glass, whereas absorbing boundaries were imposed at the 
horizontal plane z = 150 µm and on the vertical planes 
located at x ± 300 µm and y ± 300 µm. 

Analysis of ca2+ signals

Ca2+ signals were measured as fura-2 emission 
ratio changes, ∆R = R(t) − R(0), where t is time, R(t) is 
fura-2 emission intensity excited at 365 nm divided by 
the intensity excited at 385 nm, and R(0) indicates pre–
stimulus ratio. Estimates of the cytosolic free calcium 
concentration ([Ca2+]c) were obtained from ratio values 
using the Grynkiewicz formula [36]:

  

Equation 3
Rmin = 0.42 and Rmax = 13.04 refer to minimum 

and maximum ratio values recorded in situ with 10 μM 
ionomycin in the presence of 2 mM EGTA solution and 
20mM Ca2+ solution, respectively, Ff/Fb = 11.06 is the ratio 
of the fluorescence values of the Ca2+–free and Ca2+bound 
forms at 385 nm and Kd , the dissociation constant of fura–
2 at 22°C, was assumed to be 280 nM.
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Gap junction coupling assay

To visualize gap junction coupling in C26GM 
cells, we used a novel method based on a combination 
of patch-clamp and imaging of transmembrane potential 
[47]. Briefly, glass capillaries for patch clamp recordings 
were formed on a vertical puller (PP–83, Narishige, Japan) 
from 1.5-mm outer ∅ borosilicate glass (G85150T–4, 
Warner Instruments) and filled with an intracellular 
solution containing (in mM): KCl 134, NaCl 4, MgCl2 
1, HEPES 20, EGTA 10 (adjusted to pH 7.3 with KOH) 
and filtered through 0.22-µm pores (Millipore). Pipette 
resistances were 3–4 MOhm when immersed in the 
bath. C26GM cells were incubated for 15 min at 37°C 
in extracellular medium (see above) supplemented with 
200 nM of Vf2.1.Cl, a highly sensitive fluorescent sensors 
of plasma membrane potential [48] kindly provided by 
Roger Y. Tsien (University of California, San Diego) and 
pluronic F–127 (0.1% w/v). A cell located near the centre 
of the field of view was maintained under whole cell 
voltage clamp conditions using a patch clamp amplifier 
(EPC-7, HeKa). The patched cell was stimulated by a 
sinusoidal voltage command (also named carrier wave) 
delivered to the patch clamp amplifier (frequency 0.5 Hz, 
amplitude 35 mV). Current and voltage were filtered at 
3 kHz by an 8 pole Bessel filter and sampled at 20 kHz 
using a standard laboratory interface (Digidata 1440A, 
Molecular Devices) controlled by the PClamp 10 software 
(Molecular Devices). During electrical stimulation, 
Vf2.1.Cl fluorescence images were formed using a water 
immersion objective (60x, 1.0 NA, Fluor, Nikon) and 
projected on the sCMOS camera. Vf.2.1.Cl fluorescence 
was excited by light from the 470 nm LED, filtered 
through a BP460–480 filter (Olympus), attenuated with a 
neutral density filter (optical density, 2.12) and conveyed 
onto the sample by reflection off a 515 dcxr dichromatic 
mirror (Chroma). Fluorescence emission was collected 
through an ET535/30M filter (Chroma). Vf.2.1.Cl signals 
elicited by the carrier wave and propagated through the 
gap junction network were measured as relative changes of 
fluorescence emission intensity (∆F/F0). At each location, 
the amplitude of the ∆F/F0 signal at the frequency of 
the carrier wave was extracted using a phase-sensitive 
detection algorithm (for details, see [47]) and used to 
quantify the spatial extent of the gap junction network. 
For these recordings, images were acquired continuously 
at 10 frames per second with 100 ms exposure time. 
To synchronize image acquisition and patch clamp 
recordings, we sampled the 5 V pulse (FVAL) that signals 
active exposure of the sCMOS camera.

Apoptosis assay

C26GM cell were co-loaded with AlClPc and fura-
2 as described above. After focal photodynamic injury, 

pSIVA-IANBD and Propidium Iodide (Imgenex) were 
added directly to the extracellular medium, enriched 
with CaCl2 to a final concentration of 2.5 mM, and cells 
were imaged by time-lapse microscopy for up to 3 hours. 
pSIVA-IANBD fluorescence emission was imaged with 
the same settings used for Vf.2.1.Cl. Propidium Iodide 
was excited by light from a 535 nm LED attenuated with 
a neutral density filter (optical density,  2.12) and reflected 
off a DM560 dichromatic mirror (Olympus), and its 
fluorescence emission was collected through a long-pass 
emission filter (590LPV2, Chroma).

Immunofluorescence and confocal microscopy

C26GM cells, treated or not with AlClPc, were 
fixed in 4% paraformaldehyde for 20 min at room 
temperature, rinsed in phosphate buffered saline (PBS), 
and permeabilized with 0.1% Triton X–100, dissolved in 
bovine serum albumin (BSA) 1% solution and incubated 
with anti-cytochrome c antibody( BD Pharmingen). The 
Alexa Fluor 488- conjugated goat Anti-Mouse IgG (4 μg/
ml) was purchased from Life Technologies. Nuclei were 
counterstained with 1 μg/ml Hoechst 33258 and mounted 
with ProLong (Life technologies). Images were acquired 
using a confocal microscope (TCS SP5, Leica) equipped 
with an oil–immersion objective (63×, 1.25 NA, HCX 
PL APO, Leica). Laser line intensities and detector gains 
were carefully adjusted to minimize signal bleed through 
outside the designated spectral windows.

qPcr

mRNA was extracted from C26GM cultured cells 
using RNAeasy kit (Qiagen). cDNA was obtained by 
reverse transcription of mRNA with random hexamers 
and ThermoScript RT-PCR system (Life technologies) 
according to the manufacturer instructions. qPCR was 
performed on cDNA to amplify Cx26, Cx30, Cx30.3, 
Cx40, Cx43 and was normalized to GAPDH expression. 
Amplification was carried out using SYBR Green (Applied 
Biosystems) on the ABI 7700 sequence detection system 
equipped with ABI Prism 7700 SDS software (Applied 
Biosystems) through the following amplification cycles: 
50°C: 2 min, 95°C: 10 min, 95°C: 15sec, 60°C: 1 min 
(40 cycles). For real-time PCR the following primers were 
used: Cx26f: 5’−CGG AAG TTC ATG AAG GGA GAG 
AT −3’; Cx26r: 5’−GGT CTT TTG GAC TTT CCT GAG 
CA −3’; Cx30f: 5’− GTC ATC GGT GGC GTG AAC 
AAG CAC −3’; Cx30r: 5’− GAG CAG CAT GCA AAT 
CAC GGA TGC −3’; Cx30.3f: 5’− TCA AAC ATG GGC 
CCA ATG −3’; Cx30.3r: 5’− GGG AGT CAC AGA GCA 
AGC −3’; Cx40f: 5’− CTG TCC CCA CCC AGT CAA 
CT −3’; Cx40r: 5’− CCG TTT GTC ACT ATG GTA GC 
−3’; Cx43f: 5’− TAC CAC GCC ACC ACC GGC CCA 
−3’; Cx43r: 5’− GGC ATTTTGGCTGTCGTCAGGGAA 
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−3’; GAPDHf: 5’−ATG TGT CCG TCG TGG ATC TGA 
C−3’; GAPDHr: 5’−AGA CAA CCT GGT CCT CAG 
TGT AG−3’.

Quantification of connexin mRNA expression 
relative to GAPDH was performed using the ΔΔCT 
method.

Data analysis and statistics

Unless otherwise stated, statistical comparisons 
of means for paired samples were made by one-way 
heteroscedastic Student t-test. p-values are indicated by 
letter p and p < 0.05 was selected as the criterion for 
statistical significance. In figures, asterisks were used as 
follows: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001. 
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