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ARID2: A new tumor suppressor gene in hepatocellular 
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AbstrAct:
Hepatocellular carcinoma (HCC) is one of the most common malignancies 
worldwide, however, genetic-environmental interactions and mechanisms 
associated with the development of HCC remains largely unclear. Our recent 
work described novel inactivating mutations of ARID2 (AT-rich interactive 
domain 2) in four major subtypes of HCC through exomic sequencing of 
ten HCV-associated HCCs and subsequent evaluation of the tumors from 
additional affected individuals. Here, we summarize the current knowledge 
about the relevance of ARID2 in HCC and the implication in future patient care.

IntroductIon

Hepatocellular carcinoma (HCC) is one of the most 
frequent malignant diseases worldwide. With an estimated 
748,000 newly diagnosed cases per year and a low five-
year survival rate, HCC is the third leading cause of cancer 
deaths [1, 2]. Epidemiologic studies have conclusively 
linked viruses and chemicals to the development of HCC 
[3]. Among the viruses, hepatitis B (HBV) and C (HCV) 
viruses attribute to HCC development in more than 80% 
of the HCC cases [4]. The non-viral risk factors, including 
dietary aflatoxin B1 (AFB1) exposure, cigarette smoking 
and heavy alcohol consumption, can have synergistic 
effects [5]. Besides these risk factors, several disorders 
such as cirrhosis alone and hemochromatosis are 
associated with an increased risk of HCC [6]. 

In recent years, the mechanisms and genetic-
environmental interactions associated with the 

development of HCC have been elucidated [7, 8]. 
Genomic and gene expression analyses have identified 
key dysregulated signal transduction pathways involved 
in liver carcinogenesis [9]. The genomic structural 
changes including recurrent allelic deletions and regional 
losses and gains have been found on several chromosomes 
[10-14]. Epigenetic changes in genomic DNA appear to 
act by directly suppressing gene expression as well as 
indirectly by creating conditions that increase the chance 
of generating hepatocyte populations containing critical 
combinations of structurally and functionally aberrant 
genes [10-12]. Several critical genes including oncogenes 
such as c-myc and N-ras [15] and tumor suppressor genes 
such as TP53, Rb1, CDKN2A, Axin1 are located in the 
chromosome regions of genomic and epigenetic changes 
[9-11, 15, 16].
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MutAtIons IdentIfIed In Hcc

To gain additional insights into the genetic basis 
of HCC, we performed exomic sequencing for ~18,000 
protein-coding genes in the cancers and normal tissues 
of ten individuals with HCV-associated HCC [17]. Four 
hundred and twenty-nine non-synonymous somatic 
mutations in 411 genes were identified. Five genes, which 
were somatically mutated in more than one tumor, were 
further analyzed. Among these, CTNNB1 was mutated 
in four tumors, TP53 was mutated in three tumors, and 
ARID2, DMXL1 and NLRP1 were each mutated in two 
tumors. The former two genes, CTNNB1 and TP53, have 
been previously observed in HCC as tumor suppressor 
genes, but the other three have not been reported in any 
tumor type to our knowledge. The ARID2 mutations, 
which seemed enriched in HCV-associated HCC in the 
US and European patient populations (14%, 6 out of 43 
tumors) compared with the overall mutation frequency 
(6.5%, 9 out of 139 tumors), attracted much interest.

Human ArId2 and its structural characteristics

ARID2 (AT-rich interactive domain 2) was initially 
identified in the Polybromo-associated BRG1-associated 
factor (PBAF) complex, a SWI/SNF chromatin-
remodeling complex involved in ligand-dependent 
transcriptional activation by nuclear receptors [18-20]. 
Human ARID superfamily includes fifteen members 
which are classified into seven subfamilies named ARID1 
through ARID5, JARID1 and JARID2 [21, 22]. ARID1 
consists of two members, ARID1a and ARID1b. ARID1a, 
ARID1b, and ARID2, also known as BAF250a, BAF250b 
and BAF200, respectively, are all subunits of the SWI/
SNF complexes. 

The human ARID2 gene is located on chromosome 
12q and consists of 21 exons (Figure 1a). Its orthologs have 

been found in mouse, rat, cattle, chicken, and mosquito. 
The ARID2 protein contains a conservative N-terminal 
AT-rich DNA interaction domain (ARID), a RFX-type 
winged-helix, a proline- and glutamine-rich region, and 
two conservative C-terminal C2H2 Zn-fingers motifs 
(Figure 1b) [23]. ARID-containing proteins are involved 
in a variety of biological processes including embryonic 
development, cell lineage gene regulation, and cell cycle 
control [24]. Besides the N-terminal domain, the RFX 
domain is another DNA-binding domain and was named 
after Regulatory Factor X, a protein that binds to the 
X-box of the MHC class II genes [25]. The two C2H2 Zn-
fingers form the tandem CWCH2 (tCWCH2) motif that 
is the most popular DNA-binding motif among putative 
eukaryotic transcription factors [26]. Recent studies 
regarding the binding capability of Zinc-finger domains 
revealed that zinc fingers can bind not only to DNA but 
also to RNA and protein. Therefore, it is plausible that the 
double Zinc-finger of ARID2 has the potential to interact 
with DNA, RNA, and/or proteins [27, 28]. 

ARID2: A new tuMor suppressor 
gene In Hcc

The three types of ARID2 mutations identified in 
the HCV-associated HCCs are frame-shifting deletion, 
nonsense mutation and splice site alteration [17] (Figure 
1a). These alterations are predicted to truncate and 
inactivate the ARID2 protein (Figure 1b). Interestingly, 
some of the mutations disrupt the Zn-finger motifs only, 
suggesting the importance of these motifs in the biological 
activity of ARID2.

In addition to genetic evidence, functional studies 
have shown that ARID2 was the only subunit in PBAF 
with short transcript half-life and suppression of 
ARID2 by small interfering RNA reduced the protein 
levels of other subunits in the PBAF complex [20]. 

Figure 1: Somatic ARID2 alterations identified in HCC. a, Somatic alterations identified in the ARID2 gene. *, nonsense mutations; 
#, frame-shifting indels; &, splice site mutation. b, ARID2 protein and the inactivating alterations (red arrows) Truncating mutations are 
indicated by red arrows. ARID, AT-rich interaction domain; RFX, RFX-like DNA binding motif; GLN, Proline-and glutamine-rich region; 
ZnF, C2H2 Zinc fingers.
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Thus, ARID2 is essential for the stability of the PBAF 
complex. Interestingly, a recent study employing exomic 
sequencing has identified high-frequency (92/227, 41%) 
truncating mutations in the PBRM1 gene in renal clear 
cell carcinomas [29]. PBRM1 encodes the BAF180 
protein, another chromatin targeting subunit of the PBAF 
complex. A third PBAF protein likely involved in tumor 
genesis is BRD7. The BRD7 gene is frequently deleted in 
the breast cancers with wild-type p53 [30]. Mutations in 
subunits of BAF, another SWI/SNF complex, have also 
been found in human cancers. Inactivating mutations in 
ARID1A (BAF250a) were identified in approximately 
50% of ovarian clear-cell carcinomas [31], 30% of 
endometrioid carcinomas [32], 83% of gastric cancers  
with microsatellite instability [33], 10% of colorectal 
cancers [34], and 19% of transitional cell carcinoma 
of the bladder[35]. In addition, biallelic inactivating 
alterations in the hSNF5/INI1 gene which encodes a 
subunit shared by the PBAF and BAF complexes were 
found in almost all malignant rhabdoid tumors [36-38]. 
These observations strongly suggest that the SWI/SNF 
complexes have tumor-suppressing activities and ARID2 
is a tumor suppressor gene. 

ArId2 And Ifn sIgnAl trAnsductIon

Increasing evidence suggests that the SWI/SNF 
complexes mediate cellular antiviral activities by binding 
to the IFN-inducible promoters to facilitate chromatin 
remodeling in response to IFN signaling [39-41] (Figure 
2). A recent study has identified ARID2 as a specificity 
subunit in PBAF [20]. Functional analysis showed 

that suppression of ARID2 by small interfering RNAs 
specifically abolished transcription of the interferon-
α-induced IFITM1 (interferon-induced transmembrane 
protein 1) gene, but not the others examined. Interestingly, 
IFITM1 is required for the IFN-induced anti-proliferative 
activity in hepatocellular carcinoma cells and non-
malignant hepatocytes [42]. Thus, ARID2 seems to play 
an important role in regulating the expression of a subset 
of the interferon responsive genes and in mediating the 
anti-proliferative activity. It is conceivable that the ARID2 
mutations abrogate the induced expression of these genes 
upon IFN signal transduction, which sets a stage for 
HCV virus and the infected host cells to escape from the 
IFN anti-proliferative activities. In addition, the infected 
host cells harboring ARID2 mutations may have lost 
the ability to express higher levels of the class I MHC 
molecules in response to IFN signaling, making them less 
visible to the cytotoxic T lymphocytes [43]. These cells 
will then proliferate in an uncontrolled fashion and have 
the opportunity to acquire more genetic alterations and 
clonally expand into full-blown cancers.

future studIes

Strong genetic and functional data have been 
provided to support the notion that ARID2 is an important 
tumor suppressor gene in HCC. The future work should 
capitalize on this discovery by focusing on the following 
research efforts that could lead to significant improvement 
in patient care.

1. Clinical studies should be conducted to investigate 
whether ARID2 mutations impact the prognosis of HCC 
patients in general and the prognosis of patients who 
have undergone treatment (e.g. curative therapy, IFN 
therapy, etc.). Adjuvant IFN therapy following curative 
HCC treatment has shown encouraging results, but more 
clinical studies are needed before it can be accepted as the 
standard of care for HCC patients [44-47]. Based on the 
observation that ARID2 was involved in IFN signaling, it 
is tempting to hypothesize that the ARID2 mutations might 
impact the outcome of the adjuvant IFN therapy. Thus, 
in future studies for adjuvant IFN therapy, the resected 
tumors should be genotyped for ARID2 mutations. The 
information obtained from these studies could be used 
to redirect specific health care resources to the patient 
populations that benefit the most.

2. We have observed an enrichment of the ARID2 
mutations in HCV-associated HCC in the US and European 
patient populations (6/43 tumors, 14%), compared with 
HBV-associated HCC in the Chinese population (1/50 
tumors, 2%, P = 0.046) [16]. However, a larger study 
including more Chinese and Western patients with 
HCV-associated HCC is required to confirm the result 
and rule out the possibility that ethnic or environmental 
factors contribute to this difference. It should be noted 
that HCV has six major genotypes which are clustered 

figure 2: schematic representation of the pbAf 
complex containing ArId2 (bAf200) which is 
involved in the transcriptional initiation of the human 
IFN-α/β/γ genes. IFN, Interferon; IFNAR, Interferon-α/β/γ 
receptor; PBAF, Polybromo-associated BRG1-associated factor; 
ISRE, Interferon-sensitive response element; GAS, Interferon-
γ-activated site; STAT1, Signal transducers and activators of 
transcription 1.
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based on geographic regions [48, 49]. For example, type 
1a and 1b of HCV are dominant among the US patients, 
whereas type 1b and 2a are more common in China. Thus, 
HCV genotyping should also be performed for Chinese 
and Western patients to investigate whether the ARID2 
mutations are correlated with specific HCV subtypes.

3. The PBAF chromatin-remodeling complex seems 
to be a preferred target of tumorigenesis in both HCC and 
renal clear cell carcinoma. Furthermore, its specificity 
subunit ARID2 is required for the expression of a subset 
of the IFN-inducible proteins, including IFITM1 that 
mediates the IFN anti-proliferative activity. Studies 
to further characterize the biochemical and biological 
activities of the PBAF complex and its subunits, as well 
as the signal transduction pathways it regulates will 
provide insights that could help design novel therapeutic 
approaches.

HCC remains a leading cause of cancer deaths, 
despite worldwide efforts to develop more effective 
therapeutic approaches. Personalized therapy brings new 
hope for HCC patient care. Stratification of patients based 
on the genetic defects identified in the tumors could help 
redirect precious patient care resources to those who 
would benefit most and thus, reduce the health care cost. 
More importantly, treatment plans tailored to individual 
patients could result in better therapeutic response. The 
identification of ARID2 as an important tumor suppressor 
gene in HCC provides another target that can be exploited 
for personalized medicine.
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