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Prognostic value of a 92-probe signature in breast cancer
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ABSTRACT
Clinical applications of gene expression signatures in breast cancer prognosis 

still remain limited due to poor predictive strength of single training datasets and 
appropriate invariable platforms. We proposed a gene expression signature by 
reducing baseline differences and analyzing common probes among three recent 
Affymetrix U133 plus 2 microarray data sets. Using a newly developed supervised 
method, a 92-probe signature found in this study was associated with overall survival. 
It was robustly validated in four independent data sets and then repeated on three 
subgroups by incorporating 17 breast cancer microarray datasets. The signature was 
an independent predictor of patients’ survival in univariate analysis [(HR) 1.927, 
95% CI (1.237–3.002); p < 0.01] as well as multivariate analysis after adjustment 
of clinical variables [(HR) 7.125, 95% CI (2.462–20.618); p < 0.001]. Consistent 
predictive performance was found in different multivariate models in increased 
patient population (p = 0.002). The survival signature predicted a late metastatic 
feature through 5-year disease free survival (p = 0.006). We identified subtypes 
within the lymph node positive (p < 0.001) and ER positive (p = 0.01) patients that 
best reflected the invasive breast cancer biology. In conclusion using the Common 
Probe Approach, we present a novel prognostic signature as a predictor in breast 
cancer late recurrences.

INTRODUCTION

Breast cancer is the leading cause of cancer-related 
deaths amongst women worldwide [1] and it is recognized 
to be a molecularly heterogeneous disease [2]. DNA 
microarray technology has the potential to identify breast 
cancer gene signatures which can improve diagnosis and 
risk stratification [3–5]. Most gene expression profiling 
studies, however, have been performed on relatively 
small data sets resulting in overfitting of the training [2, 
4, 6]. To develop a stable signature in such a profiling, 
at least thousand samples are needed [7]. Meta-analysis 
is considered to be a promising approach to overcome 
this limitation by combination of microarray data sets [8]. 

However, this might have some common problems such 
as challenges of different probes in individual microarray 
chips with varying in precision, different relative scales, 
and diverse dynamic ranges [9, 10]. It has also been 
shown that robust identification of prognostic signature 
is performed either by the combination of identical [11] 
or different microarray chip [12]. In both approaches, 
confined probe sets are used because the former method 
incorporates limited number of probes while the latter 
excluded majority of the genes required to predict the 
patient’s outcome. In different combinations, matched 
probe identification numbers (ID) or gene symbols 
may further increase measurement bias [10]. Lack of 
independent and/or additional validation may also lead 
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to uncertainty of the prognostic signature in clinical 
application. There is thus a need to identify a prognostic 
signature that would solve the problems of small patient 
data and also preserve the predictive strength without 
combining microarray data, to accurately predict the 
patient’s outcome as well as the biology of the disease.

In the present study, we identified a novel probe 
signature by reducing baseline differences, incorporating 
a large number of probes and patients (677), and updated 
primary breast cancer datasets to improve predictor 
performance. In addition, we tested whether the identified 
gene signature could robustly validate in independent and 
combined data sets. Finally, we attempted to demonstrate 
whether this signature could distinguish subtypes of breast 
cancer reflecting the biological and clinical characteristics 
of the disease.

RESULTS

Identification of common probe sets

We selected three recent microarray data of 
primary human breast cancer considering both high and 
moderate quality of gene expression, cancer cells content 
(>60%), patients number (n > 100), treatment regimen 
(2/3rd untreated before surgery) and previous survival 
association. Detailed information and distribution of 
several clinical variables for these data sets are shown in 
Tables 1 and 2. A flow chart showing the identification of 
common probe sets is depicted in Supplementary Figure 
S1. Each of the three data sets were filtered individually 
on the log2 scale with at least five observations that 
represented the same probe expression level. As a result, 
810, 1024 and 918 probe sets were identified from data 
sets 1, 2, and 3, respectively, and were passed through a 
Venn diagram generator that produced 408 common probe 
sets. The heatmap of these common probe sets for the 
three data sets is shown in Supplementary Figure S2.

Development of a prognostic survival signature 
and risk prediction

To identify the prognostic gene candidates, we used 
the univariate Cox regression to generate hazard ratio 
using the Cox regression coefficient of each probe in the 
prognostic signature. The 102-probe sets identified from 
training data set 1 showed a strong association with patients 
overall survival (OS). Individual Kaplan-Meier graphs were 
then evaluated and the significant 92 probe sets were finally 
considered the prognostic signature (Figure 1) in which 
75 probes sets were down-regulated (HR < 1.0) while 17 
were up-regulated (HR > 1.0) in patients with breast cancer 
early deaths (Supplementary Table S3). These 92 probe 
sets corresponded to 70 annotated gene symbols, 31 were 
biologically functioning genes, 10 genes were represented 
by more than one probe set and 8 were unknown genes 
(Table 6 and Supplementary Table S3). The survival risk 
prediction analysis was performed to classify patients 
into two risk groups and generated distinct prognostic 
index for each patient using all the 92-probe expression 
values and OS (months) (Figure 2A). The patients were 
then dichotomized into groups of high or low risk using 
the 50th percentile (median) cutoff of the prognostic index 
(-0.272144). To evaluate patient’s prognosis, Kaplan-
Meier plots were drawn and the log-rank test showed 
significant differences in all prognostic variables including 
OS and relapse free survival (RFS) in the training group 
(p < 0.001; Figure 2D and 2E). The heatmap of the 92-probe 
signature and the clinical variables between risk groups are 
in Figure 2C and 2B, in which the clusters are correlated 
with estrogen receptor (ER) and tumor grade but not with 
nodal status. To evaluate the strength of the predictor, the 
survival risk prediction analysis was performed separately 
for the datasets 2 and 3 using both the 102 and the 92-probe 
sets, respectively. The new prognostic indexes were then 
generated using survival time [OS and disease free survival 
(DFS)], and probe expression of individual patients. It is 

Table 1: Breast cancer microarray datasets used in this study.
GEO Number Origin/Year Author Paper Title Chip type

Data set 1GSE42568 Ireland, 2013 Clarke et al Breast Cancer Gene Expression 
Analysis HG-U133_Plus_2

Data set 2GSE20685 Taiwan, 2011 Kao et al Microarray-based molecular 
subtyping of breast cancer HG-U133_Plus_2

Data set 3GSE31448 France, 2011 Sabatier et al
Down-regulation of ECRG4, 
a candidate tumor suppressor 
gene in human breast cancer

HG-U133_Plus_2

Data set 4GSE12276 Netherlands, 2009 Bos et al Expression data from primary 
breast tumors HG-U133_Plus_2

Data set 5GSE48390 Taiwan, 2013 Huang et al Concurrent Gene Signatures for 
Han Chinese Breast Cancers HG-U133_Plus_2

GSE, GEO datasets number prefixes; HG-U133_ Plus_ 2, a type of oligonucleotide gene chip from the Affymetrix.
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noteworthy that all the results were found to be significantly 
associated with patients’ prognosis (Figure 3).

Validation of the gene expression signature in 
independent and combined data sets

To evaluate the prognostic performance of the 
newly developed 92-probe signature, validations were 
first done on independent datasets 2, 3, 4 and 5. Data set 
1 from Ireland cohorts was used for training of classifiers 
to validate all the datasets. To begin with, the 92 probes 
of the training cohorts were combined with corresponding 
probes from each of the validation sets. All the genes in 
the signature were submitted into the prediction algorithms 
CCP, LDA, 1NN, 3NN, NC and SVM for the validation 
of the datasets. Performance of the gene signature was 
assessed by leave-one-out cross-validation (LOOCV) to 

obtain the accuracy, sensitivity and specificity. During 
LOOCV, the specificity for predicting high risk in dataset 
2, 3 and 5 was 1.0, while that for dataset 4 was 0.93. On 
the other hand, the sensitivity of the corresponding datasets 
was 0.902, 0.961, 0.922 and 0.872, respectively. The area 
under curve (AUC) during cross validation was 0.999 for 
the data set 2, 3, and 5; while 0.967 for data set 4 (data not 
shown). The Kaplan-Meier plots predicted by CCP showed 
significant difference with prognosis in all independent 
datasets (p = 1.12 × 10−3, p = 3.16 × 10−3, p = 1.2 × 10−5 
and p = 1.37 × 10−2, respectively; Figure 4B–4E). With the 
exception of SVM of data set 5, all prediction algorithms 
used in the analysis showed similar strength in significance 
level (Supplementary Figure S3). To determine whether 
the signature would improve the prognostic prediction 
with increased patient population, three subgroups were 
made for combined validation (see Methods) from 17 

Table 2: Clinical and demographical characteristics of the patients.
Variable Data set 1 Data set 2 Data set 3 Data set 4 Data set 5

Number of patients 104 327 246 195 81

Median age at diagnosis (years) 56 (31–90) 46 (24–84) 54.5 (24–84)   

Median follow-up (months) 63 (4.6–111) 97 (5–169) 54.2 (3.4–222.3) 27 (3–115) 50 (0.9–69.0)

Tumor Grade      

 I 11 (10.5%)  43 (17.5%)   

 II 40 (38.5%)  84 (34.1%)   

 III 53 (51.0%)  119 (47.2%)   

 N/A   3 (1.2%)   

Estrogen Receptor      

 Yes 67 (64.4%)  139 (56.5%)  53 (65.4%)

 No 34 (32.7%)  105 (42.7%)  28 (34.6%)

 N/A 3 (2.9%)  2 (0.8%)   

Progesterone Receptor      

 Yes   120 (48.8%)   

 No   124 (50.4%)   

 N/A   2 (0.8%)   

Lymph Node      

 Yes 59 (56.7%)  129 (52.4%)   

 No 45 (43.3%)  115 (46.8%)   

 N/A   2 (0.8%)   

Tumor Size      

 < 5 cm 96 (92.3%)     

 > 5 cm 8 (7.7%)     

Data set 1, Ireland cohorts (GSE42568); Data set 2 and 5, Taiwan cohorts (GSE20568 and GSE48390 respectively); Data 
set 3, France cohorts (GSE31448); Data set 4, The Netherlands cohorts (GSE12276); N/A, not available.
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breast cancer data sets using Affymetrix U133 plus 2.0 and 
U133A platforms (Table 1 and Supplementary Table 1). 
For this purpose, predictions of the signature were done 
for each subgroup in isolation and for the U133A chip 
that included only 50 probes to construct the prediction 
models. As expected, all the prediction methods showed 
highly predictive performance with more than 95 percent 
predictive accuracy for all the classifiers (data not shown) 
and the Kaplan-Meier revealed significant differences of 
each of the combined data sets (p = 4.66 × 10−4, p = 6.04 
× 10−11 and p = 7.32 × 10−9, respectively; Figure 5). The 
signature distinguished 270 (47.1%), 170 (36%) and 906 
(38.5%) as the high risk and 303 (52.9%), 316 (64%) and 
1, 445 (61.5%) as the low risk for patients’ survival rate 
in subgroups 1, 2 and 3, respectively (Figure 5). Taken 
together, these data indicate that the selected gene signature 
might well reflect the patients’ potential for survival.

The 92-probe signature is an independent risk 
factor for survival

The prognostic accuracy was estimated by the 
univariate- and the multivariate-Cox proportional hazards 
models. In Univariate analysis, the 92-probe signature 
was shown to be a significant indicator for survival [(HR) 
1.927 (1.237–3.002); p < 0.01]. Of these clinical variables, 
the tumor grade and p53 status were also associated with 
better prognosis (p < 0.01 and p < 0.05 respectively; 
Table 3.) However, in the multivariate analysis, the 
molecular subtype and the 92-probe signature were found 
to be associated significantly with survival [(HR) 1.799 
(1.272–2.544); 7.125 (2.462–20.618), p = 001; p < 0.001]. 
To evaluate the independent prognostic performance 
with increased patient number, only those data sets with 
sufficient clinical and survival information were combined. 
In this condition, two multivariate Cox models were 
constructed entering the independent variables of age, 

ER-, progesterone receptor (PR)-status, lymph node, grade 
and the absence or presence of the 92-probe signature. In 
the first model, lymph node and grade were significantly 
correlated with patients’ survival (p < 0.01) (Table 4). When 
the 92-probe signature was added into the second model, 
the signature was found to be significantly associated 
with survival. The multivariate analysis was then repeated 
to assess 5-year DFS. The result revealed the 92-probe 
signature might be the strongest and most significant 
predictor of the survival in late recurrence [2.239 (1.265–
3.963); p = 0.006; Table 5]. In order to further confirm this 
association with early- or late-recurrence of the disease, 
the patients were grouped according to follow-up time 
(A: ≤ 5 yr, B: ≥ 5 yr). The signature retained a significant 
association only in case of patients in the B group, and 
lymph node status was the significant predictor of survival 
among those clinical variables (Supplementary Table S2).

Significant association of prognosis in estrogen 
receptor positive and lymph node positive 
patients

Based on the available clinical information and 
sufficient patients’ number, subset analyses were performed 
within the ER and lymph node status. The gene expression 
signature successfully identified patients with poor survival 
among those with ER-positive and positive axillary lymph 
node involvement in breast cancer within the training data 
set 1 (p < 0.05 and < 0.001 for ER-and lymph node positive 
respectively; Figure 6B and 7B). A distinctive subgroup 
within the ER-positive was found to be significantly 
associated with DFS in the independent datasets (p < 0.05, 
p < 0.01; data sets 3 and 5 respectively; Figure 6). The 
lymph node analysis showed strongly association with 
survival both in independent and combined datasets (p 
< 0.001, dataset 3 and combined cohorts AL; p < 0.05, 
Canada cohorts; Figure 7 and Supplementary Figure 4). 

Figure 1: A workflow in this study. 
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Figure 2: Association of the 92-probe signature in respect to clinical and survival information of 104 primary breast 
tumor patients in training dataset 1. A. Prognostic index in dataset 1. Each bar represents the prognostic index for an individual 
patient. B. The association of survival and clinical information within the two risk groups in dataset 1. C. The heatmap of the median-
centered 92-probe expression profile (green, relative high expression; sky blue, relative low expression). D and E. Kaplan-Meier plots of 
the two subgroups in the training cohort predicted by CCP. p values were obtained from log-rank test. The ‘+’ symbols in the panels indicate 
censored data. CCP, compound covariate predictor; OS, overall survival; RFS, relapse free survival.
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Figure 3: Association of the 102 and the 92-probe sets with survival information of primary breast tumor patients in 
dataset 1, 2 and 3 respectively. A–F. Kaplan-Meier plots of the two subgroups were predicted by CCP. (A and B) Dataset 1. (C and D) 
dataset 2. (E and F) dataset 3. p values were obtained from log-rank test. The ‘+’ symbols in the panels indicate censored data. CCP, 
compound covariate predictor; OS, overall survival; DFS, disease free survival.
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Figure 4: Construction of prediction model in test cohorts based on gene expression signature from data set 1.  
A. Schematic overview of the strategy used for the construction of prediction models and evaluation of predicted outcomes depending 
on the 92-probe signature. B–E. Kaplan-Meier plots of survival graph. According to survival time, patients were stratified into two risk-
subgroups, predicted by CCP. (A) Overview of the prognostic signature validation strategy. (B) Dataset 2. (C) Dataset 3. (D) Dataset 4. 
(E) Dataset 5. p values were obtained from log-rank test. The ‘+’ symbols in the panels indicate censored data. CCP, compound covariate 
predictor; OS, overall survival; DFS, disease free survival; DMFS, disease metastasis free survival.
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Figure 5: Outcome predictions in the combined validation cohorts. Kaplan-Meier survival curves were constructed using 
92-probe expression from the training dataset. A. Combination of data sets 2 and 3. B. Five other plus 2 chip combination. C. Ten affymetrix 
U133A chip combination. Patients were stratified according to median prognostic index into two risk subgroups predicted by CCP. p values 
were obtained from log-rank test. The ‘+’ symbols in the panels indicate censored data.

Table 3: The univariate and the multivariate cox proportional hazard regression analyses for 
patients’ survival in France cohort
Parameters (n = 246) Univariate Multivariate

HR (95%CI) p Value HR (95%CI) p Value

Age (years) 0.997 (0.980–1.015) 0.756 0.990 (0.969–1.010) 0.328

ER status (+/–) 0.687 (0.440–1.072) 0.098 0.977 (0.337–2.833) 0.965

PR status (+/–) 0.816 (0.524–1.270) 0.368 1.349 (0.527–3.455) 0.533

Lymph node (+/–) 1.493 (0.952–2.341) 0.081 1.357 (0.794–2.317) 0.264

Grade (1, 2, 3) 1.592 (1.159–2.188) 0.004 0.912 (0.605–1.376) 0.661

P53 status (yes/no) 1.814 (1.100–2.991) 0.020 1.378 (0.792–2.399) 0.257

Mol_Sub (I, II, III, IV, V, VI) 1.037 (0.875–1.229) 0.677 1.799 (1.272–2.544) 0.001

92-probe signature (high/low) 1.927 (1.237–3.002) 0.004 7.125 (2.462–20.618) <0.001

HR, hazard ratio; CI, confident interval; ER, estrogen receptor; PR, progesterone receptor; Mol_Sub, molecular subtype; 
A low risk was defined as a prognostic index less than or equal to -0.272144, and a high risk as a PI higher than -0.272144.
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Table 4: Multivariate analysis of age, ER-, PR-status, lymph node, grade and 92-probe signature 
in relation to the patient’s survival
Parameters HR (95%CI) p Value

Analysis without 92-probe signature   

 Age (years) 0.996 (0.980–1.013) 0.674

 ER status (+/–) 0.570 (0.269–1.204) 0.141

 PR status (+/–) 1.148 (0.555–2.371) 0.710

 Lymph node (+/–) 1.799 (1.161–2.788) 0.009

 Grade (1, 2, 3) 1.536 (1.121–2.105) 0.008

Analysis with 92-probe signature   

 Age (years) 0.996 (0.979–1.014) 0.674

 ER status (+/–) 1.111 (0.479–2.577) 0.806

 PR status (+/–) 1.269 (0.610–2.639) 0.524

 Lymph node (+/–) 1.856 (1.197–2.876) 0.006

 Grade (1, 2, 3) 1.382 (1.000–1.908) 0.050

 92-probe signature (low/high) 2.746 (1.443–5.227) 0.002

The multivariate model included 301 patients for DFS, owing to missing values in twenty two. A low risk was defined as 
a prognostic index less than or equal to –0.272144, and a high risk as a PI higher than –0.272144. HR, hazard ratio; CI, 
confident interval; ER, estrogen receptor; PR, progesterone receptor.

Table 5: Multivariate analysis of age, ER-, PR-status, lymph node, grade and 92-probe signature 
in relation to the 5-year survival
Parameters HR (95%CI) p Value

Analysis without 92-probe signature   

 Age (years) 0.984 (0.971–0.998) 0.025

 ER status (+/–) 0.510 (0.270–0.961) 0.037

 PR status (+/–) 0.905 (0.479–1.710) 0.757

 Lymph node (+/–) 1.517 (1.062–2.165) 0.022

 Grade (1, 2, 3) 1.708 (1.291–2.258) <0.001

Analysis with 92-probe signature   

 Age (years) 0.984 (0.970–0.998) 0.023

 ER status (+/–) 0.878 (0.423–1.825) 0.728

 PR status (+/–) 0.974 (0.512–1.853) 0.936

 Lymph node (+/–) 1.539 (1.079–2.197) 0.017

 Grade (1, 2, 3) 1.562 (1.173–2.080) 0.002

 92-probe signature (low/high) 2.239 (1.265–3.963) 0.006

A low risk was defined as a prognostic index less than or equal to –0.272144, and a high risk as a PI higher than –0.272144. 
HR, hazard ratio; CI, confident interval; ER, estrogen receptor; PR, progesterone receptor.
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Figure 6: Significant association of the 92-probe signature with ER status in different datasets. A–F. Kaplan-Meier curves 
of patients in ER-negative and ER-positive groups. Patients were classified according to the prognostic index of the 92-probe signature. 
(A and B) Dataset 1. (C and D) Dataset 3. (E and F) Dataset 5. p values were obtained from log-rank test. The ‘+’ symbols in the panels 
indicate censored data. DFS, disease free survival; RFS, relapse free survival.
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Figure 7: Significant association of 92-probe signature with lymph node status in different datasets. A–H. Kaplan-Meier 
curves of patients in lymph node-negative and lymph node-positive groups. Patients were classified according to the prognostic index of the 
92-probe signature. (A and B) Dataset 1. (C and D) Dataset 3 including all tumor grades. (E and F) Dataset 3 including tumor grade 1 and 
2 or pT1 and pT2. (G and H) Canada cohorts including datasets (6, 7 and 8). p values were obtained from log-rank test. The ‘+’ symbols in 
the panels indicate censored data. DFS, disease free survival; RFS, relapse free survival.
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When we considered tumor grade 1 and 2 or stage pT1 and 
pT2, the significant association with lymph node was well 
maintained. Taken together, these results suggest that the 
gene expression signature is independent of the current ER 
and lymph node status.

Biological significance and gene interaction

The function of the 92 probes in the prognostic 
signature was analyzed to relate the genes to biological 
processes. Eight probes were not annotated genes. 
The enriched biological processes were shown in 
Table 6. The most significant biological process 
was a response to hormone stimuli (p < 0.001) in 
which 9 genes were adenylate cyclase 1 (ADCY1), 
erb-b2 receptor tyrosine kinase 4 (ERBB4), estrogen 
receptor 1 (ESR1), GATA binding protein 3 (GATA3), 
insulin-like growth factor 1 receptor (IGF1R), 
neuropeptide Y receptor Y1 (NPY1R), ras-related 

and estrogen-regulated growth inhibitor-like protein 
(RERG), serpin peptidase inhibitor clade A member 1 
(SERPINA1), and transforming growth factor beta receptor 
III (TGFBR3). Two additional hormonal processes, 
namely responses to steroid hormone stimulus and 
estrogen stimulus, were found. While cell motion was the 
least significant process (p < 0.05), it consisted of 6 genes 
such as axonemal dynein light intermediate polypeptide 1 
(DNALI1), forkhead box C1 (FOXC1), insulin-like 
growth factor 1 (IGF1), ret proto-oncogene (RET), S100 
calcium binding protein A9 (S100A9), and TGFBR3. 
Other important processes like gland development, 
response to organic substance, regulation of epithelial 
cell proliferation, cell maturation, mesenchymal cell 
differentiation, regulation of cell migration along with 
some signaling pathways such as protein tyrosine kinase 
signaling and second-messenger-mediated signaling 
pathways were found to be considerably predominating 
biological processes. Genes involved in multiple 

Table 6: The significant GO biological pathways pointed to by the 92-probe signature
ID Name No of genes p value Gene symbol

GO:0009725 Response to 
hormone stimulus 9 0.000124 ADCY1, IGF1R, GATA3, RERG, TGFBR3, 

SERPINA1, ERBB4, NPY1R, ESR1

GO:0048732 Gland development 6 0.000233 IGF1, IGF1R, PGR, FOXC1, ERBB4, FOXA1

GO:0010033 Response to 
organic substance 11 0.000665 HSPA2, ADCY1, GATA3, IGF1R, ABAT, RERG, 

SERPINA1, TGFBR3, ERBB4, NPY1R, ESR1

GO:0021700 Developmental 
maturation 5 0.000798 PGR, ERBB4, NTN4, RET, FOXA1

GO:0001655 Urogenital system 
development 5 0.001098 FOXC1, AGTR1, SOX11, RET, FOXA1

GO:0030879 Mammary gland 
development 4 0.002238 IGF1, IGF1R, PGR, ERBB4

GO:0007610 Behavior 8 0.003072 ADCY1, ABAT, PPP1R1B, ZIC1, CXCL14, NOVA1, 
NPY1R, S100A9

GO:0050678
Regulation of 
epithelial cell 
proliferation

4 0.003147 IGF1, PGR, TGFBR3, ERBB4

GO:0048469 Cell maturation 4 0.003675 PGR, NTN4, RET, FOXA1

GO:0030334 Regulation of cell 
migration 5 0.00521 IGF1, IGF1R, TGFBR3, ERBB4, PARD6B

GO:0001822 Kidney 
development 4 0.007315 FOXC1, AGTR1, SOX11, RET

GO:0048545 Response to steroid 
hormone stimulus 5 0.008129 GATA3, SERPINA1, ERBB4, NPY1R, ESR1

GO:0051270 Regulation of cell 
motion 5 0.008276 IGF1, IGF1R, TGFBR3, ERBB4, PARD6B

GO:0043627 Response to 
estrogen stimulus 4 0.00935 GATA3, SERPINA1, NPY1R, ESR1

(Continued )
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biological processes were FOXC1, TGFBR3, IGF1R, 
IGF1, RET, NPY1R and forkhead box A1 (FOXA1), which 
participated in 7 to 15 processes while protein phosphatase 
1 regulatory subunit 1B (PPP1R1B) and zinc finger 
protein ZIC 1 (ZIC1) included only single cell behavior 
process. A network analysis of the 92-probes showed 
cytochrome P450 2B6 (CYP2B6) is linked to the strongest 
protein-protein interaction especially with cytochrome 
P450 4X1 (CYP4X1), FOXA1, IGF1, nephronectin 

(NPNT), and transcription factor SOX-11 (SOX11). In 
addition, an unknown gene (AA588092), anterior gradient 
homolog 3 (AGR3), angiotensin II receptor type 1 
(AGTR1), chloride intracellular channel protein 6 (CLIC6), 
C-X-C motif chemokine 14 (CXCL14), ectonucleotide 
pyrophosphatase/phospho-diesterase 5 (ENPP5), FOXC1, 
signal peptide-CUB-EGF-like domain containing protein 2 
(SCUBE2), and SERPINA1 were also found to be strongly 
connected within the signature (Figure 8).

ID Name No of genes p value Gene symbol

GO:0040008 Regulation of 
growth 6 0.013202 IGF1, RERG, FOXC1, AGTR1, NPY1R, MAPT

GO:0007167
Enzyme linked 
receptor protein 
signaling pathway

6 0.013356 IGF1R, REPS2, FOXC1, TGFBR3, ERBB4, RET

GO:0007169

Transmembrane 
receptor protein 
tyrosine kinase 
signaling pathway

5 0.013730 IGF1R, REPS2, FOXC1, ERBB4, RET

GO:0019932 Second-messenger-
mediated signaling 5 0.016108 ADCY1, IGF1, IGF1R, AGTR1, NPY1R

GO:0014031 Mesenchymal cell 
development 3 0.018849 FOXC1, TGFBR3, RET

GO:0048762 Mesenchymal cell 
differentiation 3 0.018849 FOXC1, TGFBR3, RET

GO:0060485 Mesenchyme 
development 3 0.019552 FOXC1, TGFBR3, RET

GO:0002070 Epithelial cell 
maturation 2 0.020530 PGR, FOXA1

GO:0003006
Reproductive 
developmental 
process

5 0.023000 HSPA2, IGF1R, PGR, FOXC1, FOXA1

GO:0007626 Locomotory 
behavior 5 0.026563 ABAT, CXCL14, NOVA1, NPY1R, S100A9

GO:0014855 Muscle cell 
proliferation 2 0.028626 FOXC1, TGFBR3

GO:0008283 Cell proliferation 6 0.033837 IGF1, PDZK1, FOXC1, TGFBR3, ERBB4, SOX11

GO:0030182 Neuron 
differentiation 6 0.034411 IGF1R, RTN1, NTN4, RET, PARD6B, FOXA1

GO:0033002 Muscle cell 
proliferation 2 0.036656 FOXC1, TGFBR3

GO:0008015 Blood circulation 4 0.041680 ABAT, FOXC1, AGTR1, NPY1R

GO:0042127 Regulation of cell 
proliferation 8 0.042679 IGF1, IGF1R, RERG, PGR, AGTR1, TGFBR3, 

ERBB4, RARRES1

GO:0006928 Cell motion 6 0.046139 IGF1, FOXC1, TGFBR3, RET, DNALI1, S100A9

p-value represents the significance of enrichment and is estimated by Bonferroni test.
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DISCUSSION

In this study, we explored a significant gene 
signature related to prognosis of breast cancer patients 
by investigating three independent microarray datasets of 
heterogeneous primary breast cancer. The reproducibility 
of the signature was improved by using a unique 
platform and probe ID, and repeated analysis strategies 
were followed. By selecting common genes before the 
Univariate Cox, we controlled the gene set instability and 
overfitting of the training [13]. In addition, we improved 
the predictive strength by analyzing 677 patients without 
pooling microarray data sets. A supervised method was 
applied to construct the signature, test its robustness 
and validate its association with clinical outcomes. 

The two risk subgroups based on the prognostic index 
significantly reduced overoptimization with 73% overall 
accuracy during cross validation of the training dataset. 
Subsequent analysis of the clinical data revealed that 
the two subgroups differed significantly in OS and 
RFS. Although our strategy might lose some predictive 
power by analyzing 3 data sets separately (Figure 3), 
the predictive strength was fairly conserved by showing 
significant association with patients’ prognosis in dataset 
2 and 3, using both 102 and 92 probe sets.

The 92-probe signature was robustly validated by 
six different predictors in internal, external and combined 
approaches with large numbers of patients, and almost all 
showed a similar performance. The robust validation was 
supported by the high sensitivity (>90%) and specificity 

Figure 8: Network analysis of the 92-probe signature in the primary breast cancer. Node and edge size were generated 
according to the number of connections within the module.



Oncotarget15676www.impactjournals.com/oncotarget

(>90%) of all the prediction models within dataset 1  
and a significant association of predicted outcomes was 
found with patient prognosis in all independent datasets 
(2, 3, 4, and 5) (Figure 4B–4E and Supplementary 
Figure S3, S3A–S3D). Other datasets of GPL 570 chip 
were not considered for independent validation because 
of small sample size. Datasets 2 and 3 were considered 
for independent validation because the survival 
information remained intact during identification of the 
common genes. Due to this reason, we made a separate 
subgroup by pooling only the datasets 2 and 3 for 
combined validation. Interestingly, other two subgroups 
showed better prediction for survival (Figure 5). 
The combined validation approach showed a better 
predictive performance suggesting that the number of 
patient population is equally important to confirm the 
validity of a signature. Although half of the probe sets 
were able to validate the outcome prediction when the 
sample size was more than 2000 (Figure 5C), the present 
study mainly focused on full probe models. We followed 
a strict protocol to maintain the same analytical method in 
training and validation. Our prognostic index based gene 
signature worked well in diverse populations of primary 
breast cancers, suggesting that it has an important general 
prognostic feature.

Different multivariate analyses were performed in 
the present study to explore whether the prognostic value 
was conserved after adjusting the clinical variables. In 
univariate Cox analysis, our 92-probe signature showed 
independent predictive power of patients’ survival, while 
the predictive performance increased after adjustment 
of clinical variables in multivariate models. Analysis 
based on two multivariate models containing clinical 
variables, with and without the signature, (Table 4) shows 
a significant association of the 92-probes with survival, 
indicating the true predictive power [14, 15]. Finally, we 
tested whether it might predict early- or late-recurrences 
of the disease. The association of the signature with 5-year 
disease free survival indicated that the signature was a 
predictor of late recurrence, and further demonstrated that 
only a sub-group of patients were at increased risk for this 
recurrence (Supplementary Table S2). It is notable that in 
multivariate analysis, the predictive power of molecular 
subtype increased significantly in single data while lymph 
node and grade were significant predictors in increased 
patient data, suggesting an integrated approach using gene 
expression together with clinical information might be 
more promising in clinical practice.

A functional enrichment analysis showed that the 
92-probe signature was significantly enriched in hormone 
response, mammary gland development, response to 
steroid hormone and the estrogen stimulus response. 
These important hormonal regulators permitted us to 
analyze the gene signature’s effects on the ER status. 
The two risk groups in ER-positive patients indicated 
that distinct biological characteristics were reflected 

by gene expression patterns representing heterogeneity 
of aggressiveness. For example, low level of MAPT 
expression found in the present study was associated 
with a subset of ER-positive breast cancers that had poor 
prognosis with tamoxifen and might benefit from taxane-
containing chemotherapy [16]. One important finding 
of our study is that the proportion of high-risk patients 
in the training and validation sets was lower than that 
of the low risk patients. The large number of patients 
(50-probe sets) also showed consistent results (Figure 6 
and Supplementary Figure S4) suggesting that minorities 
of ER+-primary breast cancer patients have likelihood for 
poor prognosis. This needs to be considered for therapeutic 
decisions to protect patients from overtreatment.

Metastatic relapse mostly depends on large tumor 
size, high-grade and positive lymph node status [17]. 
Notable findings in our study are that (a) the signature 
divided lymph node positive breast cancer into two risk 
groups, and (b) the signature was robustly validated in 
different patients’ cohorts (Figure 7). This prognostic 
index remained significant even when we excluded 
higher tumor grade patients (Figure 7F), suggesting that 
the signature has the potential to predict invasiveness 
from early stage in this group. The invasive feature has 
also been shown in the data sets 2; about 70% patients 
received adjuvant chemotherapy before samples were 
taken, indicating genes in the signature are involved in 
either resistance or low effectiveness to chemotherapy. 
The signature included cell proliferation-related genes 
such as RERG, CDC20 and voltage-dependent L-type 
calcium channel subunit alpha-1D (CACNA1D). This is 
consistent with elevated cell proliferation and loss of cell 
cycle control associated with poor outcomes [18–21]. 
Cell migration plays an important role in metastasis from 
epithelial to mesenchymal transition. The overexpression 
of P-cadherin induces cell migration and promotes cell 
invasion by disrupting the interaction between E-cadherin 
and cytoplasmic catenins [22]. In addition, prognostic 
biomarkers FOXC1 and TGFBR3 showed significant 
association with poor survival. This is in line with Ray et 
al [23] and Dong et al [24] who demonstrated that these 
genes function in relation to breast cancer cell growth, 
migration, invasion, and chemoresistance. Therefore, 
we argue that the varieties of genes in this signature 
are involved in infinitive proliferation, metastasis and 
chemoresistance. Many new genes such as AA588092, 
AI367357, uncharacterized FLJ38379 (FLJ38379), 
tumor protein p63 regulated 1 (TPRG1) and a disintegrin 
and metalloproteinase with thrombospondin motifs 
15 (ADAMTS15) were also found, suggesting that our 
92-probe signature contains novel information which 
may provide new biomarkers to assist in clinical decision 
making regarding new therapeutic targets for the disease.

The signature lacks BRCA1, BRCA2, p53, Ki67, 
and some other important genes that are causally related 
to breast cancer development. One possible explanation 
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could be that data sets were mainly generated from 
luminal type breast cancer. Another cause may be due 
to the confined folds and observations. Inter-laboratory 
variations can also skip some genes during filtration steps. 
Even if this approach might have some limitations, we 
found several molecules of key signaling pathways in 
cancer metabolism. For example, the downregulation of 
CXCL14 upregulated CXCL12, which in turn activated 
DARPP-32 that mediated invasion via CXCR4 [25, 26]. 
A few genes such as the survival mediator RET and 
N-acetyltransferase showed opposite findings, suggesting 
the importance of reinvestigating pathophysiology of 
early- and late-recurrences before selecting the new 
therapeutic target. Unfortunately, our study demonstrated 
a lack of many overlapping genes between our gene 
signature and existing gene signatures (Supplementary 
Table S4) [5, 27–30]. But this discrepancy is a very 
common phenomenon in Microarray analyses. This could 
be due to small sample size, patients’ characteristics, 
statistical analyses, different platforms with different 
methodologies for tumor collection and RNA preparation, 
and relative quantification values for a given gene. All 
these factors might explain the lack of common genes 
among published signatures. In our study we put most of 
these factors into consideration though further work needs 
to be done to come up with more overlapping genes for 
better diagnosis and treatment.

In conclusion, we suggest that a prognostic 92-probe 
signature is developed to predict outcome in primary breast 
cancer. This signature may stratify subgroups of breast cancer 
patients with poor prognosis in a reliable and reproducible 
manner across independent and combined patients’ cohorts. 
Our data suggests that this classifier may have a considerable 
clinical relevance, especially in identifying patients at high 
risk of developing late recurrences. This gene profiling 
can preferentially be valuable as a target for prognosis and 
treatment of ER-positive and lymph node positive patients. 
This study provides an opportunity for a rational design of 
future clinical trial to test the benefit against late recurrences 
in these groups of patients.

METHODS

Patients and gene expression data

In the current analysis, 18 different breast cancer 
patient datasets were studied. Gene expression datasets 
were downloaded from the GEO repository (http://www.
ncbi.nlm. http://nih.gov/geo), Array express (https://www.
ebi.ac.uk/arrayexpress/experiments) and The Cancer 
Genome Altas (TCGA) (http://cancergenome.nih.gov/). 
Data were selected based on the chip type [Affymetrix 
U133 2.0 (GPL570) and HG-133A (GPL96)], raw CEL 
files and clinical survival information. Multiple data 
from the same institution were excluded, except for three 
datasets, GSE9195, GSE20711 and GSE16391, from 

Princess Margaret Research, Canada. The raw CEL files 
were preprocessed with robust multiarray average (RMA) 
algorithm [31] using R packages from ‘affy’ Bioconductor 
(http://www.bioconductor.org). Based on the U133 plus 
2.0 platform and patients characteristics, five datasets were 
mainly considered in the study. To identify the survival 
gene candidates, dataset 1 (GSE42568) from Dublin 
City University (Ireland) was used as a training cohort 
consisted of 121 patients, 17 of whom were excluded 
due to normal breast tissue. Datasets 1 to 3 were used for 
the identification of common genes while datasets 2 to 5 
were used as independent testing samples for validation 
(internal and external) of the identified signature. The first 
validation dataset 2 (GSE20685, n = 327) was published 
by the Koo Foundation SYS Cancer Center, Taiwan. 
Dataset 3 (GSE31448, n = 357) was taken from the Institut 
Paoli-Calmettes, France, however, only 246 patients that 
provided detailed survival and clinical information were 
analyzed in this study. Dataset 4 (GSE12276) was collected 
from the Netherlands Erasmus Medical Centre and 195 
patients out of 204 were analyzed in the present study. 
Finally, dataset 5 (GSE48390, n = 81) was used as the last 
validation set from the Cathay General Hospital SiJhih, 
Taiwan. Details about the patients’ characteristics were 
described in Table 2. Other datasets used for the combined 
validation was described in Supplementary Table S1.

Development of a prognostic survival signature 
and risk prediction

The following three steps were included in the 
identification of the prognostic signature: (1) selection of 
the common probes using the Venn diagram method (2) 
determination of the optimal survival gene by the univariate 
Cox and (3) prognostic prediction between gene expression 
and patient’s survival by supervised principle component 
method. At first, the 54675 probe sets from data sets 1 to 3 
were filtered by the Gene filtration method and the common 
probes were identified by a Venn diagram generator 
(http://www.pangloss.com/seidel/Protocols./venn.cgi). The 
univariate Cox analysis, based on hazards model and Wald 
statistics [32], was used to identify OS-associated genes 
from the common probes of the training data set. Finally, 
the survival signature was selected by significant individual 
Kaplan-Maier graphs provided by the analysis. As for 
prognostic prediction, probes from the survival signature 
were applied to the survival risk prediction analysis [33]. 
This method used the principal component from the training 
dataset and produced prognostic index (PI) for each patient. 
We computed using the formula ∑iWiXi+0.100356, where 
Wi and Xi were the weight and logged gene expression for 
the i-th gene. When the prognostic index was larger than the 
median value (-0.272144), the sample was predicted as one 
with high risk, while the prognostic index was smaller than 
or equal to the median value, the sample was predicted as 
one with low risk.
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Validation of the prognostic signature

The validation of the survival gene signature was 
accomplished on independent and combined datasets. 
For the combined validation, three subgroups were made 
depending on the chip versions and the internal data sets. 
These included 573 breast cancer patients from the internal 
test sets, 492 from external test sets and 2351 from the 
affymatrix U133A version (Figure 5 and Supplementary 
Figure S5). For lymph node subtypes validation, a cohort 
(Canada) from datasets 6, 7 and 8 were done (lymph node; 
negative = 92, positive = 128). Under this condition, gene 
expression data from different cohorts were adjusted 
individually by subtracting the median expression value 
across the samples before combining them. Six different 
prediction methods were applied for the validation of all 
datasets which included compound covariate predictor 
(CCP), linear discriminant analysis (LDA), support vector 
machine (SVM), nearest neighbor 1NN, 3NN and nearest 
centroid (NC) [34]. The robustness of the classifier was 
estimated by the misclassification rate determined during 
the leave-one-out cross-validation (LOOCV) in the 
training set. The Kaplan–Meier survival analyses were 
performed after the samples were classified into two 
risk groups and log-rank tests were used to evaluate the 
survival risk between two predicted subgroups of patients. 
The uni- and multi-variate Cox proportional hazard 
regression analyses were used to evaluate independent 
prognostic factors associated with survival. And gene 
signature, tumor grade and pathological characteristics 
were used as covariates.

Pathway analysis

Gene ontology (GO) biological process enrichment 
analysis was carried out using the database for Annotation, 
Visualization and Integrated Discovery (DAVID) 
bioinformatics tool (http://david.abcc.ncifcrf.gov/) [35]. 
A connection index based network of the prognostic gene 
signature was also generated by R program. Cytoscape 
was used to visualize the connection of each gene in the 
survival signature [36].

Statistical methods of microarray data

Microarray data were analyzed using BRB-
Array Tools Version 3.0 (http://linus.nci.nih.gov/BRB-
ArrayTools.html) [34]. All other statistical analyses 
were accomplished in the R language environment 
(http://www.r-project.org) and Statistical Package for 
Social Sciences (SPSS) software (version 16, SPSS, Inc, 
Chicago, IL, USA). All comparisons of Kaplan-Meier 
survival analysis were performed by the log rank test. 
Cluster analysis was performed with Cluster and Tree 
View (http://bonsai.hgc.jp/~mdehoon/software/cluster/
software.htm#ctv) [37]. p value of less than 0.05 was 
considered statistically significant.
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